Role of the microbiome in systemic therapy for pancreatic ductal adenocarcinoma (Review)
- Authors:
- Xing Huang
- Mao Li
- Shengzhong Hou
- Bole Tian
-
Affiliations: Department of Pancreatic Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China - Published online on: November 2, 2021 https://doi.org/10.3892/ijo.2021.5281
- Article Number: 101
-
Copyright: © Huang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Siegel RL, Miller KD and Jemal A: Cancer statistics, 2019. CA Cancer J Clin. 69:7–34. 2019. View Article : Google Scholar : PubMed/NCBI | |
Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM and Matrisian LM: Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 74:2913–2921. 2014. View Article : Google Scholar : PubMed/NCBI | |
Network (NCCN): NCC: Clinical Practice Guidelines in Oncology. Pancreatic Adenocarcinoma, Version 1. NCCN; Pennsylvania: 2020, https://www.nccn.org/professionals/physician_gls/pdf/pancreatic.pdf. Accessed November 26, 2019. | |
Marchesi JR, Adams DH, Fava F, Hermes GDA, Hirschfield GM, Hold G, Quraishi MN, Kinross J, Smidt H, Tuohy KM, et al: The gut microbiota and host health: A new clinical frontier. Gut. 65:330–339. 2016. View Article : Google Scholar | |
Heintz-Buschart A and Wilmes P: Human gut microbiome: Function matters. Trends Microbiol. 26:563–574. 2018. View Article : Google Scholar | |
Human Microbiome Project Consortium: Structure, function and diversity of the healthy human microbiome. Nature. 486:207–214. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kolodziejczyk AA, Zheng D and Elinav E: Diet-microbiota interactions and personalized nutrition. Nat Rev Microbiol. 17:742–753. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ianiro G, Tilg H and Gasbarrini A: Antibiotics as deep modulators of gut microbiota: Between good and evil. Gut. 65:1906–1915. 2016. View Article : Google Scholar : PubMed/NCBI | |
Guyton K and Alverdy JC: The gut microbiota and gastrointestinal surgery. Nat Rev Gastroenterol Hepatol. 14:43–54. 2017. View Article : Google Scholar | |
Imhann F, Bonder MJ, Vila AV, Fu J, Mujagic Z, Vork L, Tigchelaar EF, Jankipersadsing SA, Cenit MC, Harmsen HJ, et al: Proton pump inhibitors affect the gut microbiome. Gut. 65:740–748. 2016. View Article : Google Scholar | |
Tilg H and Adolph TE: Beyond digestion: The pancreas shapes intestinal microbiota and immunity. Cell Metab. 25:495–496. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ahuja M, Schwartz DM, Tandon M, Son A, Zeng M, Swaim W, Eckhaus M, Hoffman V, Cui Y, Xiao B, et al: Orai1-mediated antimicrobial secretion from pancreatic acini shapes the gut microbiome and regulates gut innate immunity. Cell Metab. 25:635–646. 2017. View Article : Google Scholar : PubMed/NCBI | |
Panebianco C, Potenza A, Andriulli A and Pazienza V: Exploring the microbiota to better understand gastrointestinal cancers physiology. Clin Chem Lab Med. 56:1400–1412. 2018. View Article : Google Scholar : PubMed/NCBI | |
Balhouse BN, Patterson L, Schmelz EM, Slade DJ and Verbridge SS: N-(3-oxododecanoyl)-L-homoserine lactone interactions in the breast tumor microenvironment: Implications for breast cancer viability and proliferation in vitro. PLoS One. 12:e01803722017. View Article : Google Scholar : PubMed/NCBI | |
Grąt M, Wronka KM, Krasnodębski M, Masior L, Lewandowski Z, Kosińska I, Grąt K, Stypułkowski J, Rejowski S, Wasilewicz M, et al: Profile of gut microbiota associated with the presence of hepatocellular cancer in patients with liver cirrhosis. Transplant Proc. 48:1687–1691. 2016. View Article : Google Scholar | |
Zaidi AH, Kelly LA, Kreft RE, Barlek M, Omstead AN, Matsui D, Boyd NH, Gazarik KE, Heit MI, Nistico L, et al: Associations of microbiota and toll-like receptor signaling pathway in esophageal adenocarcinoma. BMC Cancer. 16:522016. View Article : Google Scholar : PubMed/NCBI | |
Wei MY, Shi S, Liang C, Meng QC, Hua J, Zhang YY, Liu J, Zhang B, Xu J and Yu XJ: The microbiota and microbiome in pancreatic cancer: More influential than expected. Mol Cancer. 18:972019. View Article : Google Scholar : PubMed/NCBI | |
Roy S and Trinchieri G: Microbiota: A key orchestrator of cancer therapy. Nat Rev Cancer. 17:271–285. 2017. View Article : Google Scholar : PubMed/NCBI | |
Aarnoutse R, Ziemons J, Penders J, Rensen SS, de Vos-Geelen J and Smidt ML: The clinical link between human intestinal microbiota and systemic cancer therapy. Int J Mol Sci. 20:41452019. View Article : Google Scholar : | |
