Retrospective analysis of the preparation and application of immunotherapy in cancer treatment (Review)
- Authors:
- Jiachen Lu
- Jianing Ding
- Zhaoxia Liu
- Tingtao Chen
-
Affiliations: Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China - Published online on: January 4, 2022 https://doi.org/10.3892/ijo.2022.5302
- Article Number: 12
-
Copyright: © Lu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Patel A: Benign vs malignant tumors. JAMA Oncol. 6:14882020. View Article : Google Scholar : PubMed/NCBI | |
Murray PG and Young LS: An etiological role for the Epstein-Barr virus in the pathogenesis of classical Hodgkin lymphoma. Blood. 134:591–596. 2019. View Article : Google Scholar : PubMed/NCBI | |
Keum N and Giovannucci E: Global burden of colorectal cancer: Emerging trends, risk factors and prevention strategies. Nat Rev Gastroenterol Hepatol. 16:713–732. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hasanpourghadi M, Pandurangan AK and Mustafa MR: Modulation of oncogenic transcription factors by bioactive natural products in breast cancer. Pharmacol Res. 128:376–388. 2018. View Article : Google Scholar | |
Stark A, Donahue TR, Reber HA and Hines OJ: Pancreatic cyst disease: A review. JAMA. 315:1882–1893. 2016. View Article : Google Scholar : PubMed/NCBI | |
Travis WD, Asamura H, Bankier AA, Beasley MB, Detterbeck F, Flieder DB, Goo JM, MacMahon H, Naidich D, Nicholson AG, et al: The IASLC lung cancer staging project: Proposals for coding T categories for subsolid nodules and assessment of tumor size in part-solid tumors in the forthcoming eighth edition of the TNM classification of lung cancer. J Thorac Oncol. 11:1204–1223. 2016. View Article : Google Scholar : PubMed/NCBI | |
Clara-Trujillo S, Gallego Ferrer G and Gómez Ribelles JL: In vitro modeling of non-solid tumors: How far can tissue engineering go? Int J Mol Sci. 21:57472020. View Article : Google Scholar : | |
Shimada A: Hematological malignancies and molecular targeting therapy. Eur J Pharmacol. 862:1726412019. View Article : Google Scholar : PubMed/NCBI | |
Dunn-Pirio AM and Vlahovic G: Immunotherapy approaches in the treatment of malignant brain tumors. Cancer. 123:734–750. 2017. View Article : Google Scholar | |
Cassetta L and Pollard JW: Targeting macrophages: Therapeutic approaches in cancer. Nat Rev Drug Discov. 17:887–904. 2018. View Article : Google Scholar : PubMed/NCBI | |
Schweizer C, Schubert P, Rutzner S, Eckstein M, Haderlein M, Lettmaier S, Semrau S, Gostian AO, Frey B, Gaipl US, et al: Prospective evaluation of the prognostic value of immune-related adverse events in patients with non-melanoma solid tumour treated with PD-1/PD-L1 inhibitors alone and in combination with radiotherapy. Eur J Cancer. 140:55–62. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ovacik M and Lin K: Tutorial on monoclonal antibody pharmacokinetics and its considerations in early development. Clin Transl Sci. 11:540–552. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cymer F, Beck H, Rohde A and Reusch D: Therapeutic monoclonal antibody N-glycosylation-structure, function and therapeutic potential. Biologicals. 52:1–11. 2018. View Article : Google Scholar | |
Alkan SS: Legends of allergy/immunology: Georges Köhler and the discovery of MONOCLONAL antibodies. Allergy. 74:1412–1414. 2019.PubMed/NCBI | |
Seaman S, Zhu Z, Saha S, Zhang XM, Yang MY, Hilton MB, Morris K, Szot C, Morris H, Swing DA, et al: Eradication of tumors through simultaneous ablation of CD276/B7H3-positive tumor cells and tumor vasculature. Cancer Cell. 31:501–515.e8. 2017. View Article : Google Scholar | |
Fay EK and Graff JN: Immunotherapy in prostate cancer. Cancers (Basel). 12:17522020. View Article : Google Scholar | |
Arlotta KJ and Owen SC: Antibody and antibody derivatives as cancer therapeutics. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 11:e15562019. View Article : Google Scholar : PubMed/NCBI | |
Starr CG and Tessier PM: Selecting and engineering monoclonal antibodies with drug-like specificity. Curr Opin Biotechnol. 60:119–127. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chiu ML and Gilliland GL: Engineering antibody therapeutics. Curr Opin Struct Biol. 38:163–173. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wootla B, Denic A and Rodriguez M: Polyclonal and monoclonal antibodies in clinic. Methods Mol Biol. 1060:79–110. 2014. View Article : Google Scholar | |
Köhler G and Milstein C: Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 256:495–497. 1975. View Article : Google Scholar : PubMed/NCBI | |
Miller RA, Maloney DG, Warnke R and Levy R: Treatment of B-cell lymphoma with monoclonal anti-idiotype antibody. N Engl J Med. 306:517–522. 1982. View Article : Google Scholar : PubMed/NCBI | |
An Z: Monoclonal antibodies-a proven and rapidly expanding therapeutic modality for human diseases. Protein Cell. 1:319–330. 2010. View Article : Google Scholar | |
Grilo AL and Mantalaris A: The increasingly human and profitable monoclonal antibody market. Trends Biotechnol. 37:9–16. 2019. View Article : Google Scholar | |
Garrard LJ and Zhukovsky EA: Antibody expression in bacteriophage systems: The future of monoclonal antibodies? Curr Opin Biotechnol. 3:474–480. 1992. View Article : Google Scholar : PubMed/NCBI | |
Parray HA, Shukla S, Samal S, Shrivastava T, Ahmed S, Sharma C and Kumar R: Hybridoma technology a versatile method for isolation of monoclonal antibodies, its applicability across species, limitations, advancement and future perspectives. Int Immunopharmacol. 85:1066392020. View Article : Google Scholar : PubMed/NCBI | |
Shim H: Antibody phage display. Adv Exp Med Biol. 1053:21–34. 2017. View Article : Google Scholar : PubMed/NCBI | |
Groves MA and Osbourn JK: Applications of ribosome display to antibody drug discovery. Expert Opin Biol Ther. 5:125–135. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lu RM, Hwang YC, Liu IJ, Lee CC, Tsai HZ, Li HJ and Wu HC: Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci. 27:12020. View Article : Google Scholar : PubMed/NCBI | |
Schmid AS and Neri D: Advances in antibody engineering for rheumatic diseases. Nat Rev Rheumatol. 15:197–207. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kuramochi T, Igawa T, Tsunoda H and Hattori K: Humanization and simultaneous optimization of monoclonal antibody. Methods Mol Biol. 1904:213–230. 2019. View Article : Google Scholar | |
