1
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Polvani S, Tarocchi M, Tempesti S, Bencini
L and Galli A: Peroxisome proliferator activated receptors at the
crossroad of obesity, diabetes, and pancreatic cancer. World J
Gastroenterol. 22:2441–2459. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2018. CA Cancer J Clin. 68:7–30. 2018. View Article : Google Scholar : PubMed/NCBI
|
4
|
Guerra F, Guaragnella N, Arbini AA, Bucci
C, Giannattasio S and Moro L: Mitochondrial dysfunction: A novel
potential driver of epithelial-to-mesenchymal transition in cancer.
Front Oncol. 7:2952017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Ceni E, Mello T, Polvani S, Vasseur-Cognet
M, Tarocchi M, Tempesti S, Cavalieri D, Beltrame L, Marroncini G,
Pinzani M, et al: The orphan nuclear receptor COUP-TFII coordinates
hypoxia-independent proangiogenic responses in hepatic stellate
cells. J Hepatol. 66:754–764. 2017. View Article : Google Scholar
|
6
|
Chen X, Qin J, Cheng CM, Tsai MJ and Tsai
SY: COUP-TFII is a major regulator of cell cycle and notch
signaling pathways. Mol Endocrinol. 26:1268–1277. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Davis RB, Curtis CD and Griffin CT: BRG1
promotes COUP-TFII expression and venous specification during
embryonic vascular. Development. 140:1272–1281. 2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Naka H, Nakamura S, Shimazaki T and Okano
H: Requirement for COUP-TFI and II in the temporal specification of
neural stem cells in CNS development. Nat Neurosci. 11:1014–1023.
2008. View Article : Google Scholar
|
9
|
Okamura M, Kudo H, Wakabayashi K, Tanaka
T, Nonaka A, Uchida A, Tsutsumi S, Sakakibara I, Naito M, Osborne
TF, et al: COUP-TFII acts downstream of Wnt/beta-catenin signal to
silence PPARgamma gene expression and repress adipogenesis. Proc
Natl Acad Sci USA. 106:5819–5824. 2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Rosa A and Brivanlou AH: A regulatory
circuitry comprised of miR-302 and the transcription factors OCT4
and NR2F2 regulates human embryonic stem cell differentiation. EMBO
J. 30:237–248. 2011. View Article : Google Scholar :
|
11
|
Scroyen I, Bauters D, Vranckx C and Lijnen
HR: The anti-adipogenic potential of COUP-TFII is mediated by
downregulation of the notch target gene hey1. PLoS One.
10:e01456082015. View Article : Google Scholar
|
12
|
Bao Y, Gu D, Feng W, Sun X, Wang X, Zhang
X, Shi Q, Cui G, Yu H, Tang C and Deng A: COUP-TFII regulates
metastasis of colorectal adenocarcinoma cells by modulating Snail1.
Br J Cancer. 111:933–943. 2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Boudot A, Kerdivel G, Lecomte S, Flouriot
G, Desille M, Godey F, Leveque J, Tas P, Le Dréan Y and Pakdel F:
COUP-TFI modifies CXCL12 and CXCR4 expression by activating EGF
signaling and stimulates breast cancer cell migration. BMC Cancer.
14:4072014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Qin J, Wu SP, Creighton CJ, Dai F, Xie X,
Cheng CM, Frolov A, Ayala G, Lin X, Feng XH, et al: COUP-TFII
inhibits TGF-β-induced growth barrier to promote prostate
tumorigenesis. Nature. 493:236–240. 2013. View Article : Google Scholar
|
15
|
Qin J, Tsai SY and Tsai MJ: The critical
roles of COUP-TFII in tumor progression and metastasis. Cell
Biosci. 4:582014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Xu M, Qin J, Tsai SY and Tsai MJ: The role
of the orphan nuclear receptor COUP-TFII in tumorigenesis. Acta
Pharmacol Sin. 36:32–36. 2015. View Article : Google Scholar :
|
17
|
Polvani S, Pepe S, Milani S and Galli A:
COUP-TFII in health and disease. Cells. 9:1012019. View Article : Google Scholar
|
18
|
Polvani S, Tarocchi M, Tempesti S, Mello
T, Ceni E, Buccoliero F, D'Amico M, Boddi V, Farsi M, Nesi S, et
al: COUP-TFII in pancreatic adenocarcinoma: Clinical implication
for patient survival and tumor progression. Int J Cancer.
