Use of conditional reprogramming cell, patient derived xenograft and organoid for drug screening for individualized prostate cancer therapy: Current and future perspectives (Review)
- Authors:
- Jessica Cao
- Wing C. Chan
- Moses S.S. Chow
-
Affiliations: College of Osteopathic Medicine of The Pacific, Western University of Health Sciences, Pomona, CA 91766‑1854, USA, City of Hope Comprehensive Cancer Center, City of Hope Medical Center, Duarte, CA 91010‑3012, USA, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766‑1854, USA - Published online on: March 24, 2022 https://doi.org/10.3892/ijo.2022.5342
- Article Number: 52
This article is mentioned in:
Abstract
Siegel RL, Miller KD and Jemal A: Cancer statistics, 2020. CA Cancer J Clin. 70:7–30. 2020. View Article : Google Scholar : PubMed/NCBI | |
Stanford JL, Feng Z, Hamilton AS, Gilliland FD, Stephenson RA, Eley JW, Albertsen PC, Harlan LC and Potosky AL: Urinary and sexual function after radical prostatectomy for clinically localized prostate cancer: The prostate cancer outcomes study. JAMA. 283:354–360. 2000. View Article : Google Scholar : PubMed/NCBI | |
Mohler JL, Antonarakis ES, Armstrong AJ, D'Amico AV, Davis BJ, Dorff T, Eastham JA, Enke CA, Farrington TA, Higano CS, et al: Prostate cancer, version 2.2019, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 17:479–505. 2019. View Article : Google Scholar : PubMed/NCBI | |
Nuhn P, De Bono JS, Fizazi K, Freedland SJ, Grilli M, Kantoff PW, Sonpavde G, Sternberg CN, Yegnasubramanian S and Antonarakis ES: Update on systemic prostate cancer therapies: Management of metastatic castration-resistant prostate cancer in the era of precision oncology. Eur Urol. 75:88–99. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dorff TB and Agarwal N: Bone-targeted therapies to reduce skeletal morbidity in prostate cancer. Asian J Androl. 20:215–220. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kelly SP, Anderson WF, Rosenberg PS and Cook MB: Past, current, and future incidence rates and burden of metastatic prostate cancer in the United States. Eur Urol Focus. 4:121–127. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gleave AM, Ci X, Lin D and Wang Y: A synopsis of prostate organoid methodologies, applications, and limitations. Prostate. 80:518–526. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cheng HH, Sokolova AO, Schaeffer EM, Small EJ and Higano CS: Germline and somatic mutations in prostate cancer for the clinician. J Natl Compr Canc Netw. 17:515–521. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lucas AL, Frado LE, Hwang C, Kumar S, Khanna LG, Levinson EJ, Chabot JA, Chung WK and Frucht H: BRCA1 and BRCA2 germline mutations are frequently demonstrated in both high-risk pancreatic cancer screening and pancreatic cancer cohorts. Cancer. 120:1960–1967. 2014. View Article : Google Scholar : PubMed/NCBI | |
Couch FJ, Nathanson KL and Offit K: Two decades after BRCA: Setting paradigms in personalized cancer care and prevention. Science. 343:1466–1470. 2014. View Article : Google Scholar : PubMed/NCBI | |
Nishikawa T, Maemura K, Hirata I, Matsuse R, Morikawa H, Toshina K, Murano M, Hashimoto K, Nakagawa Y, Saitoh O, et al: A simple method of detecting K-ras point mutations in stool samples for colorectal cancer screening using one-step polymerase chain reaction/restriction fragment length polymorphism analysis. Clin Chim Acta. 318:107–112. 2002. View Article : Google Scholar : PubMed/NCBI | |
Bayot ML and Bragg BN: Antimicrobial Susceptibility Testing. StatPearls [Internet] Treasure Island, FL: StatPearls Publishing; 2020, [cited Jun 26, 2020]. Available from. http://www.ncbi.nlm.nih.gov/books/NBK539714/ | |
Sachs N, de Ligt J, Kopper O, Gogola E, Bounova G, Weeber F, Balgobind AV, Wind K, Gracanin A, Begthel H, et al: A living biobank of breast cancer organoids captures disease heterogeneity. Cell. 172:373–386.e10. 2018. View Article : Google Scholar : PubMed/NCBI | |
Weeber F, Ooft SN, Dijkstra KK and Voest EE: Tumor organoids as a pre-clinical cancer model for drug discovery. Cell Chem Biol. 24:1092–1100. 2017. View Article : Google Scholar : PubMed/NCBI | |
Muthuswamy SK: Organoid models of cancer explode with possibilities. Cell Stem Cell. 22:290–291. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shi C, Chen X and Tan D: Development of patient-derived xenograft models of prostate cancer for maintaining tumor heterogeneity. Transl Androl Urol. 8:519–528. 2019. View Article : Google Scholar : PubMed/NCBI | |