Fan X, Alekseyenko AV, Wu J, Peters BA, Jacobs EJ, Gapstur SM, Purdue MP, Abnet CC, Stolzenberg-Solomon R, Miller G, et al: Human oral microbiome and prospective risk for pancreatic cancer: A population-based nested case-control study. Gut. 67:120–127. 2018. View Article : Google Scholar | |
Torres PJ, Fletcher EM, Gibbons SM, Bouvet M, Doran KS and Kelley ST: Characterization of the salivary microbiome in patients with pancreatic cancer. PeerJ. 3:e13732015. View Article : Google Scholar : PubMed/NCBI | |
Olson SH, Satagopan J, Xu Y, Ling L, Leong S, Orlow I, Saldia A, Li P, Nunes P, Madonia V, et al: The oral microbiota in patients with pancreatic cancer, patients with IPMNs, and controls: A pilot study. Cancer Causes Control. 28:959–969. 2017. View Article : Google Scholar : PubMed/NCBI | |
Michaud DS, Izard J, Wilhelm-Benartzi CS, You DH, Grote VA, Tjønneland A, Dahm CC, Overvad K, Jenab M, Fedirko V, et al: Plasma antibodies to oral bacteria and risk of pancreatic cancer in a large European prospective cohort study. Gut. 62:1764–1770. 2013. View Article : Google Scholar | |
Farrell JJ, Zhang L, Zhou H, Chia D, Elashoff D, Akin D, Paster BJ, Joshipura K and Wong DT: Variations of oral microbiota are associated with pancreatic diseases including pancreatic cancer. Gut. 61:582–588. 2012. View Article : Google Scholar | |
Sun H, Zhao X, Zhou Y, Wang J, Ma R, Ren X, Wang H and Zou L: Characterization of oral microbiome and exploration of potential biomarkers in patients with pancreatic cancer. Biomed Res Int. 2020:47124982020. View Article : Google Scholar : PubMed/NCBI | |
Vogtmann E, Han Y, Caporaso JG, Bokulich N, Mohamadkhani A, Moayyedkazemi A, Hua X, Kamangar F, Wan Y, Suman S, et al: Oral microbial community composition is associated with pancreatic cancer: A case-control study in Iran. Cancer Med. 9:797–806. 2020. View Article : Google Scholar | |
Mitsuhashi K, Nosho K, Sukawa Y, Matsunaga Y, Ito M, Kurihara H, Kanno S, Igarashi H, Naito T, Adachi Y, et al: Association of Fusobacterium species in pancreatic cancer tissues with molecular features and prognosis. Oncotarget. 6:7209–7220. 2015. View Article : Google Scholar : PubMed/NCBI | |
Half E, Keren N, Dorfman T, Reshef L, Lachter I, Kluger Y, Konikoff F and Gphna U: Specific changes in fecal microbiota may differentiate Pancreatic Cancer patients from healthy individuals. Ann Oncol. 26:iv482015. View Article : Google Scholar | |
Ren Z: Gut microbial profile analysis by MiSeq sequencing of pancreatic carcinoma patients in China. Oncotarget. 8:95176–95191. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sethi V, Kurtom S, Tarique M, Lavania S, Malchiodi Z, Hellmund L, Zhang L, Sharma U, Giri B, Garg B, et al: Gut microbiota promotes tumor growth in mice by modulating immune response. Gastroenterology. 155:33–37.e36. 2018. View Article : Google Scholar : PubMed/NCBI | |
Half E, Keren N, Reshef L, Dorfman T, Lachter I, Kluger Y, Reshef N, Knobler H, Maor Y, Stein A, et al: Fecal microbiome signatures of pancreatic cancer patients. Sci Rep. 9:168012019. View Article : Google Scholar : PubMed/NCBI | |
Riquelme E, Zhang Y, Zhang L, Montiel M, Zoltan M, Dong W, Quesada P, Sahin I, Chandra V, Lucas AS, et al: Tumor microbiome diversity and composition influence pancreatic cancer outcomes. Cell. 178:795–806.e712. 2019. View Article : Google Scholar : PubMed/NCBI | |
Pushalkar S, Hundeyin M, Daley D, Zambirinis CP, Kurz E, Mishra A, Mohan N, Aykut B, Usyk M, Torres LE, et al: The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov. 8:403–416. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ikebe M, Kitaura Y, Nakamura M, Tanaka H, Yamasaki A, Nagai S, Wada J, Yanai K, Koga K, Sato N, et al: Lipopolysaccharide (LPS) increases the invasive ability of pancreatic cancer cells through the TLR4/MyD88 signaling pathway. J Surg Oncol. 100:725–731. 2009. View Article : Google Scholar : PubMed/NCBI | |
Eibl G and Rozengurt E: KRAS, YAP, and obesity in pancreatic cancer: A signaling network with multiple loops. Semin Cancer Biol. 54:50–62. 2019. View Article : Google Scholar | |
