Transfusion‑related immunomodulation in patients with cancer: Focus on the impact of extracellular vesicles from stored red blood cells (Review)
- Authors:
- Xingyu Ma
- Yanxi Liu
- Qianlan Han
- Yunwei Han
- Jing Wang
- Hongwei Zhang
-
Affiliations: Class 2018 Medical Inspection Technology, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China, Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China, Department of Blood Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China - Published online on: November 25, 2021 https://doi.org/10.3892/ijo.2021.5288
- Article Number: 108
This article is mentioned in:
Abstract
Gantt CL: Red blood cells for patients with cancer. Lancet. 2:3631981. View Article : Google Scholar : PubMed/NCBI | |
Parmiani G, Fossati G and Della Porta G: The undefined relationship between tumor antigens and histocompatibility antigens on cancer cells. Ric Clin Lab. 10:481–492. 1980. View Article : Google Scholar : PubMed/NCBI | |
Jiang XB, Zhang LP, Wang YJ and Ma C: Research advance on clinical blood transfusion and tumor therapy. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 18:1092–1095. 2010.(In Chinese). PubMed/NCBI | |
Kenar G, Köksoy EB, Ürün Y and Utkan G: Prevalence, etiology and risk factors of anemia in patients with newly diagnosed cancer. Support Care Cancer. 28:5235–5242. 2020. View Article : Google Scholar : PubMed/NCBI | |
Owusu C, Cohen HJ, Feng T, Tew W, Mohile SG, Klepin HD, Gross CP, Gajra A, Lichtman SM and Hurria A; Cancer Aging Research Group (CARG), . Anemia and functional disability in older adults with cancer. J Natl Compr Canc Netw. 13:1233–1239. 2015. View Article : Google Scholar : PubMed/NCBI | |
Watkins T, Surowiecka MK and McCullough J: Transfusion indications for patients with cancer. Cancer Control. 22:38–46. 2015. View Article : Google Scholar : PubMed/NCBI | |
Dicato M, Plawny L and Diederich M: Anemia in cancer. Ann Oncol. 21 (Suppl 7):vii167–vii172. 2010. View Article : Google Scholar : PubMed/NCBI | |
Shortt J, Polizzotto MN, Waters N, Borosak M, Moran M, Comande M, Devine A, Jolley DJ and Wood EM: Assessment of the urgency and deferability of transfusion to inform emergency blood planning and triage: The bloodhound prospective audit of red blood cell use. Transfusion. 49:2296–2303. 2009. View Article : Google Scholar : PubMed/NCBI | |
Tzounakas VL, Seghatchian J, Grouzi E, Kokoris S and Antonelou MH: Red blood cell transfusion in surgical cancer patients: Targets, risks, mechanistic understanding and further therapeutic opportunities. Transfus Apher Sci. 56:291–304. 2017. View Article : Google Scholar : PubMed/NCBI | |
Al-Refaie WB, Parsons HM, Markin A, Abrams J and Habermann EB: Blood transfusion and cancer surgery outcomes: A continued reason for concern. Surgery. 152:344–354. 2012. View Article : Google Scholar : PubMed/NCBI | |
Aguilar-Nascimento JE, Zampieri-Filho JP and Bordin JO: Implications of perioperative allogeneic red blood cell transfusion on the immune-inflammatory response. Hematol Transfus Cell Ther. 43:58–64. 2021. View Article : Google Scholar : PubMed/NCBI | |
Connor JP, O'Shea A, McCool K, Sampene E and Barroilhet LM: Peri-operative allogeneic blood transfusion is associated with poor overall survival in advanced epithelial ovarian cancer; potential impact of patient blood management on cancer outcomes. Gynecol Oncol. 151:294–298. 2018. View Article : Google Scholar : PubMed/NCBI | |
Goubran H, Sheridan D, Radosevic J, Burnouf T and Seghatchian J: Transfusion-related immunomodulation and cancer. Transfus Apher Sci. 56:336–340. 2017. View Article : Google Scholar : PubMed/NCBI | |
Remy KE, Hall MW, Cholette J, Juffermans NP, Nicol K, Doctor A, Blumberg N, Spinella PC, Norris PJ, Dahmer MK, et al: Mechanisms of red blood cell transfusion-related immunomodulation. Transfusion. 58:804–815. 2018. View Article : Google Scholar : PubMed/NCBI | |
D'Alessandro A, Kriebardis AG, Rinalducci S, Antonelou MH, Hansen KC, Papassideri IS and Zolla L: An update on red blood cell storage lesions, as gleaned through biochemistry and omics technologies. Transfusion. 55:205–219. 2015. View Article : Google Scholar : PubMed/NCBI | |
Laurén E, Tigistu-Sahle F, Valkonen S, Westberg M, Valkeajärvi A, Eronen J, Siljander P, Pettilä V, Käkelä R, Laitinen S and Kerkelä E: Phospholipid composition of packed red blood cells and that of extracellular vesicles show a high resemblance and stability during storage. Biochim Biophys Acta Mol Cell Biol Lipids. 1863:1–8. 2018. View Article : Google Scholar : PubMed/NCBI | |