Goydel RS, Weber J, Peng H, Qi J, Soden J, Freeth J, Park H and Rader C: Affinity maturation, humanization, and co-crystallization of a rabbit anti-human ROR2 monoclonal antibody for therapeutic applications. J Biol Chem. 295:5995–6006. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Li C, Xia S, Tian X, Kong Y, Wang Z, Gu C, Zhang R, Tu C, Xie Y, et al: Identification of human single-domain antibodies against SARS-CoV-2. Cell Host Microbe. 27:891–898.e5. 2020. View Article : Google Scholar : PubMed/NCBI | |
Frenzel A, Schirrmann T and Hust M: Phage display-derived human antibodies in clinical development and therapy. MAbs. 8:1177–1194. 2016. View Article : Google Scholar : PubMed/NCBI | |
Pucca MB, Cerni FA, Janke R, Bermúdez-Méndez E, Ledsgaard L, Barbosa JE and Laustsen AH: History of envenoming therapy and current perspectives. Front Immunol. 10:15982019. View Article : Google Scholar : PubMed/NCBI | |
Ribatti D: From the discovery of monoclonal antibodies to their therapeutic application: An historical reappraisal. Immunol Lett. 161:96–99. 2014. View Article : Google Scholar : PubMed/NCBI | |
Elgundi Z, Reslan M, Cruz E, Sifniotis V and Kayser V: The state-of-play and future of antibody therapeutics. Adv Drug Deliv Rev. 122:2–19. 2017. View Article : Google Scholar | |
Paci A, Desnoyer A, Delahousse J, Blondel L, Maritaz C, Chaput N, Mir O and Broutin S: Pharmacokinetic/pharmacodynamic relationship of therapeutic monoclonal antibodies used in oncology: Part 1, monoclonal antibodies, antibody-drug conjugates and bispecific T-cell engagers. Eur J Cancer. 128:107–118. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zaroff S and Tan G: Hybridoma technology: The preferred method for monoclonal antibody generation for in vivo applications. Biotechniques. 67:90–92. 2019. View Article : Google Scholar : PubMed/NCBI | |
Schroff RW, Foon KA, Beatty SM, Oldham RK and Morgan AC Jr: Human anti-murine immunoglobulin responses in patients receiving monoclonal antibody therapy. Cancer Res. 45:879–885. 1985.PubMed/NCBI | |
Angus DC, Birmingham MC, Balk RA, Scannon PJ, Collins D, Kruse JA, Graham DR, Dedhia HV, Homann S and MacIntyre N: E5 murine monoclonal antiendotoxin antibody in gram-negative sepsis: A randomized controlled trial. E5 study investigators JAMA. 283:1723–1730. 2000. | |
Karmali R, Kimby E, Ghielmini M, Flinn IW, Gordon LI and Zucca E: Rituximab: A benchmark in the development of chemotherapy-free treatment strategies for follicular lymphomas. Ann Oncol. 29:332–340. 2018. View Article : Google Scholar | |
Crowe JE Jr: Recent advances in the study of human antibody responses to influenza virus using optimized human hybridoma approaches. Vaccine. 27(Suppl 6): G47–G51. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gonzales NR, De Pascalis R, Schlom J and Kashmiri SV: Minimizing the immunogenicity of antibodies for clinical application. Tumour Biol. 26:31–43. 2005. View Article : Google Scholar : PubMed/NCBI | |
Alfaleh MA, Alsaab HO, Mahmoud AB, Alkayyal AA, Jones ML, Mahler SM and Hashem AM: Phage display derived monoclonal antibodies: From bench to bedside. Front Immunol. 11:19862020. View Article : Google Scholar : PubMed/NCBI | |
LoBuglio AF, Wheeler RH, Trang J, Haynes A, Rogers K, Harvey EB, Sun L, Ghrayeb J and Khazaeli MB: Mouse/human chimeric monoclonal antibody in man: Kinetics and immune response. Proc Natl Acad Sci USA. 86:4220–4224. 1989. View Article : Google Scholar : PubMed/NCBI | |
Targan SR, Hanauer SB, van Deventer SJ, Mayer L, Present DH, Braakman T, DeWoody KL, Schaible TF and Rutgeerts PJ: A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor alpha for Crohn.s disease. Crohn.s disease cA2 study group. N Engl J Med. 337:1029–1035. 1997. View Article : Google Scholar : PubMed/NCBI | |
Liu AY, Robinson RR, Murray ED Jr, Ledbetter JA, Hellström I and Hellström KE: Production of a mouse-human chimeric monoclonal antibody to CD20 with potent Fc-dependent biologic activity. J Immunol. 139:3521–3526. 1987.PubMed/NCBI | |
McLaughlin P, Grillo-López AJ, Link BK, Levy R, Czuczman MS, Williams ME, Heyman MR, Bence-Bruckler I, White CA, Cabanillas F, et al: Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: Half of patients respond to a four-dose treatment program. J Clin Oncol. 16:2825–2833. 1998. View Article : Google Scholar : PubMed/NCBI | |
Piccolo R, Eitel I, Galasso G, Dominguez-Rodriguez A, Iversen AZ, Abreu-Gonzalez P, Windecker S, Thiele H and Piscione F: 1-Year outcomes with intracoronary abciximab in diabetic patients undergoing primary percutaneous coronary intervention. J Am Coll Cardiol. 68:727–738. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bachlava E, Loukopoulou S, Karanasios E, Chrousos G and Michos A: Management of coronary artery aneurysms using abciximab in children with Kawasaki disease. Int J Cardiol. 220:65–69. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu SN, Zhang XH, Xu LP, Wang Y, Yan CH, Chen H, Chen YH, Han W, Wang FR, Wang JZ, et al: Prognostic factors and long-term follow-up of basiliximab for steroid-refractory acute graft-versus-host disease: Updated experience from a large-scale study. Am J Hematol. 95:927–936. 2020. View Article : Google Scholar : PubMed/NCBI | |
Furuya Y, Jayarajan SN, Taghavi S, Cordova FC, Patel N, Shiose A, Leotta E, Criner GJ, Guy TS, Wheatley GH, et al: The impact of alemtuzumab and basiliximab induction on patient survival and time to bronchiolitis obliterans syndrome in double lung transplantation recipients. Am J Transplant. 16:2334–2341. 2016. View Article : Google Scholar : PubMed/NCBI | |
Aranda E, García-Alfonso P, Benavides M, Sánchez Ruiz A, Guillén-Ponce C, Safont MJ, Alcaide J, Gómez A, López R, Manzano JL, et al: First-line mFOLFOX plus cetuximab followed by mFOLFOX plus cetuximab or single-agent cetuximab as maintenance therapy in patients with metastatic colorectal cancer: Phase II randomised MACRO2 TTD study. Eur J Cancer. 101:263–272. 2018. View Article : Google Scholar : PubMed/NCBI | |
Strohbehn GW and Vokes EE: Palbociclib: A new partner for cetuximab? Lancet Oncol. 20:1195–1196. 2019. View Article : Google Scholar : PubMed/NCBI | |
Strohl WR: Current progress in innovative engineered antibodies. Protein Cell. 9:86–120. 2018. View Article : Google Scholar : | |
Presta LG: Engineering of therapeutic antibodies to minimize immunogenicity and optimize function. Adv Drug Deliv Rev. 58:640–656. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kumar R, Parray HA, Shrivastava T, Sinha S and Luthra K: Phage display antibody libraries: A robust approach for generation of recombinant human monoclonal antibodies. Int J Biol Macromol. 135:907–918. 2019. View Article : Google Scholar : PubMed/NCBI | |