Namekawa T, Ikeda K, Horie-Inoue K and Inoue S: Application of prostate cancer models for preclinical study: Advantages and limitations of cell lines, patient-derived xenografts, and three-dimensional culture of patient-derived cells. Cells. 8:742019. View Article : Google Scholar : PubMed/NCBI | |
Cunha GR, Donjacour AA, Cooke PS, Mee S, Bigsby RM, Higgins SJ and Sugimura Y: The endocrinology and developmental biology of the prostate. Endocr Rev. 8:338–362. 1987. View Article : Google Scholar : PubMed/NCBI | |
Drost J, Karthaus WR, Gao D, Driehuis E, Sawyers CL, Chen Y and Clevers H: Organoid culture systems for prostate epithelial tissue and prostate cancer tissue. Nat Protoc. 11:347–358. 2016. View Article : Google Scholar : PubMed/NCBI | |
Heinlein CA and Chang C: Androgen receptor in prostate cancer. Endocr Rev. 25:276–308. 2004. View Article : Google Scholar : PubMed/NCBI | |
Robinson EJ, Neal DE and Collins AT: Basal cells are progenitors of luminal cells in primary cultures of differentiating human prostatic epithelium. Prostate. 37:149–160. 1998. View Article : Google Scholar : PubMed/NCBI | |
Barclay WW, Woodruff RD, Hall MC and Cramer SD: A system for studying epithelial-stromal interactions reveals distinct inductive abilities of stromal cells from benign prostatic hyperplasia and prostate cancer. Endocrinology. 146:13–18. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kurita T, Medina RT, Mills AA and Cunha GR: Role of p63 and basal cells in the prostate. Development. 131:4955–4964. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kwon OJ, Zhang L and Xin L: Stem Cell Antigen-1 identifies a distinct androgen-independent murine prostatic luminal cell lineage with bipotent potential. Stem Cells. 34:191–202. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shibata M, Epsi NJ, Xuan S, Mitrofanova A and Shen MM: Bipotent progenitors do not require androgen receptor for luminal specification during prostate organogenesis. Stem Cell Reports. 15:1026–1036. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ousset M, Van Keymeulen A, Bouvencourt G, Sharma N, Achouri Y, Simons BD and Blanpain C: Multipotent and unipotent progenitors contribute to prostate postnatal development. Nat Cell Biol. 14:1131–1138. 2012. View Article : Google Scholar : PubMed/NCBI | |
Karthaus WR, Iaquinta PJ, Drost J, Gracanin A, van Boxtel R, Wongvipat J, Dowling CM, Gao D, Begthel H, Sachs N, et al: Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell. 159:163–175. 2014. View Article : Google Scholar : PubMed/NCBI | |
Choi N, Zhang B, Zhang L, Ittmann M and Xin L: Adult murine prostate basal and luminal cells are self-sustained lineages that can both serve as targets for prostate cancer initiation. Cancer Cell. 21:253–265. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liu AY and True LD: Characterization of prostate cell types by CD cell surface molecules. Am J Pathol. 160:37–43. 2002. View Article : Google Scholar : PubMed/NCBI | |
Hudson DL: Epithelial stem cells in human prostate growth and disease. Prostate Cancer Prostatic Dis. 7:188–194. 2004. View Article : Google Scholar : PubMed/NCBI | |
Zenzmaier C, Untergasser G and Berger P: Aging of the prostate epithelial stem/progenitor cell. Exp Gerontol. 43:981–985. 2008. View Article : Google Scholar : PubMed/NCBI | |
Di Sant'Agnese PA: Neuroendocrine cells of the prostate and neuroendocrine differentiation in prostatic carcinoma: A review of morphologic aspects. Urology. 51 (5A Suppl):S121–S124. 1998. View Article : Google Scholar | |
Abrahamsson PA: Neuroendocrine differentiation in prostatic carcinoma. Prostate. 39:135–148. 1999. View Article : Google Scholar : PubMed/NCBI | |
Prostate gland [Internet]. Kenhub. [cited Sep 7, 2020]. Available from. https://www.kenhub.com/en/library/anatomy/the-prostate-gland | |
Chung LW, Baseman A, Assikis V and Zhau HE: Molecular insights into prostate cancer progression: The missing link of tumor microenvironment. J Urol. 173:10–20. 2005. View Article : Google Scholar : PubMed/NCBI | |
Mueller MM and Fusenig NE: Friends or foes-bipolar effects of the tumour stroma in cancer. Nat Rev Cancer. 4:839–849. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wang R, Xu J, Juliette L, Castilleja A, Love J, Sung SY, Zhau HE, Goodwin TJ and Chung LW: Three-dimensional co-culture models to study prostate cancer growth, progression, and metastasis to bone. Semin Cancer Biol. 15:353–364. 2005. View Article : Google Scholar : PubMed/NCBI | |