Aykut B, Pushalkar S, Chen R, Li Q, Abengozar R, Kim JI, Shadaloey SA, Wu D, Preiss P, Verma N, et al: The fungal mycobiome promotes pancreatic oncogenesis via activation of MBL. Nature. 574:264–267. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gaida MM, Mayer C, Dapunt U, Stegmaier S, Schirmacher P, Wabnitz GH and Hänsch GM: Expression of the bitter receptor T2R38 in pancreatic cancer: Localization in lipid droplets and activation by a bacteria-derived quorum-sensing molecule. Oncotarget. 7:12623–12632. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mendez R, Kesh K, Arora N, Martino LD, McAllister F, Merchant N and Banerjee S and Banerjee S: Microbial dysbiosis and polyamine metabolism as predictive markers for early detection of pancreatic cancer. Carcinogenesis. 41:561–570. 2020. View Article : Google Scholar : | |
Burris HA III, Moore MJ, Andersen J, Green MR, Rothenberg ML, Modiano MR, Cripps MC, Portenoy RK, Storniolo AM, Tarassoff P, et al: Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: A randomized trial. J Clin Oncol. 15:2403–2413. 1997. View Article : Google Scholar : PubMed/NCBI | |
Von Hoff DD, Ramanathan RK, Borad MJ, Laheru DA, Smith LS, Wood TE, Korn RL, Desai N, Trieu V, Iglesias JL, et al: Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: A phase I/II trial. J Clin Oncol. 29:4548–4554. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gnanamony M and Gondi CS: Chemoresistance in pancreatic cancer: Emerging concepts. Oncol Lett. 13:2507–2513. 2017. View Article : Google Scholar : PubMed/NCBI | |
Neale GA, Mitchell A and Finch LR: Enzymes of pyrimidine deoxyribonucleotide metabolism in Mycoplasma mycoides subsp. Mycoides J Bacteriol. 156:1001–1005. 1983. View Article : Google Scholar | |
Voorde JV, Sabuncuoğlu S, Noppen S, Hofer A, Ranjbarian F, Fieuws S, Balzarini J and Liekens S: Nucleoside-catabolizing enzymes in mycoplasma-infected tumor cell cultures compromise the cytostatic activity of the anticancer drug gemcitabine. J Biol Chem. 289:13054–13065. 2014. View Article : Google Scholar | |
Geller LT, Barzily-Rokni M, Danino T, Jonas OH, Shental N, Nejman D, Gavert N, Zwang Y, Cooper ZA, Shee K, et al: Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science. 357:1156–1160. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lehouritis P, Cummins J, Stanton M, Murphy CT, McCarthy FO, Reid G, Urbaniak C, Byrne WL and Tangney M: Local bacteria affect the efficacy of chemotherapeutic drugs. Sci Rep. 5:145542015. View Article : Google Scholar : PubMed/NCBI | |
Kesh K, Mendez R, Abdelrahman L and Banerjee S and Banerjee S: Type 2 diabetes induced microbiome dysbiosis is associated with therapy resistance in pancreatic adenocarcinoma. Microb Cell Fact. 19:752020. View Article : Google Scholar : PubMed/NCBI | |
Florez AB, Sierra M, Ruas-Madiedo P and Mayo B: Susceptibility of lactic acid bacteria, bifidobacteria and other bacteria of intestinal origin to chemotherapeutic agents. Int J Antimicrob Agents. 48:547–550. 2016. View Article : Google Scholar : PubMed/NCBI | |
Loman BR, Jordan KR, Haynes B, Bailey MT and Pyter LM: Chemotherapy-induced neuroinflammation is associated with disrupted colonic and bacterial homeostasis in female mice. Sci Rep. 9:16490. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ramakrishna C, Corleto J, Ruegger PM, Logan GD, Peacock BB, Mendonca S, Yamaki S, Adamson T, Ermel R, McKemy D, et al: Dominant role of the gut microbiota in chemotherapy induced neuropathic pain. Sci Rep. 9:20324. 2019. View Article : Google Scholar | |
Peretz A, Shlomo IB, Nitzan O, Bonavina L, Schaffer PM and Schaffer M: Clostridium difficile Infection: Associations with chemotherapy, radiation therapy, and targeting therapy treatments. Curr Med Chem. 23:4442–4449. 2016. View Article : Google Scholar : PubMed/NCBI | |
Su J, Li D, Chen Q, Li M, Su L, Luo T, Liang D, Lai G, Shuai O, Jiao C, et al: Anti-breast cancer enhancement of a polysaccharide from spore of ganoderma lucidum with paclitaxel: Suppression on tumor metabolism with gut microbiota reshaping. Front Microbiol. 9:30992018. View Article : Google Scholar | |
Stringer AM, Gibson RJ, Logan RM, Bowen JM, Yeoh AS, Hamilton J and Keefe DM: Gastrointestinal microflora and mucins may play a critical role in the development of 5-fluorouracil-induced gastrointestinal mucositis. Exp Biol Med (Maywood). 234:430–441. 2009. View Article : Google Scholar | |
Yeung CY, Chiau JS, Cheng ML, Chan WT, Chang SW, Chang YH, Jiang CB and Lee HC: Modulations of probiotics on gut microbiota in a 5-fluorouracil-induced mouse model of mucositis. J Gastroenterol Hepatol. 35:806–814. 2020. View Article : Google Scholar | |
