Recent progress of circular RNAs in different types of human cancer: Technological landscape, clinical opportunities and challenges (Review)
- Authors:
- Ashish Ranjan Sharma
- Shreya Banerjee
- Manojit Bhattacharya
- Abinit Saha
- Sang-Soo Lee
- Chiranjib Chakraborty
-
Affiliations: Institute for Skeletal Aging and Orthopedic Surgery, Hallym University‑Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon 24252, Republic of Korea, Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal 700126, India, Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, Odisha 756020, India - Published online on: March 31, 2022 https://doi.org/10.3892/ijo.2022.5346
- Article Number: 56
This article is mentioned in:
Abstract
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mok SW, Fu SC, Cheuk YC, Chu IM, Chan KM, Qin L, Yung SH and Kevin Ho KW: Intra-articular delivery of quercetin using thermosensitive hydrogel attenuate cartilage degradation in an osteoarthritis rat model. Cartilage. 11:490–499. 2020. View Article : Google Scholar : PubMed/NCBI | |
Carbone A: Cancer classification at the crossroads. Cancers (Basel). 12:9802020. View Article : Google Scholar : PubMed/NCBI | |
Chakraborty S and Rahman T: The difficulties in cancer treatment. Ecancermedicalscience. 6:ed162012.PubMed/NCBI | |
Wesselhoeft RA, Kowalski PS and Anderson DG: Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat Commun. 9:26292018. View Article : Google Scholar : PubMed/NCBI | |
Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, et al: Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 495:333–338. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sharma AR, Bhattacharya M, Bhakta S, Saha A, Lee SS and Chakraborty C: Recent research progress on circular RNAs: Biogenesis, properties, functions, and therapeutic potential. Mol Ther Nucleic Acids. 25:355–371. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jeck R, Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF and Sharpless NE: Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 19:141–157. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wilusz JE and Sharp PA: A circuitous route to noncoding RNA. Science. 340:440–441. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cui C, Yang J, Li X, Liu D, Fu L and Wang X: Functions and mechanisms of circular RNAs in cancer radiotherapy and chemotherapy resistance. Mol Cancer. 19:582020. View Article : Google Scholar : PubMed/NCBI | |
Chen T and Yang Y: Role of Circular RNA in diagnosis, development and durg resistance of lung cancer. Chin J Lung Cancer. 22:532–536. 2019.(In Chinese). PubMed/NCBI | |
Hsu MT and Coca-Prados M: Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature. 280:339–340. 1979. View Article : Google Scholar : PubMed/NCBI | |
Zamarin D, Holmgaard RB, Subudhi SK, Park JS, Mansour M, Palese P, Merghoub T, Wolchok JD and Allison JP: Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy. Sci Transl Med. 6:226ra2322014. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J, Chen D, Gu J, He X and Huang S: Circular RNA is enriched and stable in exosomes: A promising biomarker for cancer diagnosis. Cell Res. 25:981–984. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bahn JH, Zhang Q, Li F, Chan TM, Lin X, Kim Y, Wong DT and Xiao X: The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva. Clin Chem. 61:221–230. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hanan M, Soreq H and Kadener S: CircRNAs in the brain. RNA Biol. 14:1028–1034. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kim KM, Abdelmohsen K, Mustapic M, Kapogiannis D and Gorospe M: RNA in extracellular vesicles. Wiley Interdiscip Rev RNA. 82017.doi: 10.1002/wrna.1413. PubMed/NCBI | |
Yang W, Du W, Li X, Yee A and Yang B: Foxo3 activity promoted by non-coding effects of circular RNA and Foxo3 pseudogene in the inhibition of tumor growth and angiogenesis. Oncogene. 35:3919–3931. 2016. View Article : Google Scholar : PubMed/NCBI | |
Huang G, Li S, Yang N, Zou Y, Zheng D and Xiao T: Recent progress in circular RNAs in human cancers. Cancer Lett. 404:8–18. 2017. View Article : Google Scholar : PubMed/NCBI | |
Venø MT, Hansen TB, Venø ST, Clausen BH, Grebing M, Finsen B, Holm IE and Kjems J: Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development. Genome Biol. 16:2452015. View Article : Google Scholar : PubMed/NCBI | |
Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N and Kadener S: circRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 56:55–66. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ivanov A, Memczak S, Wyler E, Torti F, Porath HT, Orejuela MR, Piechotta M, Levanon EY, Landthaler M, Dieterich C and Rajewsky N: Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep. 10:170–177. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liang D and Wilusz JE: Short intronic repeat sequences facilitate circular RNA production. Genes Dev. 28:2233–2247. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang XO, Wang HB, Zhang Y, Lu X, Chen LL and Yang L: Complementary sequence-mediated exon circularization. Cell. 159:134–147. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang Y and Wang Z: Efficient backsplicing produces translatable circular mRNAs. RNA. 21:172–179. 2015. View Article : Google Scholar : PubMed/NCBI | |
Starke S, Jost I, Rossbach O, Schneider T, Schreiner S, Hung LH and Bindereif A: Exon circularization requires canonical splice signals. Cell Rep. 10:103–111. 2015. View Article : Google Scholar : PubMed/NCBI | |
Barrett SP, Wang PL and Salzman J: Circular RNA biogenesis can proceed through an exon-containing lariat precursor. Elife. 4:e075402015. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Xue W, Li X, Zhang J, Chen S, Zhang JL, Yang L and Chen LL: The biogenesis of nascent circular RNAs. Cell Rep. 15:611–624. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wilusz JE: Circular RNAs: Unexpected outputs of many protein-coding genes. RNA Biol. 14:1007–1017. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bach DH, Lee SK and Sood AK: Circular RNAs in cancer. Mol Ther Nucleic Acids. 16:118–129. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF and Sharpless NE: Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 19:141–157. 2013. View Article : Google Scholar : PubMed/NCBI | |
Salzman J, Gawad C, Wang PL, Lacayo N and Brown PO: Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One. 7:e307332012. View Article : Google Scholar : PubMed/NCBI | |
Mu Y and Xie F: Research progress of circular RNA in lung cancer. Chin J Lung Cancer. 21:5432018.PubMed/NCBI | |
Zhang J, Chen S, Yang J and Zhao F: Accurate quantification of circular RNAs identifies extensive circular isoform switching events. Nat Commun. 11:902020. View Article : Google Scholar : PubMed/NCBI | |
Wu YP, Lin XD, Chen SH, Ke ZB, Lin F, Chen DN, Xue XY, Wei Y, Zheng QS, Wen YA and Xu N: Identification of prostate cancer-related circular RNA through bioinformatics analysis. Front Genet. 11:8922020. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Wu A, Yang B, Zhu X, Teng Y and Ai Z: Profiling and bioinformatics analyses reveal differential circular RNA expression in ovarian cancer. Gene. 724:1441502020. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Yu Y, Zhang X, Liu C, Ye C and Fan L: PcircRNA_finder: A software for circRNA prediction in plants. Bioinformatics. 32:3528–3529. 2016.PubMed/NCBI | |
Jia GY, Wang DL, Xue MZ, Liu YW, Pei YC, Yang YQ, Xu JM, Liang YC and Wang P: CircRNAFisher: A systematic computational approach for de novo circular RNA identification. Acta Pharmacol Sinica. 40:55–63. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jakobi T, Uvarovskii A and Dieterich C: circtools-a one-stop software solution for circular RNA research. Bioinformatics. 35:2326–2328. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jakobi T and Dieterich C: Computational approaches for circular RNA analysis. Wiley Interdiscip Rev RNA. 10:e15282019. View Article : Google Scholar : PubMed/NCBI | |
Lebedeva S, Jens M, Theil K, Schwanhäusser B, Selbach M, Landthaler M and Rajewsky N: Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR. Mol Cell. 43:340–352. 2011. View Article : Google Scholar : PubMed/NCBI | |
Du WW, Fang L, Yang W, Wu N, Awan FM, Yang Z and Yang BB: Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity. Cell Death Differ. 24:357–370. 2017. View Article : Google Scholar : PubMed/NCBI | |
Huang A, Zheng H, Wu Z, Chen M and Huang Y: Circular RNA-protein interactions: Functions, mechanisms, and identification. Theranostics. 10:35032020. View Article : Google Scholar : PubMed/NCBI | |
Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function as efficient microRNA sponges. Nature. 495:384–388. 2013. View Article : Google Scholar : PubMed/NCBI | |
Rupaimoole R, Calin GA, Lopez-Berestein G and Sood AK: miRNA deregulation in cancer cells and the tumor microenvironment. Cancer Discovery. 6:235–246. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kohlhapp FJ, Mitra AK, Lengyel E and Peter ME: MicroRNAs as mediators and communicators between cancer cells and the tumor microenvironment. Oncogene. 34:5857–5868. 2015. View Article : Google Scholar : PubMed/NCBI | |
Thomas LF and Sætrom P: Circular RNAs are depleted of polymorphisms at microRNA binding sites. Bioinformatics. 30:2243–2246. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hsiao KY, Lin YC, Gupta SK, Chang N, Yen L, Sun HS and Tsai SJ: Noncoding effects of circular RNA CCDC66 promote colon cancer growth and metastasis. Cancer Res. 77:2339–2350. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hansen TB, Kjems J and Damgaard CK: Circular RNA and miR-7 in cancer. Cancer Res. 73:5609–5612. 2013. View Article : Google Scholar : PubMed/NCBI | |
Guo JU, Agarwal V, Guo H and Bartel DP: Expanded identification and characterization of mammalian circular RNAs. Genome Biol. 15:4092014. View Article : Google Scholar : PubMed/NCBI | |
Zheng Q, Bao C, Guo W, Li S, Chen J, Chen B, Luo Y, Lyu D, Li Y, Shi G, et al: Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun. 7:112152016. View Article : Google Scholar : PubMed/NCBI | |
Kristensen L, Hansen T, Venø M and Kjems J: Circular RNAs in cancer: Opportunities and challenges in the field. Oncogene. 37:555–565. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Li Y, Zheng Q, Bao C, He J, Chen B, Lyu D, Zheng B, Xu Y, Long Z, et al: Circular RNA profile identifies circPVT1 as a proliferative factor and prognostic marker in gastric cancer. Cancer Lett. 388:208–219. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li F, Zhang L, Li W, Deng J, Zheng J, An M, Lu J and Zhou Y: Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/β-catenin pathway. Oncotarget. 6:6001–6013. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L, et al: Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 22:256–264. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, Zhu S, Yang L and Chen LL: Circular intronic long noncoding RNAs. Mol Cell. 51:792–806. 2013. View Article : Google Scholar : PubMed/NCBI | |
Du WW, Yang W, Liu E, Yang Z, Dhaliwal P and Yang BB: Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res. 44:2846–2858. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yang P, Qiu Z, Jiang Y, Dong L, Yang W, Gu C, Li G and Zhu Y: Silencing of cZNF292 circular RNA suppresses human glioma tube formation via the Wnt/β-catenin signaling pathway. Oncotarget. 7:63449–63455. 2016. View Article : Google Scholar : PubMed/NCBI | |
Boeckel JN, Jaé N, Heumüller AW, Chen W, Boon RA, Stellos K, Zeiher AM, John D, Uchida S and Dimmeler S: Identification and characterization of hypoxia-regulated endothelial circular RNA. Circ Res. 117:884–890. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Wang G, Ding C, Liu P, Wang R, Ding W, Tong D, Wu D, Li C, Wei Q, et al: Increased circular RNA UBAP2 acts as a sponge of miR-143 to promote osteosarcoma progression. Oncotarget. 8:61687–61697. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhong Z, Huang M, Lv M, He Y, Duan C, Zhang L and Chen J: Circular RNA MYLK as a competing endogenous RNA promotes bladder cancer progression through modulating VEGFA/VEGFR2 signaling pathway. Cancer Lett. 403:305–317. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yao Z, Luo J, Hu K, Lin J, Huang H, Wang Q, Zhang P, Xiong Z, He C, Huang Z, et al: ZKSCAN1 gene and its related circular RNA (circZKSCAN1) both inhibit hepatocellular carcinoma cell growth, migration, and invasion but through different signaling pathways. Mol Oncol. 11:422–437. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jin H, Jin X, Zhang H and Wang W: Circular RNA hsa-circ-0016347 promotes proliferation, invasion and metastasis of osteosarcoma cells. Oncotarget. 8:25571–25581. 2017. View Article : Google Scholar : PubMed/NCBI | |