Antonelou MH and Seghatchian J: Insights into red blood cell storage lesion: Toward a new appreciation. Transfus Apher Sci. 55:292–301. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hoehn RS, Jernigan PL, Chang AL, Edwards MJ and Pritts TA: Molecular mechanisms of erythrocyte aging. Biol Chem. 396:621–631. 2015. View Article : Google Scholar : PubMed/NCBI | |
Nieuwland R, Falcon-Perez JM, Soekmadji C, Boilard E, Carter D and Buzas EI: Essentials of extracellular vesicles: Posters on basic and clinical aspects of extracellular vesicles. J Extracell Vesicles. 7:15482342018. View Article : Google Scholar : PubMed/NCBI | |
van der Pol E, Böing AN, Harrison P, Sturk A and Nieuwland R: Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev. 64:676–705. 2012. View Article : Google Scholar : PubMed/NCBI | |
van Niel G, D'Angelo G and Raposo G: Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 19:213–228. 2018. View Article : Google Scholar : PubMed/NCBI | |
Danesh A, Inglis HC, Jackman RP, Wu S, Deng X, Muench MO, Heitman JW and Norris PJ: Exosomes from red blood cell units bind to monocytes and induce proinflammatory cytokines, boosting T-cell responses in vitro. Blood. 123:687–696. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kriebardis AG, Antonelou MH, Stamoulis KE, Economou-Petersen E, Margaritis LH and Papassideri IS: RBC-derived vesicles during storage: Ultrastructure, protein composition, oxidation, and signaling components. Transfusion. 48:1943–1953. 2008. View Article : Google Scholar : PubMed/NCBI | |
Azarov I, Liu C, Reynolds H, Tsekouras Z, Lee JS, Gladwin MT and Kim-Shapiro DB: Mechanisms of slower nitric oxide uptake by red blood cells and other hemoglobin-containing vesicles. J Biol Chem. 286:33567–33579. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bosman GJ, Lasonder E, Luten M, Roerdinkholder-Stoelwinder B, Novotný VM, Bos H and De Grip WJ: The proteome of red cell membranes and vesicles during storage in blood bank conditions. Transfusion. 48:827–835. 2008. View Article : Google Scholar : PubMed/NCBI | |
Huang H, Zhu J, Fan L, Lin Q, Fu D, Wei B and Wei S: MicroRNA profiling of exosomes derived from red blood cell units: Implications in transfusion-related immunomodulation. Biomed Res Int. 2019:20459152019. View Article : Google Scholar : PubMed/NCBI | |
Saas P, Angelot F, Bardiaux L, Seilles E, Garnache-Ottou F and Perruche S: Phosphatidylserine-expressing cell by-products in transfusion: A pro-inflammatory or an anti-inflammatory effect? Transfus Clin Biol. 19:90–97. 2012. View Article : Google Scholar : PubMed/NCBI | |
Deeb AP, Aquina CT, Monson JRT, Blumberg N, Becerra AZ and Fleming FJ: Allogeneic leukocyte-reduced red blood cell transfusion is associated with postoperative infectious complications and cancer recurrence after colon cancer resection. Dig Surg. 37:163–170. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tamini N, Deghi G, Gianotti L, Braga M and Nespoli L: Colon cancer surgery: Does preoperative blood transfusion influence short-term postoperative outcomes? J Invest Surg. 34:974–978. 2021. View Article : Google Scholar : PubMed/NCBI | |
Qiu L, Wang DR, Zhang XY, Gao S, Li XX, Sun GP and Lu XB: Impact of perioperative blood transfusion on immune function and prognosis in colorectal cancer patients. Transfus Apher Sci. 54:235–241. 2016. View Article : Google Scholar : PubMed/NCBI | |
Acheson AG, Brookes MJ and Spahn DR: Effects of allogeneic red blood cell transfusions on clinical outcomes in patients undergoing colorectal cancer surgery: A systematic review and meta-analysis. Ann Surg. 256:235–244. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Ma M, Huang H and Wang Y: Effect of perioperative blood transfusion on prognosis of patients with gastric cancer: A retrospective analysis of a single center database. BMC Cancer. 18:6492018. View Article : Google Scholar : PubMed/NCBI | |
Benson D and Barnett CC Jr: Perioperative blood transfusions promote pancreas cancer progression. J Surg Res. 166:275–279. 2011. View Article : Google Scholar : PubMed/NCBI | |
Churchhouse AM, Mathews TJ, McBride OM and Dunning J: Does blood transfusion increase the chance of recurrence in patients undergoing surgery for lung cancer? Interact Cardiovasc Thorac Surg. 14:85–90. 2012. View Article : Google Scholar : PubMed/NCBI | |