Saw PE and Song EW: Phage display screening of therapeutic peptide for cancer targeting and therapy. Protein Cell. 10:787–807. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ledsgaard L, Kilstrup M, Karatt-Vellatt A, McCafferty J and Laustsen AH: Basics of antibody phage display technology. Toxins (Basel). 10:2362018. View Article : Google Scholar | |
Greenwood J, Willis AE and Perham RN: Multiple display of foreign peptides on a filamentous bacteriophage. Peptides from plasmodium falciparum circumsporozoite protein as antigens. J Mol Biol. 220:821–827. 1991. View Article : Google Scholar : PubMed/NCBI | |
Smith GP: Filamentous fusion phage: Novel expression vectors that display cloned antigens on the virion surface. Science. 228:1315–1317. 1985. View Article : Google Scholar : PubMed/NCBI | |
Geysen HM, Tainer JA, Rodda SJ, Mason TJ, Alexander H, Getzoff ED and Lerner RA: Chemistry of antibody binding to a protein. Science. 235:1184–1190. 1987. View Article : Google Scholar : PubMed/NCBI | |
Parmley SF and Smith GP: Antibody-selectable filamentous fd phage vectors: Affinity purification of target genes. Gene. 73:305–318. 1988. View Article : Google Scholar : PubMed/NCBI | |
Scott JK and Smith GP: Searching for peptide ligands with an epitope library. Science. 249:386–390. 1990. View Article : Google Scholar : PubMed/NCBI | |
McCafferty J, Griffiths AD, Winter G and Chiswell DJ: Phage antibodies: Filamentous phage displaying antibody variable domains. Nature. 348:552–554. 1990. View Article : Google Scholar : PubMed/NCBI | |
Tan Y, Tian T, Liu W, Zhu Z and C JY: Advance in phage display technology for bioanalysis. Biotechnol J. 11:732–745. 2016. View Article : Google Scholar : PubMed/NCBI | |
Deng X, Wang L, You X, Dai P and Zeng Y: Advances in the T7 phage display system (Review). Mol Med Rep. 17:714–720. 2018. | |
Burritt JB, Bond CW, Doss KW and Jesaitis AJ: Filamentous phage display of oligopeptide libraries. Anal Biochem. 238:1–13. 1996. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Doria-Rose NA, Longo NS, Laub L, Lin CL, Turk E, Kang BH, Migueles SA, Bailer RT, Mascola JR and Connors M: Isolation of human monoclonal antibodies from peripheral blood B cells. Nat Protoc. 8:1907–1915. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Li Y, Hou B, Pronobis MI, Wang M, Wang Y, Cheng G, Weng W, Wang Y, Tang Y, et al: An array of 60,000 antibodies for proteome-scale antibody generation and target discovery. Sci Adv. 6:eaax22712020. View Article : Google Scholar : PubMed/NCBI | |
Galán A, Comor L, Horvatić A, Kuleš J, Guillemin N, Mrljak V and Bhide M: Library-based display technologies: Where do we stand? Mol Biosyst. 12:2342–2358. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lim CC, Choong YS and Lim TS: Cognizance of molecular methods for the generation of mutagenic phage display antibody libraries for affinity maturation. Int J Mol Sci. 20:18612019. View Article : Google Scholar : | |
Goracci M, Pignochino Y and Marchiò S: Phage display-based nanotechnology applications in cancer immunotherapy. Molecules. 25:8432020. View Article : Google Scholar : | |
Rahbarnia L, Farajnia S, Babaei H, Majidi J, Veisi K, Ahmadzadeh V and Akbari B: Evolution of phage display technology: From discovery to application. J Drug Target. 25:216–224. 2017. View Article : Google Scholar | |
Petrenko VA: Landscape phage: Evolution from phage display to nanobiotechnology. Viruses. 10:3112018. View Article : Google Scholar : | |
Brüggemann M and Neuberger MS: Strategies for expressing human antibody repertoires in transgenic mice. Immunol Today. 17:391–397. 1996. View Article : Google Scholar : PubMed/NCBI | |
Brüggemann M, Osborn MJ, Ma B, Hayre J, Avis S, Lundstrom B and Buelow R: Human antibody production in transgenic animals. Arch Immunol Ther Exp (Warsz). 63:101–108. 2015. View Article : Google Scholar | |
Laffleur B, Pascal V, Sirac C and Cogné M: Production of human or humanized antibodies in mice. Methods Mol Biol. 901:149–159. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chen WC and Murawsky CM: Strategies for generating diverse antibody repertoires using transgenic animals expressing human antibodies. Front Immunol. 9:4602018. View Article : Google Scholar : PubMed/NCBI | |
Alt FW, Blackwell TK and Yancopoulos GD: Immunoglobulin genes in transgenic mice. Trends Genet. 1:231–236. 1985. View Article : Google Scholar | |
Frippiat JP, Williams SC, Tomlinson IM, Cook GP, Cherif D, Le Paslier D, Collins JE, Dunham I, Winter G and Lefranc MP: Organization of the human immunoglobulin lambda light-chain locus on chromosome 22q11.2. Hum Mol Genet. 4:983–991. 1995. View Article : Google Scholar : PubMed/NCBI | |
Fishwild DM, O'Donnell SL, Bengoechea T, Hudson DV, Harding F, Bernhard SL, Jones D, Kay RM, Higgins KM, Schramm SR and Lonberg N: High-avidity human IgG kappa monoclonal antibodies from a novel strain of minilocus transgenic mice. Nat Biotechnol. 14:845–851. 1996. View Article : Google Scholar : PubMed/NCBI | |
Mendez MJ, Green LL, Corvalan JR, Jia XC, Maynard-Currie CE, Yang XD, Gallo ML, Louie DM, Lee DV, Erickson KL, et al: Functional transplant of megabase human immunoglobulin loci recapitulates human antibody response in mice. Nat Genet. 15:146–156. 1997. View Article : Google Scholar : PubMed/NCBI | |
Lonberg N: Human antibodies from transgenic animals. Nat Biotechnol. 23:1117–1125. 2005. View Article : Google Scholar : PubMed/NCBI | |
Siegel SA, Shealy DJ, Nakada MT, Le J, Woulfe DS, Probert L, Kollias G, Ghrayeb J, Vilcek J and Daddona PE: The mouse/human chimeric monoclonal antibody cA2 neutralizes TNF in vitro and protects transgenic mice from cachexia and TNF lethality in vivo. Cytokine. 7:15–25. 1995. View Article : Google Scholar : PubMed/NCBI | |
Tsujinaka T, Fujita J, Ebisui C, Yano M, Kominami E, Suzuki K, Tanaka K, Katsume A, Ohsugi Y, Shiozaki H and Monden M: Interleukin 6 receptor antibody inhibits muscle atrophy and modulates proteolytic systems in interleukin 6 transgenic mice. J Clin Invest. 97:244–249. 1996. View Article : Google Scholar : PubMed/NCBI | |
Crombet-Ramos T, Rak J, Pérez R and Viloria-Petit A: Antiproliferative, antiangiogenic and proapoptotic activity of h-R3: A humanized anti-EGFR antibody. Int J Cancer. 101:567–575. 2002. View Article : Google Scholar : PubMed/NCBI | |