134:1648–1658. 2014. View Article : Google Scholar
|
19
|
Lin FJ, Qin J, Tang K, Tsai SY and Tsai
MJ: Coup d'Etat: An orphan takes control. Endocr Rev. 32:404–421.
2011. View Article : Google Scholar : PubMed/NCBI
|
20
|
Yamazaki T, Suehiro JI, Miyazaki H, Minami
T, Kodama T, Miyazono K and Watabe T: The COUP-TFII variant lacking
a DNA-binding domain inhibits the activation of the Cyp7a1 promoter
through physical interaction with COUP-TFII. Biochem J.
452:345–357. 2013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Guasti L, Crociani O, Redaelli E, Pillozzi
S, Polvani S, Masselli V, Mello T, Galli A, Amedei A, Wymore RS, et
al: Identification of a posttranslational mechanism for the
regulation of hERG1 K+ channel expression and hERG1
current density in tumor cells. Mol Cell Biol. 28:5043–5060. 2008.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Galli A, Ceni E, Mello T, Polvani S,
Tarocchi M, Buccoliero F, Lisi F, Cioni L, Ottanelli V, Foresta V,
et al: Thiazolidinediones inhibit hepatocarcinogenesis in hepatitis
B virus-transgenic mice by peroxisome proliferator-activated
receptor gamma-independent regulation of nucleophosmin. Hepatology.
52:493–505. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Bindea G, Mlecnik B, Hackl H, Charoentong
P, Tosolini M, Kirilovsky A, Fridman WH, Pagès F, Trajanoski Z and
Galon J: ClueGO: A cytoscape plug-in to decipher functionally
grouped gene ontology and pathway annotation networks.
Bioinformatics. 25:1091–1093. 2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Polvani S, Calamante M, Foresta V, Ceni E,
Mordini A, Quattrone A, D'Amico M, Luchinat C, Bertini I and Galli
A: Acycloguanosyl 5′-thymidyltriphosphate, a thymidine analogue
prodrug activated by telomerase, reduces pancreatic tumor growth in
mice. Gastroenterology. 140:709–720.e9. 2011. View Article : Google Scholar
|
25
|
Lassman AB, Roberts-Rapp L, Sokolova I,
Song M, Pestova E, Kular R, Mullen C, Zha Z, Lu X, Gomez E, et al:
Comparison of biomarker assays for EGFR: Implications for precision
medicine in patients with glioblastoma. Clin Cancer Res.
25:3259–3265. 2019. View Article : Google Scholar : PubMed/NCBI
|
26
|
Hennig R, Ventura J, Segersvard R, Ward E,
Ding XZ, Rao SM, Jovanovic BD, Iwamura T, Talamonti MS, Bell RH Jr
and Adrian TE: LY293111 improves efficacy of gemcitabine therapy on
pancreatic cancer in a fluorescent orthotopic model in athymic
mice. Neoplasia. 7:417–425. 2005. View Article : Google Scholar : PubMed/NCBI
|
27
|
National Research Council (US) Committee
for the Update of the Guide for the Care and use of Laboratory
Animals Guide for the care and use of laboratory animals. 8th
edition. National Academies Press (US); Washington, DC: 2011,
https://www.ncbi.nlm.nih.gov/books/NBK54050/.