Seon DY, Kwak C, Kim HH, Ku JH and Kim HS: Impact of perioperative blood transfusion on oncologic outcomes in patients with nonmetastatic renal cell carcinoma treated with curative nephrectomy: A retrospective analysis of a large, single-institutional cohort. Investig Clin Urol. 61:136–145. 2020. View Article : Google Scholar : PubMed/NCBI | |
Nizri E, Kusamura S, Fallabrino G, Guaglio M, Baratti D and Deraco M: Dose-dependent effect of red blood cells transfusion on perioperative and long-term outcomes in peritoneal surface malignancies treated with cytoreduction and HIPEC. Ann Surg Oncol. 25:3264–3270. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cata JP, Wang H, Gottumukkala V, Reuben J and Sessler DI: Inflammatory response, immunosuppression, and cancer recurrence after perioperative blood transfusions. Br J Anaesth. 110:690–701. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wu HL, Tai YH, Lin SP, Chan MY, Chen HH and Chang KY: The impact of blood transfusion on recurrence and mortality following colorectal cancer resection: A propensity score analysis of 4,030 patients. Sci Rep. 8:133452018. View Article : Google Scholar : PubMed/NCBI | |
Grasso M, Pacella G, Sangiuliano N, De Palma M and Puzziello A: Gastric cancer surgery: clinical outcomes and prognosis are influenced by perioperative blood transfusions. Updates Surg. 71:439–443. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gunka I, Dostalik J, Martinek L, Gunkova P and Mazur M: Impact of blood transfusions on survival and recurrence in colorectal cancer surgery. Indian J Surg. 75:94–101. 2013. View Article : Google Scholar : PubMed/NCBI | |
Halabi WJ, Jafari MD, Nguyen VQ, Carmichael JC, Mills S, Pigazzi A and Stamos MJ: Blood transfusions in colorectal cancer surgery: Incidence, outcomes, and predictive factors: An American college of surgeons national surgical quality improvement program analysis. Am J Surg. 206:1024–1033. 2013. View Article : Google Scholar : PubMed/NCBI | |
Baguena G, Pellino G, Frasson M, Escrig J, Marinello F, Espí A, García-Granero A, Roselló S, Cervantes A and García-Granero E: Impact of perioperative transfusions and sepsis on long-term oncologic outcomes after curative colon cancer resection. A retrospective analysis of a prospective database. Gastroenterol Hepatol. 43:63–72. 2020.(In English, Spanish). View Article : Google Scholar : PubMed/NCBI | |
Tarantino I, Ukegjini K, Warschkow R, Schmied BM, Steffen T, Ulrich A and Müller SA: Blood transfusion does not adversely affect survival after elective colon cancer resection: A propensity score analysis. Langenbecks Arch Surg. 398:841–849. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hunsicker O, Gericke S, Graw JA, Krannich A, Boemke W, Meyer O, Braicu I, Spies C, Sehouli J, Pruß A and Feldheiser A: Transfusion of red blood cells does not impact progression-free and overall survival after surgery for ovarian cancer. Transfusion. 59:3589–3600. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zaw AS, Kantharajanna SB, Maharajan K, Tan B, Vellayappan B and Kumar N: Perioperative blood transfusion: Does it influence survival and cancer progression in metastatic spine tumor surgery? Transfusion. 57:440–450. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chang CC, Lee TC, Su MJ, Lin HC, Cheng FY, Chen YT, Yen TH and Chu FY: Transfusion-associated adverse reactions (TAARs) and cytokine accumulations in the stored blood components: The impact of prestorage versus poststorage leukoreduction. Oncotarget. 9:4385–4394. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chalfin HJ, Liu JJ, Gandhi N, Feng Z, Johnson D, Netto GJ, Drake CG, Hahn NM, Schoenberg MP, Trock BJ, et al: Blood transfusion is associated with increased perioperative morbidity and adverse oncologic outcomes in bladder cancer patients receiving neoadjuvant chemotherapy and radical cystectomy. Ann Surg Oncol. 23:2715–2722. 2016. View Article : Google Scholar : PubMed/NCBI | |
Carson JL, Guyatt G, Heddle NM, Grossman BJ, Cohn CS, Fung MK, Gernsheimer T, Holcomb JB, Kaplan LJ, Katz LM, et al: Clinical practice guidelines from the AABB: Red blood cell transfusion thresholds and storage. JAMA. 316:2025–2035. 2016. View Article : Google Scholar : PubMed/NCBI | |
Alkhalid Y, Lagman C, Sheppard JP, Nguyen T, Prashant GN, Ziman AF and Yang I: Restrictive transfusion threshold is safe in high-risk patients undergoing brain tumor surgery. Clin Neurol Neurosurg. 163:103–107. 2017. View Article : Google Scholar : PubMed/NCBI | |