Igney FH and Krammer PH: Immune escape of tumors: Apoptosis resistance and tumor counterattack. J Leukoc Biol. 71:907–920. 2002.PubMed/NCBI | |
Beatty GL and Gladney WL: Immune escape mechanisms as a guide for cancer immunotherapy. Clin Cancer Res. 21:687–692. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Ory V, Chapman S, Yuan H, Albanese C, Kallakury B, Timofeeva OA, Nealon C, Dakic A, Simic V, et al: ROCK inhibitor and feeder cells induce the conditional reprogramming of epithelial cells. Am J Pathol. 180:599–607. 2012. View Article : Google Scholar : PubMed/NCBI | |
Drost J, van Jaarsveld RH, Ponsioen B, Zimberlin C, van Boxtel R, Buijs A, Sachs N, Overmeer RM, Offerhaus GJ, Begthel H, et al: Sequential cancer mutations in cultured human intestinal stem cells. Nature. 521:43–47. 2015. View Article : Google Scholar : PubMed/NCBI | |
Toivanen R, Taylor RA, Pook DW, Ellem SJ and Risbridger GP: Breaking through a roadblock in prostate cancer research: An update on human model systems. J Steroid Biochem Mol Biol. 131:122–131. 2012. View Article : Google Scholar : PubMed/NCBI | |
Nupponen NN, Hyytinen ER, Kallioniemi AH and Visakorpi T: Genetic alterations in prostate cancer cell lines detected by comparative genomic hybridization. Cancer Genet Cytogenet. 101:53–57. 1998. View Article : Google Scholar : PubMed/NCBI | |
Palechor-Ceron N, Krawczyk E, Dakic A, Simic V, Yuan H, Blancato J, Wang W, Hubbard F, Zheng YL, Dan H, et al: Conditional reprogramming for patient-derived cancer models and next-generation living biobanks. Cells. 8:13272019. View Article : Google Scholar : PubMed/NCBI | |
Dasgupta P, Baade PD, Aitken JF, Ralph N, Chambers SK and Dunn J: Geographical variations in prostate cancer outcomes: A systematic review of International evidence. Front Oncol. 9:2382019. View Article : Google Scholar : PubMed/NCBI | |
Parrinello S, Samper E, Krtolica A, Goldstein J, Melov S and Campisi J: Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat Cell Biol. 5:741–747. 2003. View Article : Google Scholar : PubMed/NCBI | |
Panchision DM: The role of oxygen in regulating neural stem cells in development and disease. J Cell Physiol. 220:562–568. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Wang S, Li M, Li J, Shen J, Zhao Y, Pang J, Wen Q, Chen M, Wei B, et al: Conditional reprogramming: Next generation cell culture. Acta Pharm Sin B. 10:1360–1381. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sharpless NE and DePinho RA: The mighty mouse: Genetically engineered mouse models in cancer drug development. Nat Rev Drug Discov. 5:741–754. 2006. View Article : Google Scholar : PubMed/NCBI | |
Chapman S, Liu X, Meyers C, Schlegel R and McBride AA: Human keratinocytes are efficiently immortalized by a Rho kinase inhibitor. J Clin Invest. 120:2619–2626. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hynds RE, Ben Aissa A, Gowers KHC, Watkins TBK, Bosshard-Carter L, Rowan AJ, Veeriah S, Wilson GA, Quezada SA, Swanton C, et al: Expansion of airway basal epithelial cells from primary human non-small cell lung cancer tumors. Int J Cancer. 143:160–166. 2018. View Article : Google Scholar : PubMed/NCBI | |
Suprynowicz FA, Upadhyay G, Krawczyk E, Kramer SC, Hebert JD, Liu X, Yuan H, Cheluvaraju C, Clapp PW, Boucher RC Jr, et al: Conditionally reprogrammed cells represent a stem-like state of adult epithelial cells. Proc Natl Acad Sci USA. 109:20035–20040. 2012. View Article : Google Scholar : PubMed/NCBI | |
Suprynowicz FA, Kamonjoh CM, Krawczyk E, Agarwal S, Wellstein A, Agboke FA, Choudhury S, Liu X and Schlegel R: Conditional cell reprogramming involves non-canonical β-catenin activation and mTOR-mediated inactivation of Akt. PLoS One. 12:e01808972017. View Article : Google Scholar : PubMed/NCBI | |
Sugaya M, Takenoyama M, Osaki T, Yasuda M, Nagashima A, Sugio K and Yasumoto K: Establishment of 15 cancer cell lines from patients with lung cancer and the potential tools for immunotherapy. Chest. 122:282–288. 2002. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Krawczyk E, Suprynowicz FA, Palechor-Ceron N, Yuan H, Dakic A, Simic V, Zheng YL, Sripadhan P, Chen C, et al: Conditional reprogramming and long-term expansion of normal and tumor cells from human biospecimens. Nat Protoc. 12:439–451. 2017. View Article : Google Scholar : PubMed/NCBI | |
