Increased expression of PSME2 is associated with clear cell renal cell carcinoma invasion by regulating BNIP3‑mediated autophagy
- Authors:
- Xiaoyun Wang
- Fengbo Wu
- Yutong Deng
- Jinlong Chai
- Yuehua Zhang
- Gu He
- Xiang Li
-
Affiliations: State Key Laboratory of Biotherapy and Department of Pharmacy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, P.R. China, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P.R. China, Department of Urology, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, P.R. China - Published online on: November 15, 2021 https://doi.org/10.3892/ijo.2021.5286
- Article Number: 106
-
Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Ahn K, Erlander M, Leturcq D, Peterson PA, Früh K and Yang Y: In vivo characterization of the proteasome regulator PA28. J Biol Chem. 271:18237–18242. 1996. View Article : Google Scholar : PubMed/NCBI | |
Coux O, Tanaka K and Goldberg AL: Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem. 65:801–847. 1996. View Article : Google Scholar | |
Ma CP, Willy PJ, Slaughter CA and DeMartino GN: PA28, an activator of the 20 S proteasome, is inactivated by proteolytic modification at its carboxyl terminus. J Biol Chem. 268:22514–22519. 1993. View Article : Google Scholar | |
Kuroda K and Liu H: The proteasome inhibitor, bortezomib, induces prostate cancer cell death by suppressing the expression of prostate-specific membrane antigen, as well as androgen receptor. Int J Oncol. 54:1357–1366. 2019.PubMed/NCBI | |
Rechsteiner M and Hill CP: Mobilizing the proteolytic machine: Cell biological roles of proteasome activators and inhibitors. Trends Cell Biol. 15:27–33. 2005. View Article : Google Scholar : PubMed/NCBI | |
Song X, von Kampen J, Slaughter CA and DeMartino GN: Relative functions of the alpha and beta subunits of the proteasome activator, PA28. J Biol Chem. 272:27994–28000. 1997. View Article : Google Scholar : PubMed/NCBI | |
Wang YF, Yu M, te Pas MFW, Yerle M, Liu B, Fan B, Xiong TA and Li K: Sequence characterization, polymorphism and chromosomal localizations of the porcine PSME1 and PSME2 genes. Anim Genet. 35:361–366. 2004. View Article : Google Scholar : PubMed/NCBI | |
McCusker D, Wilson M and Trowsdale J: Organization of the genes encoding the human proteasome activators PA28alpha and beta. Immunogenetics. 49:438–445. 1999. View Article : Google Scholar : PubMed/NCBI | |
Zaiss DMW and Kloetzel PM: A second gene encoding the mouse proteasome activator PA28beta subunit is part of a LINE1 element and is driven by a LINE1 promoter. J Mol Biol. 287:829–835. 1999. View Article : Google Scholar : PubMed/NCBI | |
Kuehn L and Dahlmann B: Structural and functional properties of proteasome activator PA28. Mol Biol Rep. 24:89–93. 1997. View Article : Google Scholar : PubMed/NCBI | |
Demartino GN and Gillette TG: Proteasomes: Machines for all reasons. Cell. 129:659–662. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lee J, An S, Jung JH, Kim K, Kim JY, An IS and Bae S: MUL1 E3 ligase regulates the antitumor effects of metformin in chemoresistant ovarian cancer cells via AKT degradation. Int J Oncol. 54:1833–1842. 2019.PubMed/NCBI | |
Kandil E, Kohda K, Ishibashi T, Tanaka K and Kasahara M: PA28 subunits of the mouse proteasome: Primary structures and chromosomal localization of the genes. Immunogenetics. 46:337–344. 1997. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Pan F, Li S, Huang R, Wang X, Wang S, Liao X, Li D and Zhang L: The prognostic value of the proteasome activator subunit gene family in skin cutaneous melanoma. J Cancer. 10:2205–2219. 2019. View Article : Google Scholar : PubMed/NCBI | |