Han D, Li J, Wang H, Su X, Hou J, Gu Y, Qian C, Lin Y, Liu X, Huang M, et al: Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression. Hepatology. 66:1151–1164. 2017. View Article : Google Scholar : PubMed/NCBI | |
Weng W, Wei Q, Toden S, Yoshida K, Nagasaka T, Fujiwara T, Cai S, Qin H, Ma Y and Goel A: Circular RNA ciRS-7-a promising prognostic biomarker and a potential therapeutic target in colorectal cancer. Clin Cancer Res. 23:3918–3928. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Zhang S, Wu J, Cui J, Zhong L, Zeng L and Ge S: circRNA_100290 plays a role in oral cancer by functioning as a sponge of the miR-29 family. Oncogene. 36:4551–4561. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li P, Chen H, Chen S, Mo X, Li T, Xiao B, Yu R and Guo J: Circular RNA 0000096 affects cell growth and migration in gastric cancer. Br J cancer. 116:626–633. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhu X, Wang X, Wei S, Chen Y, Chen Y, Fan X, Han S and Wu G: hsa_circ_0013958: A circular RNA and potential novel biomarker for lung adenocarcinoma. FEBS J. 284:2170–2182. 2017. View Article : Google Scholar : PubMed/NCBI | |
Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O, Fatica A, Santini T, Andronache A, Wade M, et al: Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell. 66:22–37.e9. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, Jin Y, Yang Y, Chen LL, Wang Y, et al: Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res. 27:626–641. 2017. View Article : Google Scholar : PubMed/NCBI | |
Alhasan AA, Izuogu OG, Al-Balool HH, Steyn JS, Evans A, Colzani M, Ghevaert C, Mountford JC, Marenah L, Elliott DJ, et al: Circular RNA enrichment in platelets is a signature of transcriptome degradation. Blood. 127:e1–e11. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Jiang Z, Chen C, Hu Q, Fu Z, Chen J, Wang Z, Wang Q, Li A, Marks JR, et al: CircIRAK3 sponges miR-3607 to facilitate breast cancer metastasis. Cancer Lett. 430:179–192. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tang YY, Zhao P, Zou TN, Duan JJ, Zhi R, Yang SY, Yang DC and Wang XL: Circular RNA hsa_circ_0001982 promotes breast cancer cell carcinogenesis through decreasing miR-143. DNA Cell Biol. 36:901–908. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yan N, Xu H, Zhang J, Xu L, Zhang Y, Zhang L, Xu Y and Zhang F: Circular RNA profile indicates circular RNA VRK1 is negatively related with breast cancer stem cells. Oncotarget. 8:95704–95718. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Xiao Y, Wu L and Ma D: Comprehensive circular RNA profiling reveals the regulatory role of the circRNA-000911/miR-449a pathway in breast carcinogenesis. Int J Oncol. 52:743–754. 2018.PubMed/NCBI | |
Liu Y, Lu C, Zhou Y, Zhang Z and Sun L: Circular RNA hsa_circ_0008039 promotes breast cancer cell proliferation and migration by regulating miR-432-5p/E2F3 axis. Biochem Biophys Res Commun. 502:358–363. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gao D, Zhang X, Liu B, Meng D, Fang K, Guo Z and Li L: Screening circular RNA related to chemotherapeutic resistance in breast cancer. Epigenomics. 9:1175–1188. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liang HF, Zhang XZ, Liu BG, Jia GT and Li WL: Circular RNA circ-ABCB10 promotes breast cancer proliferation and progression through sponging miR-1271. Am J Cancer Res. 7:1566–1576. 2017.PubMed/NCBI | |
Zeng K, He B, Yang BB, Xu T, Chen X, Xu M, Liu X, Sun H, Pan Y and Wang S: The pro-metastasis effect of circANKS1B in breast cancer. Mol Cancer. 17:1602018. View Article : Google Scholar : PubMed/NCBI | |
Xu JZ, Shao CC, Wang XJ, Zhao X, Chen JQ, Ouyang YX, Feng J, Zhang F, Huang WH, Ying Q, et al: circTADA2As suppress breast cancer progression and metastasis via targeting miR-203a-3p/SOCS3 axis. Cell Death Dis. 10:1752019. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Lu T, Wang Q, Liu J and Jiao W: Circular RNAs: Crucial regulators in the human body. Oncol Rep. 40:3119–3135. 2018.PubMed/NCBI | |
Li H, Li Q and He S: Hsa_circ_0025202 suppresses cell tumorigenesis and tamoxifen resistance via miR-197-3p/HIPK3 axis in breast cancer. World J Surg Oncol. 19:392021. View Article : Google Scholar : PubMed/NCBI | |