Jakobovits A, Amado RG, Yang X, Roskos L and Schwab G: From XenoMouse technology to panitumumab, the first fully human antibody product from transgenic mice. Nat Biotechnol. 25:1134–1143. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ros F, Offner S, Klostermann S, Thorey I, Niersbach H, Breuer S, Zarnt G, Lorenz S, Puels J, Siewe B, et al: Rabbits transgenic for human IgG genes recapitulating rabbit B-cell biology to generate human antibodies of high specificity and affinity. MAbs. 12:18469002020. View Article : Google Scholar : PubMed/NCBI | |
He M and Taussig MJ: Eukaryotic ribosome display with in situ DNA recovery. Nat Methods. 4:281–288. 2007. View Article : Google Scholar : PubMed/NCBI | |
Thom G and Groves M: Ribosome display. Methods Mol Biol. 901:101–116. 2012. View Article : Google Scholar : PubMed/NCBI | |
Plückthun A: Ribosome display: A perspective. Methods Mol Biol. 805:3–28. 2012. View Article : Google Scholar | |
Rothe A, Hosse RJ and Power BE: Ribosome display for improved biotherapeutic molecules. Expert Opin Biol Ther. 6:177–187. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ministro J, Manuel AM and Goncalves J: Therapeutic antibody engineering and selection strategies. Adv Biochem Eng Biotechnol. 171:55–86. 2020. | |
Mattheakis LC, Bhatt RR and Dower WJ: An in vitro polysome display system for identifying ligands from very large peptide libraries. Proc Natl Acad Sci USA. 91:9022–9026. 1994. View Article : Google Scholar : PubMed/NCBI | |
Hammers CM and Stanley JR: Antibody phage display: Technique and applications. J Invest Dermatol. 134:1–5. 2014. View Article : Google Scholar : PubMed/NCBI | |
Loh B, Kuhn A and Leptihn S: The fascinating biology behind phage display: Filamentous phage assembly. Mol Microbiol. 111:1132–1138. 2019. View Article : Google Scholar | |
Zahnd C, Amstutz P and Plückthun A: Ribosome display: Selecting and evolving proteins in vitro that specifically bind to a target. Nat Methods. 4:269–279. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hammerling MJ, Fritz BR, Yoesep DJ, Kim DS, Carlson ED and Jewett MC: In vitro ribosome synthesis and evolution through ribosome display. Nat Commun. 11:11082020. View Article : Google Scholar : PubMed/NCBI | |
He M and Khan F: Ribosome display: Next-generation display technologies for production of antibodies in vitro. Expert Rev Proteomics. 2:421–430. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lagoutte P, Lugari A, Elie C, Potisopon S, Donnat S, Mignon C, Mariano N, Troesch A, Werle B and Stadthagen G: Combination of ribosome display and next generation sequencing as a powerful method for identification of affibody binders against β-lactamase CTX-M15. N Biotechnol. 50:60–69. 2019. View Article : Google Scholar : PubMed/NCBI | |
Rouet R, Jackson KJL, Langley DB and Christ D: Next-generation sequencing of antibody display repertoires. Front Immunol. 9:1182018. View Article : Google Scholar : PubMed/NCBI | |
Yamaguchi J, Naimuddin M, Biyani M, Sasaki T, Machida M, Kubo T, Funatsu T, Husimi Y and Nemoto N: cDNA display: A novel screening method for functional disulfide-rich peptides by solid-phase synthesis and stabilization of mRNA-protein fusions. Nucleic Acids Res. 37:e1082009. View Article : Google Scholar : PubMed/NCBI | |
Lipovsek D and Plückthun A: In-vitro protein evolution by ribosome display and mRNA display. J Immunol Methods. 290:51–67. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ueda T, Kanamori T and Ohashi H: Ribosome display with the PURE technology. Methods Mol Biol. 607:219–225. 2010. View Article : Google Scholar : PubMed/NCBI | |
Roberts RW and Szostak JW: RNA-peptide fusions for the in vitro selection of peptides and proteins. Proc Natl Acad Sci USA. 94:12297–12302. 1997. View Article : Google Scholar : PubMed/NCBI | |
Muranaka N, Hohsaka T and Sisido M: Four-base codon mediated mRNA display to construct peptide libraries that contain multiple nonnatural amino acids. Nucleic Acids Res. 34:e72006. View Article : Google Scholar : PubMed/NCBI | |
Dufner P, Jermutus L and Minter RR: Harnessing phage and ribosome display for antibody optimisation. Trends Biotechnol. 24:523–529. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wardemann H, Yurasov S, Schaefer A, Young JW, Meffre E and Nussenzweig MC: Predominant autoantibody production by early human B cell precursors. Science. 301:1374–1377. 2003. View Article : Google Scholar : PubMed/NCBI | |
Traggiai E, Becker S, Subbarao K, Kolesnikova L, Uematsu Y, Gismondo MR, Murphy BR, Rappuoli R and Lanzavecchia A: An efficient method to make human monoclonal antibodies from memory B cells: Potent neutralization of SARS coronavirus. Nat Med. 10:871–875. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bushey RT, Moody MA, Nicely NL, Haynes BF, Alam SM, Keir ST, Bentley RC, Roy Choudhury K, Gottlin EB, Campa MJ, et al: A Therapeutic antibody for cancer, derived from single human B cells. Cell Rep. 15:1505–1513. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tiller T: Single B cell antibody technologies. N Biotechnol. 28:453–457. 2011. View Article : Google Scholar : PubMed/NCBI | |
Rudkin FM, Raziunaite I, Workman H, Essono S, Belmonte R, MacCallum DM, Johnson EM, Silva LM, Palma AS, Feizi T, et al: Single human B cell-derived monoclonal anti-Candida antibodies enhance phagocytosis and protect against disseminated candidiasis. Nat Commun. 9:52882018. View Article : Google Scholar : PubMed/NCBI | |
Rajan S, Kierny MR, Mercer A, Wu J, Tovchigrechko A, Wu H, Dall Acqua WF, Xiao X and Chowdhury PS: Recombinant human B cell repertoires enable screening for rare, specific, and natively paired antibodies. Commun Biol. 1:52018. View Article : Google Scholar : PubMed/NCBI | |
Buisman AM, de Rond CG, Oztürk K, Ten Hulscher HI and van Binnendijk RS: Long-term presence of memory B-cells specific for different vaccine components. Vaccine. 28:179–186. 2009. View Article : Google Scholar : PubMed/NCBI | |
Jilg W, Schmidt M and Deinhardt F: Decline of anti-HBs after hepatitis B vaccination and timing of revaccination. Lancet. 335:173–174. 1990. View Article : Google Scholar : PubMed/NCBI | |
Inoue T, Moran I, Shinnakasu R, Phan TG and Kurosaki T: Generation of memory B cells and their reactivation. Immunol Rev. 283:138–149. 2018. View Article : Google Scholar : PubMed/NCBI | |