Timofeeva OA, Palechor-Ceron N, Li G, Yuan H, Krawczyk E, Zhong X, Liu G, Upadhyay G, Dakic A, Yu S, et al: Conditionally reprogrammed normal and primary tumor prostate epithelial cells: A novel patient-derived cell model for studies of human prostate cancer. Oncotarget. 8:22741–22758. 2017. View Article : Google Scholar : PubMed/NCBI | |
Borodovsky A, McQuiston TJ, Stetson D, Ahmed A, Whitston D, Zhang J, Grondine M, Lawson D, Challberg SS, Zinda M, et al: Generation of stable PDX derived cell lines using conditional reprogramming. Mol Cancer. 16:1772017. View Article : Google Scholar : PubMed/NCBI | |
Saeed K, Rahkama V, Eldfors S, Bychkov D, Mpindi JP, Yadav B, Paavolainen L, Aittokallio T, Heckman C, Wennerberg K, et al: Comprehensive drug testing of patient-derived conditionally reprogrammed cells from castration-resistant prostate cancer. Eur Urol. 71:319–327. 2017. View Article : Google Scholar : PubMed/NCBI | |
Vondálová Blanářová O, Šafaříková B, Herůdková J, Krkoška M, Tománková S, Kahounová Z, Anděra L, Bouchal J, Kharaishvili G, Král M, et al: Cisplatin or LA-12 enhance killing effects of TRAIL in prostate cancer cells through Bid-dependent stimulation of mitochondrial apoptotic pathway but not caspase-10. PLoS One. 12:e01885842017. View Article : Google Scholar : PubMed/NCBI | |
Yuan H, Myers S, Wang J, Zhou D, Woo JA, Kallakury B, Ju A, Bazylewicz M, Carter YM, Albanese C, et al: Use of reprogrammed cells to identify therapy for respiratory papillomatosis. N Engl J Med. 367:1220–1227. 2012. View Article : Google Scholar : PubMed/NCBI | |
Brown DD, Dabbs DJ, Lee AV, McGuire KP, Ahrendt GM, Bhargava R, Davidson NE, Brufsky AM, Johnson RR, Oesterreich S and McAuliffe PF: Developing in vitro models of human ductal carcinoma in situ from primary tissue explants. Breast Cancer Res Treat. 153:311–321. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ellis L, Ku S, Li Q, Azabdaftari G, Seliski J, Olson B, Netherby CS, Tang DG, Abrams SI, Goodrich DW and Pili R: Generation of a C57BL/6 MYC-Driven Mouse Model and Cell Line of Prostate Cancer. Prostate. 76:1192–1202. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jensen TJ, Foster C, Sayej W and Finck CM: Conditional reprogramming of pediatric human esophageal epithelial cells for use in tissue engineering and disease investigation. J Vis Exp. 121:e552432017. | |
Tricoli L, Naeem A, Parasido E, Mikhaiel JP, Choudhry MU, Berry DL, Abdelgawad IA, Lee RJ, Feldman AS, Ihemelandu C, et al: Characterization of the effects of defined, multidimensional culture conditions on conditionally reprogrammed primary human prostate cells. Oncotarget. 9:2193–2207. 2017. View Article : Google Scholar : PubMed/NCBI | |
Serrano-Heras G, Domínguez-Berzosa C, Collantes E, Guadalajara H, García-Olmo D and García-Olmo DC: NIH-3T3 fibroblasts cultured with plasma from colorectal cancer patients generate poorly differentiated carcinomas in mice. Cancer Lett. 316:85–90. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yu F, Lu Y, Tao L, Jiang YY, Lin DC, Wang L, Petersson F, Yoshiyama H, Koeffler PH, Goh BC and Loh KS: Non-malignant epithelial cells preferentially proliferate from nasopharyngeal carcinoma biopsy cultured under conditionally reprogrammed conditions. Sci Rep. 7:173592017. View Article : Google Scholar : PubMed/NCBI | |
Yu F, Hsieh W, Petersson F, Yang H, Li Y, Li C, Low SW, Liu J, Yan Y, Wang DY and Loh KS: Malignant cells derived from 3T3 fibroblast feeder layer in cell culture for nasopharyngeal carcinoma. Exp Cell Res. 322:193–201. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhao W, Liu K, Sun Z, Wang L, Liu B, Liu L, Qu X, Cao Z, Sun J and Chai J: Application research of individualized conditional reprogramming system to guide treatment of gastric cancer. Front Oncol. 11:7095112021. View Article : Google Scholar : PubMed/NCBI | |
Dong Y, Wang J, Ji W, Zheng M, Wang P, Liu L and Li S: Establishment and preclinical application of conditional reprogramming culture system for laryngeal and hypopharyngeal carcinoma. Front Cell Dev Biol. 9:7449692021. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Krawczyk E, Timofeeva O, Palechor-Ceron N, Dakic A, Simic V, Kallakury B, Dritschilo A and Schlegel R: Functional analysis for cancer precision medicine using patient-derived 2D and 3D cell models. Cancer Res. 76 (Suppl 14):S42562016. | |
Morton CL and Houghton PJ: Establishment of human tumor xenografts in immunodeficient mice. Nat Protoc. 2:247–250. 2007. View Article : Google Scholar : PubMed/NCBI | |