Vanlancker E, Vanhoecke B, Smet R, Props R and Van de Wiele T: 5-Fluorouracil sensitivity varies among oral micro-organisms. J Med Microbiol. 65:775–783. 2016. View Article : Google Scholar : PubMed/NCBI | |
Saegusa Y, Ichikawa T, Iwai T, Goso Y, Okayasu I, Ikezawa T, Shikama N, Saigenji K and Ishihara K: Changes in the mucus barrier of the rat during 5-fluorouracil-induced gastrointestinal mucositis. Scand J Gastroenterol. 43:59–65. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ichim TE, Kesari S and Shafer K: Protection from chemotherapy- and antibiotic-mediated dysbiosis of the gut microbiota by a probiotic with digestive enzymes supplement. Oncotarget. 9:30919–30935. 2018. View Article : Google Scholar : PubMed/NCBI | |
Nakayama H, Kinouchi T, Kataoka K, Akimoto S, Matsuda Y and Ohnishi Y: Intestinal anaerobic bacteria hydrolyse sorivudine, producing the high blood concentration of 5-(E)-(2-bromovinyl) uracil that increases the level and toxicity of 5-fluorouracil. Pharmacogenetics. 7:35–43. 1997. View Article : Google Scholar : PubMed/NCBI | |
Yuan L, Zhang S, Li H, Yang F, Mushtaq N, Ullah S, Shi Y, An C and Xu J: The influence of gut microbiota dysbiosis to the efficacy of 5-Fluorouracil treatment on colorectal cancer. Biomed Pharmacother. 108:184–193. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bronckaers A, Balzarini J and Liekens S: The cytostatic activity of pyrimidine nucleosides is strongly modulated by Mycoplasma hyorhinis infection: Implications for cancer therapy. Biochem Pharmacol. 76:188–197. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yu T, Guo F, Yu Y, Sun T, Ma D, Han J, Qian Y, Kryczek I, Sun D, Nagarsheth N, et al: Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell. 170:548–563.e516. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Yang Y, Weng W, Guo B, Cai G, Ma Y and Cai S: Fusobacterium nucleatum promotes chemoresistance to 5-fluorouracil by upregulation of BIRC3 expression in colorectal cancer. J Exp Clin Cancer Res. 38:142019. View Article : Google Scholar : PubMed/NCBI | |
García-González AP, Ritter AD, Shrestha S, Andersen EC, Yilmaz LS and Walhout AJM: Bacterial metabolism affects the C. Elegans response to cancer chemotherapeutics. Cell. 169:431–441. 2017. View Article : Google Scholar : | |
Scott TA, Quintaneiro LM, Norvaisas P, Lui PP, Wilson MP, Leung KY, Herrera-Dominguez L, Sudiwala S, Pessia A, Clayton PT, et al: Host-microbe co-metabolism dictates cancer drug efficacy in C. Elegans. Cell. 169:442–456.e418. 2017. View Article : Google Scholar | |
Fogelman D, Sugar EA, Oliver G, Shah N, Klein A, Alewine C, Wang H, Javle M, Shroff R, Wolff RA, et al: Family history as a marker of platinum sensitivity in pancreatic adenocarcinoma. Cancer Chemother Pharmacol. 76:489–498. 2015. View Article : Google Scholar : PubMed/NCBI | |
Siddik ZH: Cisplatin: Mode of cytotoxic action and molecular basis of resistance. Oncogene. 22:7265–7279. 2003. View Article : Google Scholar : PubMed/NCBI | |
Hato SV, Khong A, de Vries IJM and Lesterhuis WJ: Molecular pathways: The immunogenic effects of platinum-based chemotherapeutics. Clin Cancer Res. 20:2831–2837. 2014. View Article : Google Scholar : PubMed/NCBI | |
Pflug N, Kluth S, Vehreschild JJ, Bahlo J, Tacke D, Biehl L, Eichhorst B, Fischer K, Cramer P, Fink AM, et al: Efficacy of antineoplastic treatment is associated with the use of antibiotics that modulate intestinal microbiota. Oncoimmunology. 5:e11503992016. View Article : Google Scholar : PubMed/NCBI | |
Shahid F, Farooqui Z and Khan F: Cisplatin-induced gastrointestinal toxicity: An update on possible mechanisms and on available gastroprotective strategies. Eur J Pharmacol. 827:49–57. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gui QF, Lu HF, Zhang CX, Xu ZR and Yang YH: Well-balanced commensal microbiota contributes to anti-cancer response in a lung cancer mouse model. Genet Mol Res. 14:5642–5651. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wu CH, Ko JL, Liao JM, Huang SS, Lin MY, Lee LH, Chang LY and Ou CC: D-methionine alleviates cisplatin-induced mucositis by restoring the gut microbiota structure and improving intestinal inflammation. Ther Adv Med Oncol. 11:17588359188210212019. View Article : Google Scholar : PubMed/NCBI | |
Feng X, Cheng Q, Meng Q, Yang Y and Nie K: Effects of ondansetron and [6]-gingerol on pica and gut microbiota in rats treated with cisplatin. Drug Des Devel Ther. 13:2633–2641. 2019. View Article : Google Scholar : | |