View Article : Google Scholar
|
28
|
Fernandez-Rachubinski F and Fliegel L:
COUP-TFI and COUP-TFII regulate expression of the NHE through a
nuclear hormone responsive element with enhancer activity. Eur J
Biochem. 268:620–634. 2001. View Article : Google Scholar : PubMed/NCBI
|
29
|
Wu SP, Yu CT, Tsai SY and Tsai MJ: Choose
your destiny: Make a cell fate decision with COUP-TFII. J Steroid
Biochem Mol Biol. 157:7–12. 2016. View Article : Google Scholar :
|
30
|
Herreros-Villanueva M, Zhang JS, Koenig A,
Abel EV, Smyrk TC, Bamlet WR, de Narvajas AAM, Gomez TS, Simeone
DM, Bujanda L and Billadeau DD: SOX2 promotes dedifferentiation and
imparts stem cell-like features to pancreatic cancer cells.
Oncogenesis. 2:e612013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Hartel M, Narla G, Wente MN, Giese NA,
Martignoni ME, Martignetti JA, Friess H and Friedman SL: Increased
alternative splicing of the KLF6 tumour suppressor gene correlates
with prognosis and tumour grade in patients with pancreatic cancer.
Eur J Cancer. 44:1895–1903. 2008. View Article : Google Scholar : PubMed/NCBI
|
32
|
Ganguly K, Krishn SR, Rachagani S, Jahan
R, Shah A, Nallasamy P, Rauth S, Atri P, Cox JL, Pothuraju R, et
al: Secretory Mucin 5AC promotes neoplastic progression by
augmenting KLF4-mediated pancreatic cancer cell stemness. Cancer
Res. 81:91–102. 2021.
|
33
|
Shi M, Cui J, Du J, Wei D, Jia Z, Zhang J,
Zhu Z, Gao Y and Xie K: A novel KLF4/LDHA signaling pathway
regulates aerobic glycolysis in and progression of pancreatic
cancer. Clin Cancer Res. 20:4370–4380. 2014. View Article : Google Scholar : PubMed/NCBI
|
34
|
Sedgwick AE, Clancy JW, Olivia Balmert M
and D'Souza-Schorey C: Extracellular microvesicles and invadopodia
mediate non-overlapping modes of tumor cell invasion. Sci Rep.
5:147482015. View Article : Google Scholar : PubMed/NCBI
|
35
|
Čermák V, Gandalovičová A, Merta L, Harant
K, Rösel D and Brábek J: High-throughput transcriptomic and
proteomic profiling of mesenchymal-amoeboid transition in 3D
collagen. Sci Data. 7:1602020. View Article : Google Scholar : PubMed/NCBI
|
36
|
Polizio AH, Chinchilla P, Chen X, Kim S,
Manning DR and Riobo NA: Heterotrimeric Gi proteins link Hedgehog
signaling to activation of Rho small GTPases to promote fibroblast
migration. J Biol Chem. 286:19589–19596. 2011. View Article : Google Scholar : PubMed/NCBI
|
37
|
Di Magno L, Basile A, Coni S, Manni S,
Sdruscia G, D'Amico D, Antonucci L, Infante P, De Smaele E, Cucchi
D, et al: The energy sensor AMPK regulates hedgehog signaling in
human cells through a unique Gli1 metabolic checkpoint. Oncotarget.
7:9538–9549. 2016. View Article : Google Scholar : PubMed/NCBI
|
38
|
Polvani S, Tarocchi M, Tempesti S and
Galli A: Nuclear receptors and pathogenesis of pancreatic cancer.
World J Gastroenterol. 20:12062–12081. 2014. View Article : Google Scholar : PubMed/NCBI
|
39
|
Sato M, Matsumoto M, Saiki Y, Alam M,
Nishizawa H, Rokugo M, Brydun A, Yamada S, Kaneko MK, Funayama R,
et al: BACH1 promotes pancreatic cancer metastasis by repressing
epithelial genes and enhancing epithelial-mesenchymal transition.
Cancer Res. 80:1279–1292. 2020. View Article : Google Scholar : PubMed/NCBI
|
40
|
Polvani S, Tarocchi M and Galli A: PPARγ
and oxidative stress: Con(β) catenating NRF2 and FOXO. PPAR Res.