Cao X, Shores EW, Hu-Li J, Anver MR, Kelsail BL, Russell SM, Drago J, Noguchi M, Grinberg A, Bloom ET, et al: Defective lymphoid development in mice lacking expression of the common cytokine receptor γ chain. Immunity. 2:223–238. 1995. View Article : Google Scholar : PubMed/NCBI | |
Govindaraj V, Arya SV and Rao AJ: Differential action of glycoprotein hormones: Significance in cancer progression. Horm Cancer. 5:1–10. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lawrence MG, Taylor RA, Toivanen R, Pedersen J, Norden S, Pook DW, Frydenberg M; Australian Prostate Cancer BioResource, ; Papargiris MM, Niranjan B, et al: A preclinical xenograft model of prostate cancer using human tumors. Nat Protoc. 8:836–848. 2013. View Article : Google Scholar : PubMed/NCBI | |
McLean DT, Strand DW and Ricke WA: Prostate cancer xenografts and hormone induced prostate carcinogenesis. Differentiation. 97:23–32. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lam HM, Nguyen HM and Corey E: Generation of prostate cancer patient-derived xenografts to investigate mechanisms of novel treatments and treatment resistance. Methods Mol Biol. 1786:1–27. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lin D, Wyatt AW, Xue H, Wang Y, Dong X, Haegert A, Wu R, Brahmbhatt S, Mo F, Jong L, et al: High fidelity patient-derived xenografts for accelerating prostate cancer discovery and drug development. Cancer Res. 74:1272–1283. 2014. View Article : Google Scholar : PubMed/NCBI | |
Williams SA, Anderson WC, Santaguida MT and Dylla SJ: Patient-derived xenografts, the cancer stem cell paradigm, and cancer pathobiology in the 21st century. Lab Invest. 93:970–982. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wu CH, Yang CY, Wang L, Gao HX, Rakhshandehroo T, Afghani S, Pincus L, Balassanian R, Rubenstein J, Gill R, et al: Cutaneous T-cell lymphoma PDX drug screening platform identifies cooperation between inhibitions of PI3Kα/δ and HDAC. J Invest Dermatol. 141:364–373. 2021. View Article : Google Scholar : PubMed/NCBI | |
Russell PJ, Russell P, Rudduck C, Tse BW, Williams ED and Raghavan D: Establishing prostate cancer patient derived xenografts: Lessons learned from older studies. Prostate. 75:628–636. 2015. View Article : Google Scholar : PubMed/NCBI | |
Nguyen HM, Vessella RL, Morrissey C, Brown LG, Coleman IM, Higano CS, Mostaghel EA, Zhang X, True LD, Lam HM, et al: LuCaP prostate cancer patient-derived xenografts reflect the molecular heterogeneity of advanced disease and serve as models for evaluating cancer therapeutics. Prostate. 77:654–671. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Revelo MP, Sudilovsky D, Cao M, Chen WG, Goetz L, Xue H, Sadar M, Shappell SB, Cunha GR and Hayward SW: Development and characterization of efficient xenograft models for benign and malignant human prostate tissue. Prostate. 64:149–159. 2005. View Article : Google Scholar : PubMed/NCBI | |
Yoshikawa T, Kobori G, Goto T, Akamatsu S, Terada N, Kobayashi T, Tanaka Y, Jung G, Kamba T, Ogawa O and Inoue T: An original patient-derived xenograft of prostate cancer with cyst formation. Prostate. 76:994–1003. 2016. View Article : Google Scholar : PubMed/NCBI | |
Beltran H, Prandi D, Mosquera JM, Benelli M, Puca L, Cyrta J, Marotz C, Giannopoulou E, Chakravarthi BV, Varambally S, et al: Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat Med. 22:298–305. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gao D and Chen Y: Organoid development in cancer genome discovery. Curr Opin Genet Dev. 30:42–48. 2015. View Article : Google Scholar : PubMed/NCBI | |
Owonikoko TK, Zhang G, Kim HS, Stinson RM, Bechara R, Zhang C, Chen Z, Saba NF, Pakkala S, Pillai R, et al: Patient-derived xenografts faithfully replicated clinical outcome in a phase II co-clinical trial of arsenic trioxide in relapsed small cell lung cancer. J Transl Med. 14:1112016. View Article : Google Scholar : PubMed/NCBI | |
Williams JA: Using PDX for preclinical cancer drug discovery: The evolving field. J Clin Med. 7:412018. View Article : Google Scholar : PubMed/NCBI | |
Gao H, Korn JM, Ferretti S, Monahan JE, Wang Y, Singh M, Zhang C, Schnell C, Yang G, Zhang Y, et al: High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat Med. 21:1318–1325. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ni J, Ramkissoon SH, Xie S, Goel S, Stover DG, Guo H, Luu V, Marco E, Ramkissoon LA, Kang YJ, et al: Combination inhibition of PI3K and mTORC1 yields durable remissions in orthotopic patient-derived xenografts of HER2-positive breast cancer brain metastases. Nat Med. 22:723–726. 2016. View Article : Google Scholar : PubMed/NCBI | |