Zhou P, Li Z, Xu D, Wang Y, Bai Q, Feng Y, Su G, Chen P, Wang Y, Liu H, et al: Cepharanthine hydrochloride improves cisplatin chemotherapy and enhances immunity by regulating intestinal microbes in mice. Front Cell Infect Microbiol. 9:22510.3389. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lee TH, Park D, Kim YJ, Lee I, Kim S, Oh CT, Kim JY, Yang J and Jo SK: Lactobacillus salivarius BP121 prevents cisplatin-induced acute kidney injury by inhibition of uremic toxins such as indoxyl sulfate and p-cresol sulfate via alleviating dysbiosis. Int J Mol Med. 45:1130–1140. 2020.PubMed/NCBI | |
Lee YJ, Li KY, Wang PJ, Huang HW and Chen MJ: Alleviating chronic kidney disease progression through modulating the critical genus of gut microbiota in a cisplatin-induced Lanyu pig model. J Food Drug Anal. 28:103–114. 2020. View Article : Google Scholar | |
Zhao L, Xing C, Sun W, Hou G, Yang G and Yuan L: Lactobacillus supplementation prevents cisplatin-induced cardiotoxicity possibly by inflammation inhibition. Cancer Chemother Pharmacol. 82:999–1008. 2018. View Article : Google Scholar : PubMed/NCBI | |
Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N, Weingarten RA, Molina DA, Salcedo R, Back T, Cramer S, et al: Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science. 342:967–970. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ozben T: Oxidative stress and apoptosis: Impact on cancer therapy. J Pharm Sci. 96:2181–2196. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ewertz M, Qvortrup C and Eckhoff L: Chemotherapy-induced peripheral neuropathy in patients treated with taxanes and platinum derivatives. Acta Oncol. 54:587–591. 2015. View Article : Google Scholar : PubMed/NCBI | |
Stojanovska V, Sakkal S and Nurgali K: Platinum-based chemotherapy: Gastrointestinal immunomodulation and enteric nervous system toxicity. Am J Physiol Gastrointest Liver Physiol. 308:G223–G232. 2015. View Article : Google Scholar | |
Shen S, Lim G, You Z, Ding W, Huang P, Ran C, Doheny J, Caravan J, Tate S, Hu K, et al: Gut microbiota is critical for the induction of chemotherapy-induced pain. Nat Neurosci. 20:1213–1216. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sprowl JA, Ciarimboli G, Lancaster CS, Giovinazzo H, Gibson AA, Du G, Janke LJ, Cavaletti G, Shields AF and Sparreboom A: Oxaliplatin-induced neurotoxicity is dependent on the organic cation transporter OCT2. Proc Natl Acad Sci USA. 110:11199–11204. 2013. View Article : Google Scholar : PubMed/NCBI | |
Forsgård RA, Marrachelli VG, Korpela K, Frias R, Collado MC, Korpela R, Monleon D, Spillmann T and Österlund P: Chemotherapy-induced gastrointestinal toxicity is associated with changes in serum and urine metabolome and fecal microbiota in male Sprague-Dawley rats. Cancer Chemother Pharmacol. 80:317–332. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chang CW, Liu CY, Lee HC, Huang YH, Li LH, Chiau JS, Wang TE, Chu CH, Shih SC, Tsai TH and Chen YJ: Variety probiotic preventively attenuates 5-fluorouracil/oxaliplatin-induced intestinal injury in a syngeneic colorectal cancer model. Front Microbiol. 9:9832018. View Article : Google Scholar | |
Chang CW, Lee HC, Li LH, Chiau JS, Wang TE, Chuang WH, Chen MJ, Wang HY, Shih SC, Liu CY, et al: Fecal microbiota transplantation prevents intestinal injury, upregulation of toll-like receptors, and 5-fluorouracil/oxaliplatin-induced toxicity in colorectal cancer. Int J Mol Sci. 21:3862020. View Article : Google Scholar : | |
Conroy T, Desseigne F, Ychou M, Bouché O, Guimbaud R, Bécouarn Y, Adenis A, Raoul JL, Gourgou-Bourgade S, de la Fouchardière C, et al: FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med. 364:1817–1825. 2011. View Article : Google Scholar : PubMed/NCBI | |
Vanhoefer U, Harstrick A, Achterrath W, Cao S, Seeber S and Rustum YM: Irinotecan in the treatment of colorectal cancer: Clinical overview. J Clin Oncol. 19:1501–1518. 2001. View Article : Google Scholar : PubMed/NCBI | |
Sparreboom A, de Jonge MJ, de Bruijn P, Brouwer E, Nooter K, Loos WJ, van Alphen RJ, Mathijssen RH, Stoter G and Verweij J: Irinotecan (CPT-11) metabolism and disposition in cancer patients. Clin Cancer Res. 4:2747–2754. 1998.PubMed/NCBI | |
Takasuna K, Hagiwara T, Hirohashi M, Kato M, Nomura M, Nagai E, Yokoi T and Kamataki T: Involvement of beta-glucuronidase in intestinal microflora in the intestinal toxicity of the antitumor camptothecin derivative irinotecan hydrochloride (CPT-11) in rats. Cancer Res. 56:3752–3757. 1996.PubMed/NCBI | |