von Bredow B, Arias JF, Heyer LN, Moldt B, Le K, Robinson JE, Zolla-Pazner S, Burton DR and Evans DT: Comparison of antibody-dependent cell-mediated cytotoxicity and virus neutralization by HIV-1 Env-specific monoclonal antibodies. J Virol. 90:6127–6139. 2016. View Article : Google Scholar : PubMed/NCBI | |
von Boehmer L, Liu C, Ackerman S, Gitlin AD, Wang Q, Gazumyan A and Nussenzweig MC: Sequencing and cloning of antigen-specific antibodies from mouse memory B cells. Nat Protoc. 11:1908–1923. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lei L, Tran K, Wang Y, Steinhardt JJ, Xiao Y, Chiang CI, Wyatt RT and Li Y: Antigen-specific single B cell sorting and monoclonal antibody cloning in guinea pigs. Front Microbiol. 10:6722019. View Article : Google Scholar : PubMed/NCBI | |
Cao Y, Su B, Guo X, Sun W, Deng Y, Bao L, Zhu Q, Zhang X, Zheng Y, Geng C, et al: Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients. B cells. Cell. 182:73–84.e16. 2020. View Article : Google Scholar | |
Lanzavecchia A, Corti D and Sallusto F: Human monoclonal antibodies by immortalization of memory B cells. Curr Opin Biotechnol. 18:523–528. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wrammert J, Koutsonanos D, Li GM, Edupuganti S, Sui J, Morrissey M, McCausland M, Skountzou I, Hornig M, Lipkin WI, et al: Broadly cross-reactive antibodies dominate the human B cell response against 2009 pandemic H1N1 influenza virus infection. J Exp Med. 208:181–193. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hafeez U, Gan HK and Scott AM: Monoclonal antibodies as immunomodulatory therapy against cancer and autoimmune diseases. Curr Opin Pharmacol. 41:114–121. 2018. View Article : Google Scholar : PubMed/NCBI | |
Walcheck B and Wu J: iNK-CD64/16A cells: A promising approach for ADCC? Expert Opin Biol Ther. 19:1229–1232. 2019. View Article : Google Scholar : PubMed/NCBI | |
Decaup E, Rossi C, Gravelle P, Laurent C, Bordenave J, Tosolini M, Tourette A, Perrial E, Dumontet C, Poupot M, et al: A tridimensional model for NK cell-mediated ADCC of follicular lymphoma. Front Immunol. 10:19432019. View Article : Google Scholar : PubMed/NCBI | |
Giles AJ, Hao S, Padget M, Song H, Zhang W, Lynes J, Sanchez V, Liu Y, Jung J, Cao X, et al: Efficient ADCC killing of meningioma by avelumab and a high-affinity natural killer cell line, haNK. JCI Insight. 4:e1306882019. View Article : Google Scholar : | |
Pockley AG, Vaupel P and Multhoff G: NK cell-based therapeutics for lung cancer. Expert Opin Biol Ther. 20:23–33. 2020. View Article : Google Scholar | |
Adams GP and Weiner LM: Monoclonal antibody therapy of cancer. Nat Biotechnol. 23:1147–1157. 2005. View Article : Google Scholar : PubMed/NCBI | |
Seguin-Devaux C, Plesseria JM, Verschueren C, Masquelier C, Iserentant G, Fullana M, Józsi M, Cohen JHM and Dervillez X: FHR4-based immunoconjugates direct complement-dependent cytotoxicity and phagocytosis towards HER2-positive cancer cells. Mol Oncol. 13:2531–2553. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wyant T, Fedyk E and Abhyankar B: An overview of the mechanism of action of the monoclonal antibody vedolizumab. J Crohns Colitis. 10:1437–1444. 2016. View Article : Google Scholar : PubMed/NCBI | |
Czyz M: Fibroblast growth factor receptor signaling in skin cancers. Cells. 8:5402019. View Article : Google Scholar : | |
Jimenez-Pascual A and Siebzehnrubl FA: Fibroblast growth factor receptor functions in glioblastoma. Cells. 8:7152019. View Article : Google Scholar : | |
Lee YT, Tan YJ and Oon CE: Molecular targeted therapy: Treating cancer with specificity. Eur J Pharmacol. 834:188–196. 2018. View Article : Google Scholar : PubMed/NCBI | |
Weiner GJ: Building better monoclonal antibody-based therapeutics. Nat Rev Cancer. 15:361–370. 2015. View Article : Google Scholar : PubMed/NCBI | |
Howie LJ, Scher NS, Amiri-Kordestani L, Zhang L, King-Kallimanis BL, Choudhry Y, Schroeder J, Goldberg KB, Kluetz PG, Ibrahim A, et al: FDA approval summary: Pertuzumab for adjuvant treatment of HER2-positive early breast cancer. Clin Cancer Res. 25:2949–2955. 2019. View Article : Google Scholar | |
Touat M, Idbaih A, Sanson M and Ligon KL: Glioblastoma targeted therapy: Updated approaches from recent biological insights. Ann Oncol. 28:1457–1472. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xu MJ, Johnson DE and Grandis JR: EGFR-targeted therapies in the post-genomic era. Cancer Metastasis Rev. 36:463–473. 2017. View Article : Google Scholar : PubMed/NCBI | |
Frezzetti D, Gallo M, Maiello MR, D'Alessio A, Esposito C, Chicchinelli N, Normanno N and De Luca A: VEGF as a potential target in lung cancer. Expert Opin Ther Targets. 21:959–966. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yalcin F, Dzaye O and Xia S: Tenascin-C function in glioma: Immunomodulation and beyond. Adv Exp Med Biol. 1272:149–172. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lieverse RIY, Van Limbergen EJ, Oberije CJG, Troost EGC, Hadrup SR, Dingemans AC, Hendriks LEL, Eckert F, Hiley C, Dooms C, et al: Stereotactic ablative body radiotherapy (SABR) combined with immunotherapy (L19-IL2) versus standard of care in stage IV NSCLC patients, ImmunoSABR: A multicentre, randomised controlled open-label phase II trial. BMC Cancer. 20:5572020. View Article : Google Scholar : PubMed/NCBI | |
Wester HJ and Schottelius M: PSMA-targeted radiopharmaceuticals for imaging and therapy. Semin Nucl Med. 49:302–312. 2019. View Article : Google Scholar : PubMed/NCBI | |
Apte RS, Chen DS and Ferrara N: VEGF in signaling and disease: Beyond discovery and development. Cell. 176:1248–1264. 2019. View Article : Google Scholar : PubMed/NCBI | |
Topalian SL, Taube JM, Anders RA and Pardoll DM: Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer. 16:275–287. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang JC, Chen WD, Alvarez JB, Jia K, Shi L, Wang Q, Zou N, He K and Zhu H: Cancer immune checkpoint blockade therapy and its associated autoimmune cardiotoxicity. Acta Pharmacol Sin. 39:1693–1698. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chamoto K, Al-Habsi M and Honjo T: Role of PD-1 in immunity and diseases. Curr Top Microbiol Immunol. 410:75–97. 2017.PubMed/NCBI | |
Darvin P, Toor SM, Sasidharan Nair V and Elkord E: Immune checkpoint inhibitors: Recent progress and potential biomarkers. Exp Mol Med. 50:1–11. 2018. View Article : Google Scholar : PubMed/NCBI | |