Boone JD, Kim KH, Marques M and Straughn JM: Compliance rates and outcomes associated with a restrictive transfusion policy in gynecologic oncology patients. Gynecol Oncol. 132:227–230. 2014. View Article : Google Scholar : PubMed/NCBI | |
Syan-Bhanvadia S, Drangsholt S, Shah S, Cai J, Miranda G, Djaladat H and Daneshmand S: Restrictive transfusion in radical cystectomy is safe. Urol Oncol. 35:528.e15–528.e21. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wehry J, Agle S, Philips P, Cannon R, Scoggins CR, Puffer L, McMasters KM and Martin RC: Restrictive blood transfusion protocol in malignant upper gastrointestinal and pancreatic resections patients reduces blood transfusions with no increase in patient morbidity. Am J Surg. 210:1197–1205. 2015. View Article : Google Scholar : PubMed/NCBI | |
Prescott LS, Taylor JS, Lopez-Olivo MA, Munsell MF, VonVille HM, Lairson DR and Bodurka DC: How low should we go: A systematic review and meta-analysis of the impact of restrictive red blood cell transfusion strategies in oncology. Cancer Treat Rev. 46:1–8. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ozben V, Stocchi L, Ashburn J, Liu X and Gorgun E: Impact of a restrictive vs liberal transfusion strategy on anastomotic leakage and infectious complications after restorative surgery for rectal cancer. Colorectal Dis. 19:772–780. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bergamin FS, Almeida JP, Landoni G, Galas FRBG, Fukushima JT, Fominskiy E, Park CHL, Osawa EA, Diz MPE, Oliveira GQ, et al: Liberal versus restrictive transfusion strategy in critically Ill oncologic patients: The transfusion requirements in critically Ill oncologic patient randomized controlled trial. Crit Care Med. 45:766–773. 2017. View Article : Google Scholar : PubMed/NCBI | |
Crawford TM, Andersen CC and Stark MJ: Effect of repeat transfusion exposure on plasma cytokine and markers of endothelial activation in the extremely preterm neonate. Transfusion. 60:2217–2224. 2020. View Article : Google Scholar : PubMed/NCBI | |
Muszynski JA, Spinella PC, Cholette JM, Acker JP, Hall MW, Juffermans NP, Kelly DP, Blumberg N, Nicol K, Liedel J, et al: Transfusion-related immunomodulation: Review of the literature and implications for pediatric critical illness. Transfusion. 57:195–206. 2017. View Article : Google Scholar : PubMed/NCBI | |
Opelz G, Sengar DP, Mickey MR and Terasaki PI: Effect of blood transfusions on subsequent kidney transplants. Transplant Proc. 5:253–259. 1973.PubMed/NCBI | |
Carpenter CB: Blood transfusion effects in kidney transplantation. Yale J Biol Med. 63:435–443. 1990.PubMed/NCBI | |
Abdolmohammadi K, Mahmoudi T, Jafari-Koshki T, Hassan ZM and Pourfathollah AA: Immunomodulatory effects of blood transfusion on tumor size, metastasis, and survival in experimental fibrosarcoma. Indian J Hematol Blood Transfus. 34:697–702. 2018. View Article : Google Scholar : PubMed/NCBI | |
Atzil S, Arad M, Glasner A, Abiri N, Avraham R, Greenfeld K, Rosenne E, Beilin B and Ben-Eliyahu S: Blood transfusion promotes cancer progression: A critical role for aged erythrocytes. Anesthesiology. 109:989–997. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sugita S, Sasaki A, Iwaki K, Uchida H, Kai S, Shibata K, Ohta M and Kitano S: Prognosis and postoperative lymphocyte count in patients with hepatocellular carcinoma who received intraoperative allogenic blood transfusion: A retrospective study. Eur J Surg Oncol. 34:339–345. 2008. View Article : Google Scholar : PubMed/NCBI | |
Chen G, Zhang FJ, Gong M and Yan M: Effect of perioperative autologous versus allogeneic blood transfusion on the immune system in gastric cancer patients. J Zhejiang Univ Sci B. 8:560–565. 2007. View Article : Google Scholar : PubMed/NCBI | |
Tao CJ, Chen YY, Jiang F, Feng XL, Jin QF, Jin T, Piao YF and Chen XZ: A prognostic model combining CD4/CD8 ratio and N stage predicts the risk of distant metastasis for patients with nasopharyngeal carcinoma treated by intensity modulated radiotherapy. Oncotarget. 7:46653–46661. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sparrow RL: Red blood cell storage and transfusion-related immunomodulation. Blood Transfus. 8 (Suppl 3):s26–s30. 2010.PubMed/NCBI | |
Clark DA, Gorczynski RM and Blajchman MA: Transfusion-related immunomodulation due to peripheral blood dendritic cells expressing the CD200 tolerance signaling molecule and alloantigen. Transfusion. 48:814–821. 2008. View Article : Google Scholar : PubMed/NCBI | |