Corcoran RB, Atreya CE, Falchook GS, Kwak EL, Ryan DP, Bendell JC, Hamid O, Messersmith WA, Daud A, Kurzrock R, et al: Combined BRAF and MEK inhibition with dabrafenib and trametinib in BRAF V600-Mutant colorectal cancer. J Clin Oncol. 33:4023–4031. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lai Y, Wei X, Lin S, Qin L, Cheng L and Li P: Current status and perspectives of patient-derived xenograft models in cancer research. J Hematol Oncol. 10:1062017. View Article : Google Scholar : PubMed/NCBI | |
Bartucci M, Ferrari AC, Kim IY, Ploss A, Yarmush M and Sabaawy HE: Personalized medicine approaches in prostate cancer employing patient derived 3D organoids and humanized mice. Front Cell Dev Biol. 4:642016. View Article : Google Scholar : PubMed/NCBI | |
Lamouille S, Xu J and Derynck R: Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 15:178–196. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ito R, Takahashi T and Ito M: Humanized mouse models: Application to human diseases. J Cell Physiol. 233:3723–3728. 2018. View Article : Google Scholar : PubMed/NCBI | |
Puca L, Bareja R, Prandi D, Shaw R, Benelli M, Karthaus WR, Hess J, Sigouros M, Donoghue A, Kossai M, et al: Patient derived organoids to model rare prostate cancer phenotypes. Nat Commun. 9:24042018. View Article : Google Scholar : PubMed/NCBI | |
Praharaj PP, Bhutia SK, Nagrath S, Bitting RL and Deep G: Circulating tumor cell-derived organoids: Current challenges and promises in medical research and precision medicine. Biochim Biophys Acta Rev Cancer. 1869:117–127. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gorges TM, Tinhofer I, Drosch M, Röse L, Zollner TM, Krahn T and von Ahsen O: Circulating tumour cells escape from EpCAM-based detection due to epithelial-to-mesenchymal transition. BMC Cancer. 12:1782012. View Article : Google Scholar : PubMed/NCBI | |
Armstrong AJ, Marengo MS, Oltean S, Kemeny G, Bitting RL, Turnbull JD, Herold CI, Marcom PK, George DJ and Garcia-Blanco MA: Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Mol Cancer Res. 9:997–1007. 2011. View Article : Google Scholar : PubMed/NCBI | |
Beshiri ML, Tice CM, Tran C, Nguyen HM, Sowalsky AG, Agarwal S, Jansson KH, Yang Q, McGowen KM, Yin J, et al: A PDX/organoid biobank of advanced prostate cancers captures genomic and phenotypic heterogeneity for disease modeling and therapeutic screening. Clin Cancer Res. 24:4332–4345. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chua CW, Shibata M, Lei M, Toivanen R, Barlow LJ, Bergren SK, Badani KK, McKiernan JM, Benson MC, Hibshoosh H and Shen MM: Single luminal epithelial progenitors can generate prostate organoids in culture. Nat Cell Biol. 16:951–961. 1–4. 2014. View Article : Google Scholar : PubMed/NCBI | |
Clevers H: Modeling development and disease with organoids. Cell. 165:1586–1597. 2016. View Article : Google Scholar : PubMed/NCBI | |
Allard WJ: Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res. 10:6897–6904. 2004. View Article : Google Scholar : PubMed/NCBI | |
Tsai S, McOlash L, Palen K, Johnson B, Duris C, Yang Q, Dwinell MB, Hunt B, Evans DB, Gershan J and James MA: Development of primary human pancreatic cancer organoids, matched stromal and immune cells and 3D tumor microenvironment models. BMC Cancer. 18:3352018. View Article : Google Scholar : PubMed/NCBI | |
Neal JT, Li X, Zhu J, Giangarra V, Grzeskowiak CL, Ju J, Liu IH, Chiou SH, Salahudeen AA, Smith AR, et al: Organoid modeling of the tumor immune microenvironment. Cell. 175:1972–1988.e16. 2018. View Article : Google Scholar : PubMed/NCBI | |
Dijkstra KK, Cattaneo CM, Weeber F, Chalabi M, van de Haar J, Fanchi LF, Slagter M, van der Velden DL, Kaing S, Kelderman S, et al: Generation of Tumor-Reactive T Cells by Co-culture of peripheral blood lymphocytes and tumor organoids. Cell. 174:1586–1598.e12. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gstraunthaler G, Lindl T and van der Valk J: A plea to reduce or replace fetal bovine serum in cell culture media. Cytotechnology. 65:791–793. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hughes CS, Postovit LM and Lajoie GA: Matrigel: A complex protein mixture required for optimal growth of cell culture. Proteomics. 10:1886–1890. 2010. View Article : Google Scholar : PubMed/NCBI | |