Postow MA, Sidlow R and Hellmann MD: Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med. 378:158–168. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gotwals P, Cameron S, Cipolletta D, Cremasco V, Crystal A, Hewes B, Mueller B, Quaratino S, Sabatos-Peyton C, Petruzzelli L, et al: Prospects for combining targeted and conventional cancer therapy with immunotherapy. Nat Rev Cancer. 17:286–301. 2017. View Article : Google Scholar : PubMed/NCBI | |
Abril-Rodriguez G and Ribas A: SnapShot: Immune checkpoint inhibitors. Cancer Cell. 31:848–848.e1. 2017. View Article : Google Scholar : PubMed/NCBI | |
Rowshanravan B, Halliday N and Sansom DM: CTLA-4: A moving target in immunotherapy. Blood. 131:58–67. 2018. View Article : Google Scholar | |
Lo B and Abdel-Motal UM: Lessons from CTLA-4 deficiency and checkpoint inhibition. Curr Opin Immunol. 49:14–19. 2017. View Article : Google Scholar : PubMed/NCBI | |
Duperret EK, Trautz A, Stoltz R, Patel A, Wise MC, Perales-Puchalt A, Smith T, Broderick KE, Masteller E, Kim JJ, et al: Synthetic DNA-encoded monoclonal antibody delivery of anti-CTLA-4 antibodies induces tumor shrinkage in vivo. Cancer Res. 78:6363–6370. 2018. View Article : Google Scholar : PubMed/NCBI | |
Specenier P: Ipilimumab in melanoma. Expert Rev Anticancer Ther. 16:811–826. 2016. View Article : Google Scholar : PubMed/NCBI | |
Carter BW, Bhosale PR and Yang WT: Immunotherapy and the role of imaging. Cancer. 124:2906–2922. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kuehn HS, Ouyang W, Lo B, Deenick EK, Niemela JE, Avery DT, Schickel JN, Tran DQ, Stoddard J, Zhang Y, et al: Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4. Science. 345:1623–1627. 2014. View Article : Google Scholar : PubMed/NCBI | |
Schubert D, Bode C, Kenefeck R, Hou TZ, Wing JB, Kennedy A, Bulashevska A, Petersen BS, Schäffer AA, Grüning BA, et al: Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nat Med. 20:1410–1416. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chesney J, Puzanov I, Collichio F, Singh P, Milhem MM, Glaspy J, Hamid O, Ross M, Friedlander P, Garbe C, et al: Randomized, open-label phase II study evaluating the efficacy and safety of talimogene laherparepvec in combination with ipilimumab versus ipilimumab alone in patients with advanced, unresectable melanoma. J Clin Oncol. 36:1658–1667. 2018. View Article : Google Scholar : | |
Soularue E, Lepage P, Colombel JF, Coutzac C, Faleck D, Marthey L, Collins M, Chaput N, Robert C and Carbonnel F: Enterocolitis due to immune checkpoint inhibitors: A systematic review. Gut. 67:2056–2067. 2018. View Article : Google Scholar : PubMed/NCBI | |
Spain L, Diem S and Larkin J: Management of toxicities of immune checkpoint inhibitors. Cancer Treat Rev. 44:51–60. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rotte A: Combination of CTLA-4 and PD-1 blockers for treatment of cancer. J Exp Clin Cancer Res. 38:2552019. View Article : Google Scholar : PubMed/NCBI | |
Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Rutkowski P, Lao CD, Cowey CL, Schadendorf D, Wagstaff J, Dummer R, et al: Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 381:1535–1546. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sidaway P: Immunotherapy: Local chemotherapy synergizes with CTLA-4 inhibition. Nat Rev Clin Oncol. 15:2022018.PubMed/NCBI | |
Weber JS, Kähler KC and Hauschild A: Management of immune-related adverse events and kinetics of response with ipilimumab. J Clin Oncol. 30:2691–2697. 2012. View Article : Google Scholar : PubMed/NCBI | |
Han Y, Liu D and Li L: PD-1/PD-L1 pathway: Current researches in cancer. Am J Cancer Res. 10:727–742. 2020.PubMed/NCBI | |
Alsaab HO, Sau S, Alzhrani R, Tatiparti K, Bhise K, Kashaw SK and Iyer AK: PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: Mechanism, combinations, and clinical outcome. Front Pharmacol. 8:5612017. View Article : Google Scholar : PubMed/NCBI | |
Xu-Monette ZY, Zhou J and Young KH: PD-1 expression and clinical PD-1 blockade in B-cell lymphomas. Blood. 131:68–83. 2018. View Article : Google Scholar : | |
Du S, McCall N, Park K, Guan Q, Fontina P, Ertel A, Zhan T, Dicker AP and Lu B: Blockade of tumor-expressed PD-1 promotes lung cancer growth. Oncoimmunology. 7:e14087472018. View Article : Google Scholar : PubMed/NCBI | |
Yi M, Jiao D, Xu H, Liu Q, Zhao W, Han X and Wu K: Biomarkers for predicting efficacy of PD-1/PD-L1 inhibitors. Mol Cancer. 17:1292018. View Article : Google Scholar : PubMed/NCBI | |
Naidoo J, Page DB, Li BT, Connell LC, Schindler K, Lacouture ME, Postow MA and Wolchok JD: Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann Oncol. 26:2375–2391. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sunshine J and Taube JM: PD-1/PD-L1 inhibitors. Curr Opin Pharmacol. 23:32–38. 2015. View Article : Google Scholar : PubMed/NCBI | |
Patel SA and Minn AJ: Combination cancer therapy with immune checkpoint blockade: Mechanisms and strategies. Immunity. 48:417–433. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hayashi H and Nakagawa K: Combination therapy with PD-1 or PD-L1 inhibitors for cancer. Int J Clin Oncol. 25:818–830. 2020. View Article : Google Scholar | |
Aggen DH, Drake CG and Rini BI: Targeting PD-1 or PD-L1 in metastatic kidney cancer: Combination therapy in the first-line setting. Clin Cancer Res. 26:2087–2095. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mathew M, Enzler T, Shu CA and Rizvi NA: Combining chemotherapy with PD-1 blockade in NSCLC. Pharmacol Ther. 186:130–137. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kong Y, Zhao X, Zou L, Xing P, Ma Y, Tian Y and Zhang L: PD-1 inhibitor combined with radiotherapy and GM-CSF as salvage therapy in patients with chemotherapy-refractory metastatic solid tumors. J Clin Oncol. 38(Suppl 15): e151732020. View Article : Google Scholar | |
Kordbacheh T, Honeychurch J, Blackhall F, Faivre-Finn C and Illidge T: Radiotherapy and anti-PD-1/PD-L1 combinations in lung cancer: Building better translational research platforms. Ann Oncol. 29:301–310. 2018. View Article : Google Scholar : PubMed/NCBI | |
Walshaw RC, Honeychurch J, Illidge TM and Choudhury A: The anti-PD-1 era-an opportunity to enhance radiotherapy for patients with bladder cancer. Nat Rev Urol. 15:251–259. 2018. View Article : Google Scholar | |