Teicher BA: Transforming growth factor-beta and the immune response to malignant disease. Clin Cancer Res. 13:6247–6251. 2007. View Article : Google Scholar : PubMed/NCBI | |
Pinheiro MK, Tamagne M, Elayeb R, Andrieu M, Pirenne F and Vingert B: Blood microparticles are a component of immune modulation in red blood cell transfusion. Eur J Immunol. 50:1237–1240. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ghio M, Contini P, Ubezio G, Mazzei C, Puppo F and Indiveri F: Immunomodulatory effects of blood transfusions: The synergic role of soluble HLA Class I free heavy-chain molecules detectable in blood components. Transfusion. 48:1591–1597. 2008. View Article : Google Scholar : PubMed/NCBI | |
Contini P, Ghio M, Poggi A, Filaci G, Indiveri F, Ferrone S and Puppo F: Soluble HLA-A,-B,-C and -G molecules induce apoptosis in T and NK CD8+ cells and inhibit cytotoxic T cell activity through CD8 ligation. Eur J Immunol. 33:125–134. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ottonello L, Ghio M, Contini P, Bertolotto M, Bianchi G, Montecucco F, Colonna M, Mazzei C, Dallegri F and Indiveri F: Nonleukoreduced red blood cell transfusion induces a sustained inhibition of neutrophil chemotaxis by stimulating in vivo production of transforming growth factor-beta1 by neutrophils: Role of the immunoglobulinlike transcript 1, sFasL, and sHLA-I. Transfusion. 47:1395–1404. 2007. View Article : Google Scholar : PubMed/NCBI | |
Baumgartner JM, Silliman CC, Moore EE, Banerjee A and McCarter MD: Stored red blood cell transfusion induces regulatory T cells. J Am Coll Surg. 208:110–119. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhuang Y, Zhang T, Wei C, Pan JC, Wang SF, Zhang AQ and Wang DQ: Effect of leukoreduction on tumor-associated cytokine accumutation in supernatant of stored packed red cells and its effect on tumor cell proliferation in vitro. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 23:217–221. 2015.(In Chinese). PubMed/NCBI | |
Baumgartner JM, Nydam TL, Clarke JH, Banerjee A, Silliman CC and McCarter MD: Red blood cell supernatant potentiates LPS-induced proinflammatory cytokine response from peripheral blood mononuclear cells. J Interferon Cytokine Res. 29:333–338. 2009. View Article : Google Scholar : PubMed/NCBI | |
Long K, Meier C, Ward M, Williams D, Woodward J and Bernard A: Immunologic profiles of red blood cells using in vitro models of transfusion. J Surg Res. 184:567–571. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ohue Y and Nishikawa H: Regulatory T (Treg) cells in cancer: Can Treg cells be a new therapeutic target? Cancer Sci. 110:2080–2089. 2019. View Article : Google Scholar : PubMed/NCBI | |
Almizraq RJ, Holovati JL and Acker JP: Characteristics of extracellular vesicles in red blood concentrates change with storage time and blood manufacturing method. Transfus Med Hemother. 45:185–193. 2018. View Article : Google Scholar : PubMed/NCBI | |
Menocha S and Muszynski JA: Transfusion-related immune modulation: Functional consequence of extracellular vesicles? Transfusion. 59:3553–3555. 2019. View Article : Google Scholar : PubMed/NCBI | |
Almizraq RJ, Seghatchian J and Acker JP: Extracellular vesicles in transfusion-related immunomodulation and the role of blood component manufacturing. Transfus Apher Sci. 55:281–291. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sut C, Tariket S, Chou ML, Garraud O, Laradi S, Hamzeh-Cognasse H, Seghatchian J, Burnouf T and Cognasse F: Duration of red blood cell storage and inflammatory marker generation. Blood Transfus. 15:145–152. 2017.PubMed/NCBI | |
Sadallah S, Eken C and Schifferli JA: Erythrocyte-derived ectosomes have immunosuppressive properties. J Leukoc Biol. 84:1316–1325. 2008. View Article : Google Scholar : PubMed/NCBI | |
Straat M, van Hezel ME, Böing A, Tuip-De Boer A, Weber N, Nieuwland R, van Bruggen R and Juffermans NP: Monocyte-mediated activation of endothelial cells occurs only after binding to extracellular vesicles from red blood cell products, a process mediated by β-integrin. Transfusion. 56:3012–3020. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cole SW: Chronic inflammation and breast cancer recurrence. J Clin Oncol. 27:3418–3419. 2009. View Article : Google Scholar : PubMed/NCBI | |
Nakagawa K, Sho M, Akahori T, Nagai M, Nakamura K, Takagi T, Tanaka T, Nishiofuku H, Ohbayashi C, Kichikawa K and Ikeda N: Significance of the inflammation-based prognostic score in recurrent pancreatic cancer. Pancreatology. 19:722–728. 2019. View Article : Google Scholar : PubMed/NCBI | |