Feng J, Xiao T, Lu SS, Hung XP, Yi H, He QY, Huang W, Tang YY and Xiao ZQ: ANXA1 derived peptides suppress gastric and colon cancer cell growth by targeting EphA2 degradation. Int J Oncol. 57:1203–1213. 2020.PubMed/NCBI | |
Wójcik C, Tanaka K, Paweletz N, Naab U and Wilk S: Proteasome activator (PA28) subunits, alpha, beta and gamma (Ki antigen) in NT2 neuronal precursor cells and HeLa S3 cells. Eur J Cell Biol. 77:151–160. 1998. View Article : Google Scholar : PubMed/NCBI | |
Khor B, Bredemeyer AL, Huang CY, Turnbull IR, Evans R, Maggi LB Jr, White JM, Walker LM, Carnes K, Hess RA, et al: Proteasome activator PA200 is required for normal spermatogenesis. Mol Cell Biol. 26:2999–3007. 2006. View Article : Google Scholar : PubMed/NCBI | |
Noda C, Tanahashi N, Shimbara N, Hendil KB and Tanaka K: Tissue distribution of constitutive proteasomes, immunoproteasomes, and PA28 in rats. Biochem Biophys Res Commun. 277:348–354. 2000. View Article : Google Scholar : PubMed/NCBI | |
Huang L, Haratake K, Miyahara H and Chiba T: Proteasome activators, PA28 gamma and PA200, play indispensable roles in male fertility. Sci Rep. 6:92016. | |
Kaymaz Y, Oduor CI, Yu H, Otieno JA, Ong'echa JM, Moormann AM and Bailey JA: Comprehensive Transcriptome and Mutational Profiling of Endemic Burkitt Lymphoma Reveals EBV Type-Specific Differences. Mol Cancer Res. 15:563–576. 2017. View Article : Google Scholar : | |
Tanahashi N, Yokota K, Ahn JY, Chung CH, Fujiwara T, Takahashi E, DeMartino GN, Slaughter CA, Toyonaga T, Yamamura K, et al: Molecular properties of the proteasome activator PA28 family proteins and gamma-interferon regulation. Genes Cells. 2:195–211. 1997. View Article : Google Scholar : PubMed/NCBI | |
Minor MM, Hollinger FB, McNees AL, Jung SY, Jain A, Hyser JM, Bissig KD and Slagle BL: Hepatitis B Virus HBx Protein Mediates the Degradation of Host Restriction Factors through the Cullin 4 DDB1 E3 Ubiquitin Ligase Complex. Cells. 9:92020. View Article : Google Scholar | |
Li J, Powell SR and Wang X: Enhancement of proteasome function by PA28α overexpression protects against oxidative stress. FASEB J. 25:883–893. 2011. View Article : Google Scholar : | |
Grune T, Catalgol B, Licht A, Ermak G, Pickering AM, Ngo JK and Davies KJ: HSP70 mediates dissociation and reassociation of the 26S proteasome during adaptation to oxidative stress. Free Radic Biol Med. 51:1355–1364. 2011. View Article : Google Scholar : PubMed/NCBI | |
Adelöf J, Andersson M, Porritt M, Petersen A, Zetterberg M, Wiseman J and Hernebring M: PA28αβ overexpression enhances learning and memory of female mice without inducing 20S proteasome activity. BMC Neurosci. 19:702018. View Article : Google Scholar | |
Miyagi T, Tatsumi T, Takehara T, Kanto T, Kuzushita N, Sugimoto Y, Jinushi M, Kasahara A, Sasaki Y, Hori M, et al: Impaired expression of proteasome subunits and human leukocyte antigens class I in human colon cancer cells. J Gastroenterol Hepatol. 18:32–40. 2003. View Article : Google Scholar | |
Cerruti F, Martano M, Petterino C, Bollo E, Morello E, Bruno R, Buracco P and Cascio P: Enhanced expression of interferon-gamma-induced antigen-processing machinery components in a spontaneously occurring cancer. Neoplasia. 9:960–969. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ebert MPA, Krüger S, Fogeron ML, Lamer S, Chen J, Pross M, Schulz HU, Lage H, Heim S, Roessner A, et al: Overexpression of cathepsin B in gastric cancer identified by proteome analysis. Proteomics. 5:1693–1704. 2005. View Article : Google Scholar | |