Sheng X, Yan X, Chi Z, Si L, Cui C, Tang B, Li S, Mao L, Lian B, Wang X, et al: Axitinib in combination with toripalimab, a humanized immunoglobulin G4 monoclonal antibody against programmed cell death-1, in patients with metastatic mucosal melanoma: An open-label phase IB trial. J Clin Oncol. 37:2987–2999. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kato Y, Tabata K, Kimura T, Yachie-Kinoshita A, Ozawa Y, Yamada K, Ito J, Tachino S, Hori Y, Matsuki M, et al: Lenvatinib plus anti-PD-1 antibody combination treatment activates CD8+ T cells through reduction of tumor-associated macrophage and activation of the interferon pathway. PLoS One. 14:e02125132019. View Article : Google Scholar | |
Atkins MB, Plimack ER, Puzanov I, Fishman MN, McDermott DF, Cho DC, Vaishampayan U, George S, Olencki TE, Tarazi JC, et al: Axitinib in combination with pembrolizumab in patients with advanced renal cell cancer: A non-randomised, open-label, dose-finding, and dose-expansion phase 1b trial. Lancet Oncol. 19:405–415. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kohlhapp FJ and Kaufman HL: Molecular pathways: Mechanism of action for talimogene laherparepvec, a new oncolytic virus immunotherapy. Clin Cancer Res. 22:1048–1054. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kowalsky SJ, Liu Z, Feist M, Berkey SE, Ma C, Ravindranathan R, Dai E, Roy EJ, Guo ZS and Bartlett DL: Superagonist IL-15-armed oncolytic virus elicits potent antitumor immunity and therapy that are enhanced with PD-1 blockade. Mol Ther. 26:2476–2486. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sahin U and Türeci Ö: Personalized vaccines for cancer immunotherapy. Science. 359:1355–1360. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sui H, Ma N, Wang Y, Li H, Liu X, Su Y and Yang J: Anti-PD-1/PD-L1 therapy for non-small-cell lung cancer: Toward personalized medicine and combination strategies. J Immunol Res. 2018:69849482018. View Article : Google Scholar : PubMed/NCBI | |
Rafiq S, Yeku OO, Jackson HJ, Purdon TJ, van Leeuwen DG, Drakes DJ, Song M, Miele MM, Li Z, Wang P, et al: Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo. Nat Biotechnol. 36:847–856. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shi X, Zhang D, Li F, Zhang Z, Wang S, Xuan Y, Ping Y and Zhang Y: Targeting glycosylation of PD-1 to enhance CAR-T cell cytotoxicity. J Hematol Oncol. 12:1272019. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Sun HH, Fletcher CD, Hornick JL, Morgan EA, Freeman GJ, Hodi FS, Pinkus GS and Rodig SJ: Expression of programmed cell death 1 ligands (PD-L1 and PD-L2) in histiocytic and dendritic cell disorders. Am J Surg Pathol. 40:443–453. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xia L, Liu Y and Wang Y: PD-1/PD-L1 blockade therapy in advanced non-small-cell lung cancer: Current status and future directions. Oncologist. 24(Suppl 1): S31–S41. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chaudhri A, Xiao Y, Klee AN, Wang X, Zhu B and Freeman GJ: PD-L1 binds to B7-1 only in Cis on the same cell surface. Cancer Immunol Res. 6:921–929. 2018. View Article : Google Scholar : PubMed/NCBI | |
Inman BA, Longo TA, Ramalingam S and Harrison MR: Atezolizumab: A PD-L1-blocking antibody for bladder cancer. Clin Cancer Res. 23:1886–1890. 2017. View Article : Google Scholar | |
Garassino MC, Cho BC, Kim JH, Mazières J, Vansteenkiste J, Lena H, Corral Jaime J, Gray JE, Powderly J, Chouaid C, et al: Durvalumab as third-line or later treatment for advanced non-small-cell lung cancer (ATLANTIC): An open-label, single-arm, phase 2 study. Lancet Oncol. 19:521–536. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lui Y and Davis SJ: LAG-3: A very singular immune checkpoint. Nat Immunol. 19:1278–1279. 2018. View Article : Google Scholar : PubMed/NCBI | |
Maruhashi T, Sugiura D, Okazaki IM and Okazaki T: LAG-3: From molecular functions to clinical applications. J Immunother Cancer. 8:e0010142020. View Article : Google Scholar : PubMed/NCBI | |
Anderson AC, Joller N and Kuchroo VK: Lag-3, Tim-3, and TIGIT: Co-inhibitory receptors with specialized functions in immune regulation. Immunity. 44:989–1004. 2016. View Article : Google Scholar : PubMed/NCBI | |
Das M, Zhu C and Kuchroo VK: Tim-3 and its role in regulating anti-tumor immunity. Immunol Rev. 276:97–111. 2017. View Article : Google Scholar : PubMed/NCBI | |
Thomas A, Teicher BA and Hassan R: Antibody-drug conjugates for cancer therapy. Lancet Oncol. 17:e254–e262. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sharabi AB, Lim M, DeWeese TL and Drake CG: Radiation and checkpoint blockade immunotherapy: Radiosensitisation and potential mechanisms of synergy. Lancet Oncol. 16:e498–e509. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yaghoubi S, Karimi MH, Lotfinia M, Gharibi T, Mahi-Birjand M, Kavi E, Hosseini F, Sineh Sepehr K, Khatami M, Bagheri N, et al: Potential drugs used in the antibody-drug conjugate (ADC) architecture for cancer therapy. J Cell Physiol. 235:31–64. 2020. View Article : Google Scholar | |
Qin SY, Cheng YJ, Lei Q, Zhang AQ and Zhang XZ: Combinational strategy for high-performance cancer chemotherapy. Biomaterials. 171:178–197. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yu WD, Sun G, Li J, Xu J and Wang X: Mechanisms and therapeutic potentials of cancer immunotherapy in combination with radiotherapy and/or chemotherapy. Cancer Lett. 452:66–70. 2019. View Article : Google Scholar : PubMed/NCBI | |
Pérez-Herrero E and Fernández-Medarde A: Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm. 93:52–79. 2015. View Article : Google Scholar : PubMed/NCBI | |
Nadal R and Bellmunt J: Management of metastatic bladder cancer. Cancer Treat Rev. 76:10–21. 2019. View Article : Google Scholar : PubMed/NCBI | |
Akbari B, Farajnia S, Ahdi Khosroshahi S, Safari F, Yousefi M, Dariushnejad H and Rahbarnia L: Immunotoxins in cancer therapy: Review and update. Int Rev Immunol. 36:207–219. 2017. View Article : Google Scholar : PubMed/NCBI | |
Alewine C, Hassan R and Pastan I: Advances in anticancer immunotoxin therapy. Oncologist. 20:176–185. 2015. View Article : Google Scholar : PubMed/NCBI | |
Polito L, Djemil A and Bortolotti M: Plant toxin-based immunotoxins for cancer therapy: A short overview. Biomedicines. 4:122016. View Article : Google Scholar | |
Madhumathi J, Devilakshmi S, Sridevi S and Verma RS: Immunotoxin therapy for hematologic malignancies: Where are we heading? Drug Discov Today. 21:325–332. 2016. View Article : Google Scholar | |
Kumar M, Thangavel C, Becker RC and Sadayappan S: Monoclonal antibody-based immunotherapy and its role in the development of cardiac toxicity. Cancers (Basel). 13:862020. View Article : Google Scholar | |