Guo D, Zhang J, Jing W, Liu J, Zhu H, Fu L, Li M, Kong L, Yue J and Yu J: Prognostic value of systemic immune-inflammation index in patients with advanced non-small-cell lung cancer. Future Oncol. 14:2643–2650. 2018. View Article : Google Scholar : PubMed/NCBI | |
Matsubara D, Arita T, Nakanishi M, Kuriu Y, Murayama Y, Kudou M, Konishi H, Komatsu S, Shiozaki A and Otsuji E: The impact of postoperative inflammation on recurrence in patients with colorectal cancer. Int J Clin Oncol. 25:602–613. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yoshida D, Minami K, Sugiyama M, Ota M, Ikebe M, Morita M, Matsukuma A and Toh Y: Prognostic impact of the neutrophil-to-lymphocyte ratio in stage I–II rectal cancer patients. J Surg Res. 245:281–287. 2020. View Article : Google Scholar : PubMed/NCBI | |
Acker JP, Almizraq RJ, Millar D and Maurer-Spurej E: Screening of red blood cells for extracellular vesicle content as a product quality indicator. Transfusion. 58:2217–2226. 2018. View Article : Google Scholar : PubMed/NCBI | |
Almizraq RJ, Seghatchian J, Holovati JL and Acker JP: Extracellular vesicle characteristics in stored red blood cell concentrates are influenced by the method of detection. Transfus Apher Sci. 56:254–260. 2017. View Article : Google Scholar : PubMed/NCBI | |
Donadee C, Raat NJ, Kanias T, Tejero J, Lee JS, Kelley EE, Zhao X, Liu C, Reynolds H, Azarov I, et al: Nitric oxide scavenging by red blood cell microparticles and cell-free hemoglobin as a mechanism for the red cell storage lesion. Circulation. 124:465–476. 2011. View Article : Google Scholar : PubMed/NCBI | |
Almizraq RJ, Norris PJ, Inglis H, Menocha S, Wirtz MR, Juffermans N, Pandey S, Spinella PC, Acker JP and Muszynski JA: Blood manufacturing methods affect red blood cell product characteristics and immunomodulatory activity. Blood Adv. 2:2296–2306. 2018. View Article : Google Scholar : PubMed/NCBI | |
Richter JR, Sutton JM, Hexley P, Johannigman TA, Lentsch AB and Pritts TA: Leukoreduction of packed red blood cells attenuates proinflammatory properties of storage-derived microvesicles. J Surg Res. 223:128–135. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bicalho B, Pereira AS and Acker JP: Buffy coat (top/bottom)- and whole-blood filtration (top/top)-produced red cell concentrates differ in size of extracellular vesicles. Vox Sang. 109:214–220. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gamonet C, Desmarets M, Mourey G, Biichle S, Aupet S, Laheurte C, François A, Resch E, Bigey F, Binda D, et al: Processing methods and storage duration impact extracellular vesicle counts in red blood cell units. Blood Adv. 4:5527–5539. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yoshida T, Prudent M and D'Alessandro A: Red blood cell storage lesion: Causes and potential clinical consequences. Blood Transfus. 17:27–52. 2019.PubMed/NCBI | |
Kozlova E, Chernysh A, Moroz V, Kozlov A, Sergunova V, Sherstyukova E and Gudkova O: Two-step process of cytoskeletal structural damage during long-term storage of packed red blood cells. Blood Transfus. 19:124–134. 2021.PubMed/NCBI | |
Kaczmarska M, Grosicki M, Bulat K, Mardyla M, Szczesny-Malysiak E, Blat A, Dybas J, Sacha T and Marzec KM: Temporal sequence of the human RBCs' vesiculation observed in nano-scale with application of AFM and complementary techniques. Nanomedicine. 28:1022212020. View Article : Google Scholar : PubMed/NCBI | |
Bicalho B, Holovati JL and Acker JP: Phospholipidomics reveals differences in glycerophosphoserine profiles of hypothermically stored red blood cells and microvesicles. Biochim Biophys Acta. 1828:317–326. 2013. View Article : Google Scholar : PubMed/NCBI | |
McVey MJ, Kuebler WM, Orbach A, Arbell D, Zelig O, Barshtein G and Yedgar S: Reduced deformability of stored red blood cells is associated with generation of extracellular vesicles. Transfus Apher Sci. 59:1028512020. View Article : Google Scholar : PubMed/NCBI | |
Burger P, Kostova E, Bloem E, Hilarius-Stokman P, Meijer AB, van den Berg TK, Verhoeven AJ, de Korte D and van Bruggen R: Potassium leakage primes stored erythrocytes for phosphatidylserine exposure and shedding of pro-coagulant vesicles. Br J Haematol. 160:377–386. 2013. View Article : Google Scholar : PubMed/NCBI | |