Brandi G, Dabard J, Raibaud P, Battista MD, Bridonneau C, Pisi AM, Labate AM, Pantaleo MA, Vivo AD and Biasco G: Intestinal microflora and digestive toxicity of irinotecan in mice. Clin Cancer Res. 12:1299–1307. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wardill HR, Gibson RJ, Van Sebille YZA, Secombe KR, Coller JK, White IA, Manavis J, Hutchinson MR, Staikopoulos V, Logan RM and Bowen JM: Irinotecan-induced gastrointestinal dysfunction and pain are mediated by common TLR4-dependent mechanisms. Mol Cancer Ther. 15:1376–1386. 2016. View Article : Google Scholar : PubMed/NCBI | |
Pedroso SHSP, Vieira AT, Bastos RW, Oliveira JS, Cartelle CT, Arantes RM, Soares PM, Generoso SV, Cardoso VN, Teixeira MM, et al: Evaluation of mucositis induced by irinotecan after microbial colonization in germ-free mice. Microbiology. 161:1950–1960. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ribeiro RA, Wanderley CWS, Wong DVT, Mota JM, Leite CA, Souza MH, Cunha FQ and Lima-Júnior RC: Irinotecan- and 5-fluorouracil-induced intestinal mucositis: Insights into pathogenesis and therapeutic perspectives. Cancer Chemother Pharmacol. 78:881–893. 2016. View Article : Google Scholar : PubMed/NCBI | |
Moore MJ, Goldstein D, Hamm J, Figer A, Hecht JR, Gallinger S, Au HJ, Murawa P, Walde D, Wolff RA, et al: Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: A phase III trial of the national cancer institute of Canada clinical trials group. J Clin Oncol. 25:1960–1966. 2007. View Article : Google Scholar : PubMed/NCBI | |
Forsgård RA, Marrachelli VG, Lindén J, Frias R, Collado MC, Korpela R, Monleon D, Spillmann T and Österlund P: Two-week aflibercept or erlotinib administration does not induce changes in intestinal morphology in male sprague-dawley rats but aflibercept affects serum and urine metabolic profiles. Transl Oncol. 12:1122–1130. 2019. View Article : Google Scholar : PubMed/NCBI | |
Heshiki Y, Vazquez-Uribe R, Li J, Ni Y, Quainoo S, Imamovic L, Li J, Sørensen M, Chow BK, Weiss GJ, et al: Predictable modulation of cancer treatment outcomes by the gut microbiota. Microbiome. 8:282020. View Article : Google Scholar : PubMed/NCBI | |
Panebianco C, Andriulli A and Pazienza V: Pharmacomicrobiomics: Exploiting the drug-microbiota interactions in anticancer therapies. Microbiome. 6:922018. View Article : Google Scholar : PubMed/NCBI | |
Chiu CY and Miller SA: Clinical metagenomics. Net Rev Genet. 20:341–355. 2019. View Article : Google Scholar | |
Chaput N, Lepage P, Coutzac C, Soularue E, Roux KL, Monot C, Boselli L, Routier E, Cassard L, Collins M, et al: Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann Oncol. 28:1368–1379. 2017. View Article : Google Scholar : PubMed/NCBI | |
Farowski F, Solbach P, Tsakmaklis A, Brodesser S, Aguilar MR, Cornely OA, Dettmer K, Higgins PG, Suerbaum S, Jazmati N, et al: Potential biomarkers to predict outcome of faecal microbiota transfer for recurrent Clostridioides difficile infection. Dig Liver Dis. 51:944–951. 2019. View Article : Google Scholar : PubMed/NCBI | |
Khanna S, Montassier E, Schmidt B, Patel R, Knights D, Pardi DS and Kashyap P: Gut microbiome predictors of treatment response and recurrence in primary clostridium difficile infection. Aliment Pharmacol Ther. 44:715–727. 2016. View Article : Google Scholar : PubMed/NCBI | |
Aarnoutse R, de Vos-Geelen JMPGM, Penders J, Boerma EG, Warmerdam FA, Goorts B, Damink SWM, Soons Z, Rensen SS and Smidt ML: Study protocol on the role of intestinal microbiota in colorectal cancer treatment: A pathway to personalized medicine 2.0. Int J Colorectal Dis. 32:1077–1084. 2017. View Article : Google Scholar : PubMed/NCBI | |
Stringer AM, Al-Dasooqi N, Bowen JM, Tan TH, Radzuan M, Logan RM, Mayo B, Keefe DM and Gibson RJ: Biomarkers of chemotherapy-induced diarrhoea: A clinical study of intestinal microbiome alterations, inflammation and circulating matrix metalloproteinases. Support Care Cancer. 21:1843–1852. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lin XB, Dieleman LA, Ketabi A, Bibova I, Sawyer MB, Xue H, Field CJ, Baracos VE and Gänzle MG: Irinotecan (CPT-11) chemotherapy alters intestinal microbiota in tumour bearing rats. PLoS One. 7:e397642012. View Article : Google Scholar : PubMed/NCBI | |