Perroud B, Lee J, Valkova N, Dhirapong A, Lin PY, Fiehn O, Kültz D and Weiss RH: Pathway analysis of kidney cancer using proteomics and metabolic profiling. Mol Cancer. 5:642006. View Article : Google Scholar : PubMed/NCBI | |
Milioli HH, Santos Sousa K, Kaviski R, Dos Santos Oliveira NC, De Andrade Urban C, De Lima RS, Cavalli IJ and De Souza Fonseca Ribeiro EM: Comparative proteomics of primary breast carcinomas and lymph node metastases outlining markers of tumor invasion. Cancer Genomics Proteomics. 12:89–101. 2015. | |
Huang Q, Huang Q, Chen W, Wang L, Lin W, Lin J and Lin X: Identification of transgelin as a potential novel biomarker for gastric adenocarcinoma based on proteomics technology. J Cancer Res Clin Oncol. 134:1219–1227. 2008. View Article : Google Scholar : PubMed/NCBI | |
Huang Q, Huang Q, Lin W, Lin J and Lin X: Potential roles for PA28beta in gastric adenocarcinoma development and diagnosis. J Cancer Res Clin Oncol. 136:1275–1282. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zheng D-L, Huang Q-L, Zhou F, Huang Q-J, Lin J-Y and Lin X: PA28β regulates cell invasion of gastric cancer via modulating the expression of chloride intracellular channel 1. J Cell Biochem. 113:1537–1546. 2012. | |
Kim JE, Koo KH, Kim YH, Sohn J and Park YG: Identification of potential lung cancer biomarkers using an in vitro carcinogenesis model. Exp Mol Med. 40:709–720. 2008. View Article : Google Scholar | |
Chen JY, Xu L, Fang WM, Han JY, Wang K and Zhu KS: Identification of PA28β as a potential novel biomarker in human esophageal squamous cell carcinoma. Tumour Biol. 39:10104283177197802017. | |
Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, Barrette T, Pandey A and Chinnaiyan AM: ONCOMINE: A cancer microarray database and integrated data-mining platform. Neoplasia. 6:1–6. 2004. View Article : Google Scholar : PubMed/NCBI | |
Langfelder P and Horvath S: WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics. 9:5592008. View Article : Google Scholar : PubMed/NCBI | |
Langfelder P and Horvath S: Eigengene networks for studying the relationships between co-expression modules. BMC Syst Biol. 1:542007. View Article : Google Scholar : PubMed/NCBI | |
Huang W, Sherman BT and Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 4:44–57. 2009. View Article : Google Scholar | |
Huang W, Sherman BT and Lempicki RA: Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37:1–13. 2009. View Article : Google Scholar : | |
Azhar RA, de Castro Abreu AL, Broxham E, Sherrod A, Ma Y, Cai J, Gill TS, Desai M and Gill IS: Histological analysis of the kidney tumor-parenchyma interface. J Urol. 193:415–422. 2015. View Article : Google Scholar | |
Moch H, Artibani W, Delahunt B, Ficarra V, Knuechel R, Montorsi F, Patard JJ, Stief CG, Sulser T and Wild PJ: Reassessing the current UICC/AJCC TNM staging for renal cell carcinoma. Eur Urol. 56:636–643. 2009. View Article : Google Scholar : PubMed/NCBI | |
Margulis V, McDonald M, Tamboli P, Swanson DA and Wood CG: Predictors of oncological outcome after resection of locally recurrent renal cell carcinoma. J Urol. 181:2044–2051. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kuang P, Deng H, Liu H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X and Zhao L: Sodium fluoride induces splenocyte autophagy via the mammalian targets of rapamycin (mTOR) signaling pathway in growing mice. Aging (Albany NY). 10:1649–1665. 2018. View Article : Google Scholar | |
Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 25:402–408. 2001. View Article : Google Scholar | |
Jones J, Otu H, Spentzos D, Kolia S, Inan M, Beecken WD, Fellbaum C, Gu X, Joseph M, Pantuck AJ, et al: Gene signatures of progression and metastasis in renal cell cancer. Clin Cancer Res. 11:5730–5739. 2005. View Article : Google Scholar : PubMed/NCBI | |