Arashiki N and Takakuwa Y: Maintenance and regulation of asymmetric phospholipid distribution in human erythrocyte membranes: Implications for erythrocyte functions. Curr Opin Hematol. 24:167–172. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wesseling MC, Wagner-Britz L, Nguyen DB, Asanidze S, Mutua J, Mohamed N, Hanf B, Ghashghaeinia M, Kaestner L and Bernhardt I: Novel insights in the regulation of phosphatidylserine exposure in human red blood cells. Cell Physiol Biochem. 39:1941–1954. 2016. View Article : Google Scholar : PubMed/NCBI | |
Nguyen DB, Wagner-Britz L, Maia S, Steffen P, Wagner C, Kaestner L and Bernhardt I: Regulation of phosphatidylserine exposure in red blood cells. Cell Physiol Biochem. 28:847–856. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tanaka Y and Schroit AJ: Insertion of fluorescent phosphatidylserine into the plasma membrane of red blood cells. Recognition by autologous macrophages. J Biol Chem. 258:11335–11343. 1983. View Article : Google Scholar : PubMed/NCBI | |
Orbach A, Zelig O, Yedgar S and Barshtein G: Biophysical and biochemical markers of red blood cell fragility. Transfus Med Hemother. 44:183–187. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sudnitsyna J, Skverchinskaya E, Dobrylko I, Nikitina E, Gambaryan S and Mindukshev I: Microvesicle formation induced by oxidative stress in human erythrocytes. Antioxidants (Basel). 9:9292020. View Article : Google Scholar : PubMed/NCBI | |
Prudent M, Delobel J, Hübner A, Benay C, Lion N and Tissot JD: Proteomics of stored red blood cell membrane and storage-induced microvesicles reveals the association of flotillin-2 with band 3 complexes. Front Physiol. 9:4212018. View Article : Google Scholar : PubMed/NCBI | |
Willekens FL, Werre JM, Groenen-Döpp YA, Roerdinkholder-Stoelwinder B, de Pauw B and Bosman GJ: Erythrocyte vesiculation: A self-protective mechanism? Br J Haematol. 141:549–556. 2008. View Article : Google Scholar : PubMed/NCBI | |
Tissot JD, Rubin O and Canellini G: Analysis and clinical relevance of microparticles from red blood cells. Curr Opin Hematol. 17:571–577. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wagner-Britz L, Wang J, Kaestner L and Bernhardt I: Protein kinase Cα and P-type Ca channel CaV2.1 in red blood cell calcium signalling. Cell Physiol Biochem. 31:883–891. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cloos AS, Ghodsi M, Stommen A, Vanderroost J, Dauguet N, Pollet H, D'Auria L, Mignolet E, Larondelle Y, Terrasi R, et al: Interplay between plasma membrane lipid alteration, oxidative stress and calcium-based mechanism for extracellular vesicle biogenesis from erythrocytes during blood storage. Front Physiol. 11:7122020. View Article : Google Scholar : PubMed/NCBI | |
Shao H, Im H, Castro CM, Breakefield X, Weissleder R and Lee H: New technologies for analysis of extracellular vesicles. Chem Rev. 118:1917–1950. 2018. View Article : Google Scholar : PubMed/NCBI | |
Nguyen DB, Ly TB, Wesseling MC, Hittinger M, Torge A, Devitt A, Perrie Y and Bernhardt I: Characterization of microvesicles released from human red blood cells. Cell Physiol Biochem. 38:1085–1099. 2016. View Article : Google Scholar : PubMed/NCBI | |
Noubouossie DF, Henderson MW, Mooberry M, Ilich A, Ellsworth P, Piegore M, Skinner SC, Pawlinski R, Welsby I, Renné T, et al: Red blood cell microvesicles activate the contact system, leading to factor IX activation via 2 independent pathways. Blood. 135:755–765. 2020. View Article : Google Scholar : PubMed/NCBI | |
van der Pol E, Coumans F, Varga Z, Krumrey M and Nieuwland R: Innovation in detection of microparticles and exosomes. J Thromb Haemost. 11 (Suppl 1):S36–S45. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lawrie AS, Albanyan A, Cardigan RA, Mackie IJ and Harrison P: Microparticle sizing by dynamic light scattering in fresh-frozen plasma. Vox Sang. 96:206–212. 2009. View Article : Google Scholar : PubMed/NCBI | |
Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, Atkin-Smith GK, et al: Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the international society for extracellular vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 7:15357502018. View Article : Google Scholar : PubMed/NCBI | |
Muszynski JA, Bale J, Nateri J, Nicol K, Wang Y, Wright V, Marsh CB, Gavrilin MA, Sarkar A, Wewers MD and Hall MW: Supernatants from stored red blood cell (RBC) units, but not RBC-derived microvesicles, suppress monocyte function in vitro. Transfusion. 55:1937–1945. 2015. View Article : Google Scholar : PubMed/NCBI | |