Patel R and Alahmad AJ: Growth-factor reduced Matrigel source influences stem cell derived brain microvascular endothelial cell barrier properties. Fluids Barriers CNS. 13:62016. View Article : Google Scholar : PubMed/NCBI | |
Nguyen EH, Daly WT, Le NNT, Farnoodian M, Belair DG, Schwartz MP, Lebakken CS, Ananiev GE, Saghiri MA, Knudsen TB, et al: Versatile synthetic alternatives to Matrigel for vascular toxicity screening and stem cell expansion. Nat Biomed Eng. 1:00962017. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Gelain F and Zhao X: Designer self-assembling peptide nanofiber scaffolds for 3D tissue cell cultures. Semin Cancer Biol. 15:413–420. 2005. View Article : Google Scholar : PubMed/NCBI | |
Stingl J, Rowbotham D, Thomas TE, Eaves AC and Louis SA: Expansion of mouse prostate epithelial stem cells in serum-free ProstaCult Organoid Growth Medium. Cancer Res. 78 (13 Suppl):S31112018. | |
Richards Z, McCray T, Marsili J, Zenner ML, Manlucu JT, Garcia J, Kajdacsy-Balla A, Murray M, Voisine C, Murphy AB, et al: Prostate stroma increases the viability and maintains the branching phenotype of human prostate organoids. iScience. 12:304–317. 2019. View Article : Google Scholar : PubMed/NCBI | |
von Amsberg G and Merseburger AS: Treatment of metastatic, castration-resistant prostate cancer. Urologe A. 59:673–679. 2020.(In German). View Article : Google Scholar : PubMed/NCBI | |
Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, et al: Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 363:411–422. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kleinman HK and Martin GR: Matrigel: Basement membrane matrix with biological activity. Semin Cancer Biol. 15:378–386. 2005. View Article : Google Scholar : PubMed/NCBI | |
Pauli C, Hopkins BD, Prandi D, Shaw R, Fedrizzi T, Sboner A, Sailer V, Augello M, Puca L, Rosati R, et al: Personalized in vitro and in vivo cancer models to guide precision medicine. Cancer Discov. 7:462–477. 2017. View Article : Google Scholar : PubMed/NCBI | |
Koo BK, Stange DE, Sato T, Karthaus W, Farin HF, Huch M, van Es JH and Clevers H: Controlled gene expression in primary Lgr5 organoid cultures. Nat Methods. 9:81–83. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gao D, Vela I, Sboner A, Iaquinta PJ, Karthaus WR, Gopalan A, Dowling C, Wanjala JN, Undvall EA, Arora VK, et al: Organoid cultures derived from patients with advanced prostate cancer. Cell. 159:176–187. 2014. View Article : Google Scholar : PubMed/NCBI | |
Risbridger GP, Toivanen R and Taylor RA: Preclinical models of prostate cancer: Patient-derived xenografts, organoids, and other explant models. Cold Spring Harb Perspect Med. 8:a0305362018. View Article : Google Scholar : PubMed/NCBI | |
Lawrence MG, Obinata D, Sandhu S, Selth LA, Wong SQ, Porter LH, Lister N, Pook D, Pezaro CJ, Goode DL, et al: Patient-derived models of abiraterone- and enzalutamide-resistant prostate cancer reveal sensitivity to ribosome-directed therapy. Eur Urol. 74:562–572. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ooft SN, Weeber F, Dijkstra KK, McLean CM, Kaing S, van Werkhoven E, Schipper L, Hoes L, Vis DJ, van de Haar J, et al: Patient-derived organoids can predict response to chemotherapy in metastatic colorectal cancer patients. Sci Transl Med. 11:eaay25742019. View Article : Google Scholar : PubMed/NCBI | |
Tiriac H, Belleau P, Engle DD, Plenker D, Deschênes A, Somerville TDD, Froeling FEM, Burkhart RA, Denroche RE, Jang GH, et al: Organoid profiling identifies common responders to chemotherapy in pancreatic cancer. Cancer Discov. 8:1112–1129. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ganesh K, Wu C, O'Rourke KP, Szeglin BC, Zheng Y, Sauvé CG, Adileh M, Wasserman I, Marco MR, Kim AS, et al: A rectal cancer organoid platform to study individual responses to chemoradiation. Nat Med. 25:1607–1614. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sawicki LA and Kloxin AM: Light-mediated formation and patterning of hydrogels for cell culture applications. J Vis Exp. 115:e544622016.PubMed/NCBI | |
Koga Y and Ochiai A: Systematic review of Patient-Derived xenograft models for preclinical studies of anti-cancer drugs in solid tumors. Cells. 8:4182019. View Article : Google Scholar : PubMed/NCBI | |
Nardella C, Lunardi A, Patnaik A, Cantley LC and Pandolfi PP: The APL paradigm and the ‘co-clinical trial’ project. Cancer Discov. 1:108–116. 2011. View Article : Google Scholar : PubMed/NCBI | |