2012:6410872012. View Article : Google Scholar
|
41
|
Lizcano JM and Alessi DR: The insulin
signalling pathway. Curr Biol. 12:R236–R238. 2002. View Article : Google Scholar : PubMed/NCBI
|
42
|
Santo EE, Stroeken P, Sluis PV, Koster J,
Versteeg R and Westerhout EM: FOXO3a is a major target of
inactivation by PI3K/AKT signaling in aggressive neuroblastoma.
Cancer Res. 73:2189–2198. 2013. View Article : Google Scholar : PubMed/NCBI
|
43
|
McCubrey JA, Steelman LS, Bertrand FE,
Davis NM, Abrams SL, Montalto G, D'Assoro AB, Libra M, Nicoletti F,
Maestro R, et al: Multifaceted roles of GSK-3 and Wnt/β-catenin in
hematopoiesis and leukemogenesis: Opportunities for therapeutic
intervention. Leukemia. 28:15–33. 2014. View Article : Google Scholar
|
44
|
Kim JG, Kim MJ, Choi WJ, Moon MY, Kim HJ,
Lee JY, Kim J, Kim SC, Kang SG, Seo GY, et al: Wnt3A induces GSK-3β
Phosphorylation and β-catenin accumulation through RhoA/ROCK. J
Cellu Physiol. 232:1104–1113. 2017. View Article : Google Scholar
|
45
|
Chou CC, Lee KH, Lai IL, Wang D, Mo X,
Kulp SK, Shapiro CL and Chen CS: AMPK reverses the mesenchymal
phenotype of cancer cells by targeting the Akt-MDM2-Foxo3a
signaling axis. Cancer Res. 74:4783–4795. 2014. View Article : Google Scholar : PubMed/NCBI
|
46
|
Lim JK and Leprivier G: The impact of
oncogenic RAS on redox balance and implications for cancer
development. Cell Deat Dis. 10:9552019. View Article : Google Scholar
|
47
|
Teperino R, Amann S, Bayer M, McGee SL,
Loipetzberger A, Connor T, Jaeger C, Kammerer B, Winter L, Wiche G,
et al: Hedgehog partial agonism drives warburg-like metabolism in
muscle and brown fat. Cell. 151:414–426. 2012. View Article : Google Scholar : PubMed/NCBI
|
48
|
Faget DV, Ren Q and Stewart SA: Unmasking
senescence: Context-dependent effects of SASP in cancer. Nature Rev
Cancer. 19:439–453. 2019. View Article : Google Scholar
|
49
|
Awasthi N, Mikels-Vigdal AJ, Stefanutti E,
Schwarz MA, Monahan S, Smith V and Schwarz RE: Therapeutic efficacy
of anti-MMP9 antibody in combination with nab-paclitaxel-based
chemotherapy in pre-clinical models of pancreatic cancer. J Cell
Mol Med. 23:3878–3887. 2019. View Article : Google Scholar : PubMed/NCBI
|
50
|
Xie J, Zhou X, Wang R, Zhao J, Tang J,
Zhang Q, Du Y and Pang Y: Identification of potential diagnostic
biomarkers in MMPs for pancreatic carcinoma. Medicine (Baltimore).
100:e261352021. View Article : Google Scholar
|
51
|
Grünwald B, Vandooren J, Gerg M, Ahomaa K,
Hunger A, Berchtold S, Akbareian S, Schaten S, Knolle P, Edwards
DR, et al: Systemic ablation of MMP-9 triggers invasive growth and
metastasis of pancreatic cancer via deregulation of IL6 expression
in the bone marrow. Mol Cancer Res. 14:1147–1158. 2016. View Article : Google Scholar : PubMed/NCBI
|
52
|
Wang L, Cheng CM, Qin J, Xu M, Kao CY, Shi
J, You E, Gong W, Rosa LP, Chase P, et al: Small-molecule inhibitor
targeting orphan nuclear receptor COUP-TFII for prostate cancer
treatment. Sci Adv. 6:eaaz80312020. View Article : Google Scholar : PubMed/NCBI
|