Panebianco C, Adamberg K, Jaagura M, Copetti M, Fontana A, Adamberg S, Kolk K, Vilu R, Andriulli A and Pazienza V: Influence of gemcitabine chemotherapy on the microbiota of pancreatic cancer xenografted mice. Cancer Chemother Pharmacol. 81:773–782. 2018. View Article : Google Scholar : PubMed/NCBI | |
Meunier A, Nerich V, Fagnoni-Legat C, Richard M, Mazel D, Adotevi O, Bertrand X and Hocquet D: Enhanced emergence of antibiotic-resistant pathogenic bacteria after in vitro induction with cancer chemotherapy drugs. J Antimicrob Chemother. 74:1572–1577. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zwielehner J, Lassl C, Hippe B, Pointner A, Switzeny OJ, Remely M, Kitzweger E, Ruckser R and Haslberger AG: Changes in human fecal microbiota due to chemotherapy analyzed by TaqMan-PCR, 454 sequencing and PCR-DGGE fingerprinting. PLoS One. 6:e286542011. View Article : Google Scholar : PubMed/NCBI | |
Montassier E, Gastinne T, Vangay P, Al-Ghalith GA, des Varannes SB, Massart S, Moreau P, Potel G, de La Cochetière MF, Batard E and Knights D: Chemotherapy- driven dysbiosis in the intestinal microbiome. Aliment Pharmacol Ther. 42:515–528. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kong C, Gao R, Yan X, Huang L, He J, Li H, You J and Qin H: Alterations in intestinal microbiota of colorectal cancer patients receiving radical surgery combined with adjuvant CapeOx therapy. Sci China Life Sci. 62:1178–1193. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK and Knight R: Diversity, stability and resilience of the human gut microbiota. Nature. 489:220–230. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bhatt AP, Pellock SJ, Biernat KA, Walton WG, Wallace BD, Creekmore BC, Letertre MM, Swann JR, Wilson ID, Roques JR, et al: Targeted inhibition of gut bacterial β-glucuronidase activity enhances anticancer drug efficacy. Proc Natl Acad Sci USA. 117:7374–7381. 2020. View Article : Google Scholar | |
Roberts AB, Wallace BD, Venkatesh MK, Mani S and Redinbo MR: Molecular insights into microbial β-glucuronidase inhibition to abrogate CPT-11 toxicity. Mol Pharmacol. 84:208–217. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pellock SJ, Walton WG, Biernat KA, Torres-Rivera D, Creekmore BC, Xu Y, Liu J, Tripathy A, Stewart LJ and Redinbo MR: Three structurally and functionally distinct β-glucuronidases from the human gut microbe. J Biol Chem. 293:18559–18573. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wallace BD, Roberts AB, Pollet RM, Ingle JD, Biernat KA, Pellock SJ, Venkatesh MK, Guthrie L, O'Neal SK, Robinson SJ, et al: Structure and inhibition of microbiome β-glucuronidases essential to the alleviation of cancer drug toxicity. Chem Biol. 22:1238–1249. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wallace BD, Wang H, Lane KT, Scott JE, Orans J, Koo JS, Venkatesh M, Jobin C, Yeh LA, Mani S and Redinbo MR: Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science. 330:831–835. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chamseddine AN, Ducreux M, Armand JP, Paoletti X, Satar T, Paci A and Mir O: Intestinal bacterial β-glucuronidase as a possible predictive biomarker of irinotecan-induced diarrhea severity. Pharmacol Ther. 199:1–15. 2019. View Article : Google Scholar : PubMed/NCBI | |
Arumugam M, Raes J, Pelletier E, Paslier DL, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto JM, et al: Enterotypes of the human gut microbiome. Nature. 473:174–180. 2011. View Article : Google Scholar : PubMed/NCBI | |
Dougan SK: The pancreatic cancer microenvironment. Cancer J. 23:321–325. 2017. View Article : Google Scholar : PubMed/NCBI | |
Binenbaum Y, Na'ara S and Gil Z: Gemcitabine resistance in pancreatic ductal adenocarcinoma. Drug Resist Updat. 23:55–68. 2015. View Article : Google Scholar : PubMed/NCBI | |
Halbrook CJ, Pontious C, Kovalenko I, Lapienyte L, Dreyer S, Lee HJ, Thurston G, Zhang Y, Lazarus J, Sajjakulnukit P, et al: Macrophage-released pyrimidines inhibit gemcitabine therapy in pancreatic cancer. Cell Metab. 29:1390–1399. 2019. View Article : Google Scholar : PubMed/NCBI | |
Alexander JL, Wilson ID, Teare J, Marchesi JR, Nicholson JK and Kinross JM: Gut microbiota modulation of chemotherapy efficacy and toxicity. Nat Rev Gastroenterol Hepatol. 14:356–365. 2017. View Article : Google Scholar : PubMed/NCBI | |
Villéger R, Lopès A, Carrier G, Veziant J, Billard E, Barnich N, Gagnière J, Vazeille E and Bonnet M: Intestinal microbiota: A novel target to improve anti-tumor treatment? Int J Mol Sci. 20:45842019. View Article : Google Scholar : | |