Clohessy JG and Pandolfi PP: Mouse hospital and co-clinical trial project-from bench to bedside. Nat Rev Clin Oncol. 12:491–498. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen M and Pandolfi PP: Preclinical and coclinical studies in prostate cancer. Cold Spring Harb Perspect Med. 8:a0305442018. View Article : Google Scholar : PubMed/NCBI | |
Lunardi A, Ala U, Epping MT, Salmena L, Clohessy JG, Webster KA, Wang G, Mazzucchelli R, Bianconi M, Stack EC, et al: A co-clinical approach identifies mechanisms and potential therapies for androgen deprivation resistance in prostate cancer. Nat Genet. 45:747–755. 2013. View Article : Google Scholar : PubMed/NCBI | |
van Moorselaar RJA and Voest EE: Angiogenesis in prostate cancer: its role in disease progression and possible therapeutic approaches. Mol Cell Endocrinol. 197:239–250. 2002. View Article : Google Scholar : PubMed/NCBI | |
Zittermann SI and Issekutz AC: Basic fibroblast growth factor (bFGF, FGF-2) potentiates leukocyte recruitment to inflammation by enhancing endothelial adhesion molecule expression. Am J Pathol. 168:835–846. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lail-Trecker M, Gulati R and Peluso JJ: A role for hepatocyte growth factor/scatter factor in regulating normal and neoplastic cells of reproductive tissues. J Soc Gynecol Investig. 5:114–121. 1998. View Article : Google Scholar : PubMed/NCBI | |
Blanchère M, Saunier E, Mestayer C, Broshuis M and Mowszowicz I: Alterations of expression and regulation of transforming growth factor beta in human cancer prostate cell lines. J Steroid Biochem Mol Biol. 82:297–304. 2002. View Article : Google Scholar : PubMed/NCBI | |
Royuela M, Ricote M, Parsons MS, García-Tuñón I, Paniagua R and de Miguel MP: Immunohistochemical analysis of the IL-6 family of cytokines and their receptors in benign, hyperplasic, and malignant human prostate. J Pathol. 202:41–49. 2004. View Article : Google Scholar : PubMed/NCBI | |
Planz B, Wang Q, Kirley SD, Marberger M and McDougal WS: Regulation of keratinocyte growth factor receptor and androgen receptor in epithelial cells of the human prostate. J Urol. 166:678–683. 2001. View Article : Google Scholar : PubMed/NCBI | |
Francis JC, Thomsen MK, Taketo MM and Swain A: β-catenin is required for prostate development and cooperates with pten loss to drive invasive carcinoma. PLoS Genet. 9:e10031802013. View Article : Google Scholar : PubMed/NCBI | |
Cook C, Vezina CM, Allgeier SH, Shaw A, Yu M, Peterson RE and Bushman W: Noggin is required for normal lobe patterning and ductal budding in the mouse prostate. Dev Biol. 312:217–230. 2007. View Article : Google Scholar : PubMed/NCBI | |
Jarrard DF, Blitz BF, Smith RC, Patai BL and Rukstalis DB: Effect of epidermal growth factor on prostate cancer cell line PC3 growth and invasion. Prostate. 24:46–53. 1994. View Article : Google Scholar : PubMed/NCBI | |
Sastry KS, Karpova Y and Kulik G: Epidermal growth factor protects prostate cancer cells from apoptosis by inducing BAD phosphorylation via redundant signaling pathways. J Biol Chem. 281:27367–27377. 2006. View Article : Google Scholar : PubMed/NCBI | |
Watanabe K, Ueno M, Kamiya D, Nishiyama A, Matsumura M, Wataya T, Takahashi JB, Nishikawa S, Nishikawa S, Muguruma K and Sasai Y: A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol. 25:681–686. 2007. View Article : Google Scholar : PubMed/NCBI | |
Tojo M, Hamashima Y, Hanyu A, Kajimoto T, Saitoh M, Miyazono K, Node M and Imamura T: The ALK-5 inhibitor A-83-01 inhibits Smad signaling and epithelial-to-mesenchymal transition by transforming growth factor-beta. Cancer Sci. 96:791–800. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zhang F, Lau SS and Monks TJ: The Cytoprotective Effect of N-acetyl-L-cysteine against ROS-induced cytotoxicity is independent of its ability to enhance glutathione synthesis. Toxicol Sci. 120:87–97. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gu Y, Fu J, Lo PK, Wang S, Wang Q and Chen H: The Effect of B27 Supplement on Promoting In Vitro Propagation of Her2/neu-Transformed mammary tumorspheres. J Biotech Res. 3:7–18. 2011. | |
Sato T, Stange DE, Ferrante M, Vries RG, Van Es JH, Van den Brink S, Van Houdt WJ, Pronk A, Van Gorp J, Siersema PD and Clevers H: Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's Epithelium. Gastroenterology. 141:1762–1772. 2011. View Article : Google Scholar : PubMed/NCBI |