Tse BW, Collins A, Oehler MK, Zippelius A and Heinzelmann-Schwarz VA: Antibody-based immunotherapy for ovarian cancer: Where are we at? Ann Oncol. 25:322–331. 2014. View Article : Google Scholar | |
Chau CH, Steeg PS and Figg WD: Antibody-drug conjugates for cancer. Lancet. 394:793–804. 2019. View Article : Google Scholar : PubMed/NCBI | |
Khongorzul P, Ling CJ, Khan FU, Ihsan AU and Zhang J: Antibody-drug conjugates: A comprehensive review. Mol Cancer Res. 18:3–19. 2020. View Article : Google Scholar | |
Tsuchikama K and An Z: Antibody-drug conjugates: Recent advances in conjugation and linker chemistries. Protein Cell. 9:33–46. 2018. View Article : Google Scholar : | |
Erickson HK, Park PU, Widdison WC, Kovtun YV, Garrett LM, Hoffman K, Lutz RJ, Goldmacher VS and Blättler WA: Antibody-maytansinoid conjugates are activated in targeted cancer cells by lysosomal degradation and linker-dependent intracellular processing. Cancer Res. 66:4426–4433. 2006. View Article : Google Scholar : PubMed/NCBI | |
Huang Y, Lee C, Borgström P and Gjerset RA: Macrophage-mediated bystander effect triggered by tumor cell apoptosis. Mol Ther. 15:524–533. 2007. View Article : Google Scholar : PubMed/NCBI | |
Staudacher AH and Brown MP: Antibody drug conjugates and bystander killing: Is antigen-dependent internalisation required? Br J Cancer. 117:1736–1742. 2017. View Article : Google Scholar : PubMed/NCBI | |
Beck A, Goetsch L, Dumontet C and Corvaïa N: Strategies and challenges for the next generation of antibody-drug conjugates. Nat Rev Drug Discov. 16:315–337. 2017. View Article : Google Scholar : PubMed/NCBI | |
Birrer MJ, Moore KN, Betella I and Bates RC: Antibody-drug conjugate-based therapeutics: State of the science. J Natl Cancer Inst. 111:538–549. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mahalingaiah PK, Ciurlionis R, Durbin KR, Yeager RL, Philip BK, Bawa B, Mantena SR, Enright BP, Liguori MJ and Van Vleet TR: Potential mechanisms of target-independent uptake and toxicity of antibody-drug conjugates. Pharmacol Ther. 200:110–125. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lambert JM and Berkenblit A: Antibody-drug conjugates for cancer treatment. Annu Rev Med. 69:191–207. 2018. View Article : Google Scholar : PubMed/NCBI | |
Duerr C and Friess W: Antibody-drug conjugates-stability and formulation. Eur J Pharm Biopharm. 139:168–176. 2019. View Article : Google Scholar : PubMed/NCBI | |
Theocharopoulos C, Lialios PP, Gogas H and Ziogas DC: An overview of antibody-drug conjugates in oncological practice. Ther Adv Med Oncol. Oct 4–2020.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
Abdollahpour-Alitappeh M, Lotfinia M, Gharibi T, Mardaneh J, Farhadihosseinabadi B, Larki P, Faghfourian B, Sepehr KS, Abbaszadeh-Goudarzi K, Abbaszadeh-Goudarzi G, et al: Antibody-drug conjugates (ADCs) for cancer therapy: Strategies, challenges, and successes. J Cell Physiol. 234:5628–5642. 2019. View Article : Google Scholar | |
Liu L: Pharmacokinetics of monoclonal antibodies and Fc-fusion proteins. Protein Cell. 9:15–32. 2018. View Article : Google Scholar : | |
Yu B and Liu D: Antibody-drug conjugates in clinical trials for lymphoid malignancies and multiple myeloma. J Hematol Oncol. 12:942019. View Article : Google Scholar : PubMed/NCBI | |
Gébleux R and Casi G: Antibody-drug conjugates: Current status and future perspectives. Pharmacol Ther. 167:48–59. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tiller KE and Tessier PM: Advances in antibody design. Annu Rev Biomed Eng. 17:191–216. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ponziani S, Di Vittorio G, Pitari G, Cimini AM, Ardini M, Gentile R, Iacobelli S, Sala G, Capone E, Flavell DJ, et al: Antibody-drug conjugates: The new frontier of chemotherapy. Int J Mol Sci. 21:55102020. View Article : Google Scholar : | |
Kobayashi H and Choyke PL: Near-infrared photoimmunotherapy of cancer. Acc Chem Res. 52:2332–2339. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ozog DM, Rkein AM, Fabi SG, Gold MH, Goldman MP, Lowe NJ, Martin GM and Munavalli GS: Photodynamic therapy: A clinical consensus guide. Dermatol Surg. 42:804–827. 2016. View Article : Google Scholar : PubMed/NCBI | |
Larue L, Myrzakhmetov B, Ben-Mihoub A, Moussaron A, Thomas N, Arnoux P, Baros F, Vanderesse R, Acherar S and Frochot C: Fighting hypoxia to improve PDT. Pharmaceuticals (Basel). 12:1632019. View Article : Google Scholar | |
Nagaya T, Nakamura Y, Okuyama S, Ogata F, Maruoka Y, Choyke PL, Allen C and Kobayashi H: Syngeneic mouse models of oral cancer are effectively targeted by anti-CD44-Based NIR-PIT. Mol Cancer Res. 15:1667–1677. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mew D, Lum V, Wat CK, Towers GH, Sun CH, Walter RJ, Wright W, Berns MW and Levy JG: Ability of specific monoclonal antibodies and conventional antisera conjugated to hematoporphyrin to label and kill selected cell lines subsequent to light activation. Cancer Res. 45:4380–4386. 1985.PubMed/NCBI | |
Mew D, Wat CK, Towers GH and Levy JG: Photoimmunotherapy: Treatment of animal tumors with tumor-specific monoclonal antibody-hematoporphyrin conjugates. J Immunol. 130:1473–1477. 1983.PubMed/NCBI | |
Wang M, Rao J, Wang M, Li X, Liu K, Naylor MF, Nordquist RE, Chen WR and Zhou F: Cancer photo-immunotherapy: From bench to bedside. Theranostics. 11:2218–2231. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mitsunaga M, Ogawa M, Kosaka N, Rosenblum LT, Choyke PL and Kobayashi H: Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat Med. 17:1685–1691. 2011. View Article : Google Scholar : PubMed/NCBI | |
Isobe Y, Sato K, Nishinaga Y, Takahashi K, Taki S, Yasui H, Shimizu M, Endo R, Koike C, Kuramoto N, et al: Near infrared photoimmunotherapy targeting DLL3 for small cell lung cancer. EBioMedicine. 52:1026322020. View Article : Google Scholar : PubMed/NCBI | |
Nishimura T, Mitsunaga M, Ito K, Kobayashi H and Saruta M: Cancer neovasculature-targeted near-infrared photoimmunotherapy (NIR-PIT) for gastric cancer: Different mechanisms of phototoxicity compared to cell membrane-targeted NIR-PIT. Gastric Cancer. 23:82–94. 2020. View Article : Google Scholar | |
Deshaies RJ: Multispecific drugs herald a new era of biopharmaceutical innovation. Nature. 580:329–338. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kaplon H, Muralidharan M, Schneider Z and Reichert JM: Antibodies to watch in 2020. MAbs. 12:17035312020. View Article : Google Scholar : |