Yusenko MV, Kuiper RP, Boethe T, Ljungberg B, van Kessel AG and Kovacs G: High-resolution DNA copy number and gene expression analyses distinguish chromophobe renal cell carcinomas and renal oncocytomas. BMC Cancer. 9:1522009. View Article : Google Scholar : PubMed/NCBI | |
Yusenko MV, Zubakov D and Kovacs G: Gene expression profiling of chromophobe renal cell carcinomas and renal oncocytomas by Affymetrix GeneChip using pooled and individual tumours. Int J Biol Sci. 5:517–527. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhu WK, Xu WH, Wang J, Huang YQ, Abudurexiti M, Qu YY, Zhu YP, Zhang HL and Ye DW: Decreased SPTLC1 expression predicts worse outcomes in ccRCC patients. J Cell Biochem. 121:1552–1562. 2020. View Article : Google Scholar | |
Hu J, Chen Z, Bao L, Zhou L, Hou Y, Liu L, Xiong M, Zhang Y, Wang B, Tao Z, et al: Single-Cell Transcriptome Analysis Reveals Intratumoral Heterogeneity in ccRCC, which Results in Different Clinical Outcomes. Mol Ther. 28:1658–1672. 2020. View Article : Google Scholar : PubMed/NCBI | |
Reustle A, Di Marco M, Meyerhoff C, Nelde A, Walz JS, Winter S, Kandabarau S, Büttner F, Haag M, Backert L, et al: Integrative -omics and HLA-ligandomics analysis to identify novel drug targets for ccRCC immunotherapy. Genome Med. 12:322020. View Article : Google Scholar : | |
Wan B, Liu B, Huang Y and Lv C: Identification of genes of prognostic value in the ccRCC microenvironment from TCGA database. Mol Genet Genomic Med. 8:e11592020. View Article : Google Scholar : | |
Dikic I and Elazar Z: Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol. 19:349–364. 2018. View Article : Google Scholar | |
Tanida I, Ueno T and Kominami E: LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol. 36:2503–2518. 2004. View Article : Google Scholar : PubMed/NCBI | |
Tanida I, Ueno T and Kominami E: LC3 and Autophagy. Methods Mol Biol. 445:77–88. 2008. View Article : Google Scholar | |
Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y and Yoshimori T: LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19:5720–5728. 2000. View Article : Google Scholar : PubMed/NCBI | |
Li L, Tan J, Miao Y, Lei P and Zhang Q: ROS and Autophagy: Interactions and Molecular Regulatory Mechanisms. Cell Mol Neurobiol. 35:615–621. 2015. View Article : Google Scholar | |
Zhang J, Zhang C, Jiang X, Li L, Zhang D, Tang D, Yan T, Zhang Q, Yuan H, Jia J, et al: Involvement of autophagy in hypoxia-BNIP3 signaling to promote epidermal keratinocyte migration. Cell Death Dis. 10:2342019. View Article : Google Scholar : PubMed/NCBI | |
Christian F, Krause E, Houslay MD and Baillie GS: PKA phosphorylation of p62/SQSTM1 regulates PB1 domain interaction partner binding. Biochim Biophys Acta. 1843:2765–2774. 2014. View Article : Google Scholar | |
Katsuragi Y, Ichimura Y and Komatsu M: p62/SQSTM1 functions as a signaling hub and an autophagy adaptor. FEBS J. 282:4672–4678. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wooten MW, Geetha T, Seibenhener ML, Babu JR, Diaz-Meco MT and Moscat J: The p62 scaffold regulates nerve growth factor-induced NF-kappaB activation by influencing TRAF6 polyubiquitination. J Biol Chem. 280:35625–35629. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lamark T, Perander M, Outzen H, Kristiansen K, Øvervatn A, Michaelsen E, Bjørkøy G and Johansen T: Interaction codes within the family of mammalian Phox and Bem1p domain-containing proteins. J Biol Chem. 278:34568–34581. 2003. View Article : Google Scholar : PubMed/NCBI | |