Turpin D, Truchetet ME, Faustin B, Augusto JF, Contin-Bordes C, Brisson A, Blanco P and Duffau P: Role of extracellular vesicles in autoimmune diseases. Autoimmun Rev. 15:174–183. 2016. View Article : Google Scholar : PubMed/NCBI | |
Vasconcelos MH, Caires HR, Ābols A, Xavier CPR and Linē A: Extracellular vesicles as a novel source of biomarkers in liquid biopsies for monitoring cancer progression and drug resistance. Drug Resist Updat. 47:1006472019. View Article : Google Scholar : PubMed/NCBI | |
Naito Y, Yoshioka Y, Yamamoto Y and Ochiya T: How cancer cells dictate their microenvironment: Present roles of extracellular vesicles. Cell Mol Life Sci. 74:697–713. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zecher D, Cumpelik A and Schifferli JA: Erythrocyte-derived microvesicles amplify systemic inflammation by thrombin-dependent activation of complement. Arterioscler Thromb Vasc Biol. 34:313–320. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Zhao W, Christ GJ, Gladwin MT and Kim-Shapiro DB: Nitric oxide scavenging by red cell microparticles. Free Radic Biol Med. 65:1164–1173. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kim-Shapiro DB, Lee J and Gladwin MT: Storage lesion: Role of red blood cell breakdown. Transfusion. 51:844–851. 2011. View Article : Google Scholar : PubMed/NCBI | |
Said AS and Doctor A: Influence of red blood cell-derived microparticles upon vasoregulation. Blood Transfus. 15:522–534. 2017.PubMed/NCBI | |
Kamm A, Przychodzen P, Kuban-Jankowska A, Jacewicz D, Dabrowska AM, Nussberger S, Wozniak M and Gorska-Ponikowska M: Nitric oxide and its derivatives in the cancer battlefield. Nitric Oxide. 93:102–114. 2019. View Article : Google Scholar : PubMed/NCBI | |
Oliveira GP Jr, Zigon E, Rogers G, Davodian D, Lu S, Jovanovic-Talisman T, Jones J, Tigges J, Tyagi S and Ghiran IC: Detection of extracellular vesicle RNA using molecular beacons. iScience. 23:1007822020. View Article : Google Scholar : PubMed/NCBI | |
Miyashita Y, Ishikawa K, Fukushima Y, Kouwaki T, Nakamura K and Oshiumi H: Immune-regulatory microRNA expression levels within circulating extracellular vesicles correspond with the appearance of local symptoms after seasonal flu vaccination. PLoS One. 14:e02195102019. View Article : Google Scholar : PubMed/NCBI | |
Okamoto M, Fukushima Y, Kouwaki T, Daito T, Kohara M, Kida H and Oshiumi H: MicroRNA-451a in extracellular, blood-resident vesicles attenuates macrophage and dendritic cell responses to influenza whole-virus vaccine. J Biol Chem. 293:18585–18600. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Miao T, Feng T, Jiang Z, Li M, Zhou L and Li H: miR-451a inhibited cell proliferation and enhanced tamoxifen sensitive in breast cancer via macrophage migration inhibitory factor. Biomed Res Int. 2015:2076842015.PubMed/NCBI | |
Yamada Y, Arai T, Sugawara S, Okato A, Kato M, Kojima S, Yamazaki K, Naya Y, Ichikawa T and Seki N: Impact of novel oncogenic pathways regulated by antitumor miR-451a in renal cell carcinoma. Cancer Sci. 109:1239–1253. 2018. View Article : Google Scholar : PubMed/NCBI | |
Nobre CC, de Araújo JM, Fernandes TA, Cobucci RN, Lanza DC, Andrade VS and Fernandes JV: Macrophage migration inhibitory factor (MIF): Biological activities and relation with cancer. Pathol Oncol Res. 23:235–244. 2017. View Article : Google Scholar : PubMed/NCBI | |
Almizraq RJ, Kipkeu BJ and Acker JP: Platelet vesicles are potent inflammatory mediators in red blood cell products and washing reduces the inflammatory phenotype. Transfusion. 60:378–390. 2020. View Article : Google Scholar : PubMed/NCBI | |
Nelson KA, Aldea GS, Warner P, Latchman Y, Gunasekera D, Tamir A, Gernsheimer T, Bolgiano D and Slichter SJ: Transfusion-related immunomodulation: Gamma irradiation alters the effects of leukoreduction on alloimmunization. Transfusion. 59:3396–3404. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sanchez R, Lee TH, Wen L, Montalvo L, Schechterly C, Colvin C, Alter HJ, Luban NL and Busch MP: Absence of transfusion-associated microchimerism in pediatric and adult recipients of leukoreduced and gamma-irradiated blood components. Transfusion. 52:936–945. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bohlius J, Bohlke K, Castelli R, Djulbegovic B, Lustberg MB, Martino M, Mountzios G, Peswani N, Porter L, Tanaka TN, et al: Management of cancer-associated anemia with erythropoiesis-stimulating agents: ASCO/ASH clinical practice guideline update. Blood Adv. 3:1197–1210. 2019. View Article : Google Scholar : PubMed/NCBI |