McQuade JL, Daniel CR, Helmink BA and Wargo JA: Modulating the microbiome to improve therapeutic response in cancer. Lancet Oncol. 20:e77–e91. 2019. View Article : Google Scholar : PubMed/NCBI | |
Becattini S, Taur Y and Pamer EG: Antibiotic-induced changes in the intestinal microbiota and disease. Trends Mol Med. 22:458–478. 2016. View Article : Google Scholar : PubMed/NCBI | |
Flieger D, Klassert C, Hainke S, Keller R, Kleinschmidt R and Fischbach W: Phase II clinical trial for prevention of delayed diarrhea with cholestyramine/levofloxacin in the second-line treatment with irinotecan biweekly in patients with metastatic colorectal carcinoma. Oncology. 72:10–16. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kurita A, Kado S, Matsumoto T, Asakawa N, Kaneda N, Kato I, Uchida K, Onoue M and Yokokura T: Streptomycin alleviates irinotecan-induced delayed-onset diarrhea in rats by a mechanism other than inhibition of β-glucuronidase activity in intestinal lumen. Cancer Chemother Pharmacol. 67:201–213. 2011. View Article : Google Scholar | |
Iida N, Mizukoshi E, Yamashita T, Terashima T, Arai K, Seishima J and Kaneko S: Overuse of antianaerobic drug is associated with poor postchemotherapy prognosis of patients with hepatocellular carcinoma. Int J Cancer. 145:2701–2711. 2019. View Article : Google Scholar : PubMed/NCBI | |
Levy SB and Marshall B: Antibacterial resistance worldwide: Causes, challenges and responses. Nat Med. 10(12 Suppl): S122–S129. 2004. View Article : Google Scholar : PubMed/NCBI | |
George Kerry R, Patra JK, Gouda S, Park Y, Shin HS and Das G: Benefaction of probiotics for human health: A review. J Food Drug Anal. 26:927–939. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yu AQ and Li L: The potential role of probiotics in cancer prevention and treatment. Nutr Cancer. 68:535–544. 2016. View Article : Google Scholar : PubMed/NCBI | |
Vivarelli S, Salemi R, Candido S, Falzone L, Santagati M, Stefani S, Torino F, Banna GL, Tonini G and Libra M: Gut microbiota and cancer: From pathogenesis to therapy. Cancers (Basel). 11:382019. View Article : Google Scholar | |
An J and Ha EM: Combination therapy of lactobacillus plantarum supernatant and 5-fluouracil increases chemosensitivity in colorectal cancer cells. J Microbiol Biotechnol. 26:1490–1503. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chang CW, Liu CY, Lee HC, Huang YH, Li LH, Chiau JS, Wang TE, Chu CH, Shih SC, Tsai TH and Chen YJ: Lactobacillus casei variety rhamnosus probiotic preventively attenuates 5-fluorouracil/oxaliplatin-induced intestinal injury in a syngeneic colorectal cancer model. Front Microbiol. 9:9832018. View Article : Google Scholar : | |
Wang Y, Sun L, Chen S, Guo S, Yue T, Hou Q, Feng M, Xu H, Liu Y, Wang P and Pan Y: The administration of Escherichia coli Nissle 1917 ameliorates irinotecan-induced intestinal barrier dysfunction and gut microbial dysbiosis in mice. Life Sci. 231:1165292019. View Article : Google Scholar : PubMed/NCBI | |
Serkova MI, Urtenova MA, Tkachenko EI, Avalueva EB, Orlov SV, Ivanov SV, Orishak EA and Skazyvaeva EV: On the possibilities of correction of changes of the gastrointestinal tract microbiota in patients with lung cancer treated receiving chemotherapy. Eksp Klin Gastroenterol. 15–20. 2013. | |
Mego M, Koncekova R, Mikuskova E, Drgona L, Ebringer L, Demitrovicova L, Nemova I, Trupl J, Mardiak J, Koza I and Zajac V: Prevention of febrile neutropenia in cancer patients by probiotic strain Enterococcus faecium M-74. Phase II study Support Care Cancer. 14:285–290. 2006. View Article : Google Scholar | |
Picó-Monllor JA and Mingot-Ascencao JM: Search and selection of probiotics that improve mucositis symptoms in oncologic patients. A systematic review. Nutrients. 11:23222019. View Article : Google Scholar : | |
González-Sarrías A, Tome-Carneiro J, Bellesia A, Tomás-Barberán FA and Espin JC: The ellagic acid-derived gut microbiota metabolite, urolithin A, potentiates the anticancer effects of 5-fluorouracil chemotherapy on human colon cancer cells. Food Funct. 6:1460–1469. 2015. View Article : Google Scholar : PubMed/NCBI | |
Le Bastard Q, Ward T, Sidiropoulos D, Hillmann BM, Chun CL, Sadowsky MJ, Knights D and Montassier E: Fecal microbiota transplantation reverses antibiotic and chemotherapy-induced gut dysbiosis in mice. Sci Rep. 8:62192018. View Article : Google Scholar : PubMed/NCBI |