Lin X, Li S, Zhao Y, Ma X, Zhang K, He X and Wang Z: Interaction domains of p62: A bridge between p62 and selective autophagy. DNA Cell Biol. 32:220–227. 2013. View Article : Google Scholar | |
Islam MA, Sooro MA and Zhang P: Autophagic Regulation of p62 is Critical for Cancer Therapy. Int J Mol Sci. 19:152018. View Article : Google Scholar | |
Johansen T and Lamark T: Selective autophagy mediated by autophagic adapter proteins. Autophagy. 7:279–296. 2011. View Article : Google Scholar | |
Zhang Y, Mun SR, Linares JF, Towers CG, Thorburn A, Diaz-Meco MT, Kwon YT and Kutateladze TG: Mechanistic insight into the regulation of SQSTM1/p62. Autophagy. 15:735–737. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kays JK, Koniaris LG, Cooper CA, Pili R, Jiang G, Liu Y and Zimmers TA: The Combination of Low Skeletal Muscle Mass and High Tumor Interleukin-6 Associates with Decreased Survival in Clear Cell Renal Cell Carcinoma. Cancers (Basel). 12:122020. View Article : Google Scholar | |
Liu T, Xia Q, Zhang H, Wang Z, Yang W, Gu X, Hou T, Chen Y, Pei X, Zhu G, et al: CCL5-dependent mast cell infiltration into the tumor microenvironment in clear cell renal cell carcinoma patients. Aging (Albany NY). 12:21809–21836. 2020. View Article : Google Scholar | |
Xu WH, Shi SN, Xu Y, Wang J, Wang HK, Cao DL, Shi GH, Qu YY, Zhang HL and Ye DW: Prognostic implications of Aquaporin 9 expression in clear cell renal cell carcinoma. J Transl Med. 17:3632019. View Article : Google Scholar : PubMed/NCBI | |
Mikami S, Mizuno R, Kosaka T, Saya H, Oya M and Okada Y: Expression of TNF-α and CD44 is implicated in poor prognosis, cancer cell invasion, metastasis and resistance to the sunitinib treatment in clear cell renal cell carcinomas. Int J Cancer. 136:1504–1514. 2015. View Article : Google Scholar | |
Leibovich SJ, Polverini PJ, Shepard HM, Wiseman DM, Shively V and Nuseir N: Macrophage-induced angiogenesis is mediated by tumour necrosis factor-alpha. Nature. 329:630–632. 1987. View Article : Google Scholar : PubMed/NCBI | |
Michalaki V, Syrigos K, Charles P and Waxman J: Serum levels of IL-6 and TNF-alpha correlate with clinicopathological features and patient survival in patients with prostate cancer. Br J Cancer. 90:2312–2316. 2004. View Article : Google Scholar | |
Balkwill F: Tumour necrosis factor and cancer. Nat Rev Cancer. 9:361–371. 2009. View Article : Google Scholar | |
Liu W, Liu Y, Fu Q, Zhou L, Chang Y, Xu L, Zhang W and Xu J: Elevated expression of IFN-inducible CXCR3 ligands predicts poor prognosis in patients with non-metastatic clear-cell renal cell carcinoma. Oncotarget. 7:13976–13983. 2016. View Article : Google Scholar | |
Choueiri TK, Atkins MB, Rose TL, Alter RS, Ju Y, Niland K, Wang Y, Arbeit R, Parasuraman S, Gan L, et al: A phase 1b trial of the CXCR4 inhibitor mavorixafor and nivolumab in advanced renal cell carcinoma patients with no prior response to nivolumab monotherapy. Invest New Drugs. 39:1019–1027. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jiang P, Yueguo W, Huiming H, Hongxiang Y, Mei W and Ju S: B-Lymphocyte stimulator: A new biomarker for multiple myeloma. Eur J Haematol. 82:267–276. 2009. View Article : Google Scholar : PubMed/NCBI | |
Nardelli B, Moore PA, Li Y and Hilbert DM: B lymphocyte stimulator (BLyS): A therapeutic trichotomy for the treatment of B lymphocyte diseases. Leuk Lymphoma. 43:1367–1373. 2002. View Article : Google Scholar : PubMed/NCBI | |
Shivakumar L and Ansell S: Targeting B-lymphocyte stimulator/B-cell activating factor and a proliferation-inducing ligand in hematologic malignancies. Clin Lymphoma Myeloma. 7:106–108. 2006. View Article : Google Scholar : PubMed/NCBI |