Xu X, Zhang J, Tian Y, Gao Y, Dong X, Chen W, Yuan X, Yin W, Xu J, Chen K, et al: CircRNA inhibits DNA damage repair by interacting with host gene. Mol Cancer. 19:1282020. View Article : Google Scholar : PubMed/NCBI | |
Zong L, Sun Q, Zhang H, Chen Z, Deng Y, Li D and Zhang L: Increased expression of circRNA_102231 in lung cancer and its clinical significance. Biomed Pharmacother. 102:639–644. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li X, Zhang Z, Jiang H, Li Q, Wang R, Pan H, Niu Y, Liu F, Gu H, Fan X and Gao J: Circular RNA circPVT1 promotes proliferation and invasion through sponging miR-125b and activating E2F2 signaling in non-small cell lung cancer. Cell Physiol Biochem. 51:2324–2340. 2018. View Article : Google Scholar : PubMed/NCBI | |
Qiu M, Xia W, Chen R, Wang S, Xu Y, Ma Z, Xu W, Zhang E, Wang J, Fang T, et al: The circular RNA circPRKCI promotes tumor growth in lung adenocarcinoma. Cancer Res. 78:2839–2851. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu T, Song Z and Gai Y: Circular RNA circ_0001649 acts as a prognostic biomarker and inhibits NSCLC progression via sponging miR-331-3p and miR-338-5p. Biochem Biophys Res Commun. 503:1503–1509. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang B, Chen M, Jiang N, Shi K and Qian R: A regulatory circuit of circ-MTO1/miR-17/QKI-5 inhibits the proliferation of lung adenocarcinoma. Cancer Biol Ther. 20:1127–1135. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yang Z, Xie L, Han L, Qu X, Yang Y, Zhang Y, He Z, Wang Y and Li J: Circular RNAs: Regulators of cancer-related signaling pathways and potential diagnostic biomarkers for human cancers. Theranostics. 7:3106–3117. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jin M, Shi C, Yang C, Liu J and Huang G: Upregulated circRNA ARHGAP10 predicts an unfavorable prognosis in NSCLC through regulation of the miR-150-5p/GLUT-1 axis. Mol Ther Nucleic Acids. 18:219–231. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yao JT, Zhao SH, Liu QP, Lv MQ, Zhou DX, Liao ZJ and Nan KJ: Over-expression of CircRNA_100876 in non-small cell lung cancer and its prognostic value. Pathol Res Pract. 213:453–456. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Long H, Zheng Q, Bo X, Xiao X and Li B: Circular RNA circRHOT1 promotes hepatocellular carcinoma progression by initiation of NR2F6 expression. Mol Cancer. 18:1192019. View Article : Google Scholar : PubMed/NCBI | |
Liang G, Liu Z, Tan L, Su A, Jiang WG and Gong C: HIF1α-associated circDENND4C promotes proliferation of breast cancer cells in hypoxic environment. Anticancer Res. 37:4337–4343. 2017.PubMed/NCBI | |
Song LN, Qiao GL, Yu J, Yang CM, Chen Y, Deng ZF, Song LH, Ma LJ and Yan HL: Hsa_circ_0003998 promotes epithelial to mesenchymal transition of hepatocellular carcinoma by sponging miR-143-3p and PCBP1. J Exp Clin Cancer Res. 39:1142020. View Article : Google Scholar : PubMed/NCBI | |
Shang X, Li G, Liu H, Li T, Liu J, Zhao Q and Wang C: Comprehensive circular RNA profiling reveals that hsa_circ_0005075, a new circular RNA biomarker, is involved in hepatocellular crcinoma development. Medicine (Baltimore). 95:e38112016. View Article : Google Scholar : PubMed/NCBI | |
Chen W, Quan Y, Fan S, Wang H, Liang J, Huang L, Chen L, Liu Q, He P and Ye Y: Exosome-transmitted circular RNA hsa_circ_0051443 suppresses hepatocellular carcinoma progression. Cancer Lett. 475:119–128. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zheng H, Chen T, Li C, Xu C, Ding C, Chen J, Ju S, Zhang Z, Liang Z, Cui Z and Zhao J: A circular RNA hsa_circ_0079929 inhibits tumor growth in hepatocellular carcinoma. Cancer Manag Res. 11:443–454. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen N, Zhao G, Yan X, Lv Z, Yin H, Zhang S, Song W, Li X, Li L, Du Z, et al: A novel FLI1 exonic circular RNA promotes metastasis in breast cancer by coordinately regulating TET1 and DNMT1. Genome Biol. 19:2182018. View Article : Google Scholar : PubMed/NCBI | |
Lv S, Li Y, Ning H, Zhang M, Jia Q and Wang X: CircRNA GFRA1 promotes hepatocellular carcinoma progression by modulating the miR-498/NAP1L3 axis. Sci Rep. 11:3862021. View Article : Google Scholar : PubMed/NCBI | |
Luo YH, Zhu XZ, Huang KW, Zhang Q, Fan YX, Yan PW and Wen J: Emerging roles of circular RNA hsa_circ_0000064 in the proliferation and metastasis of lung cancer. Biomed Pharmacother. 96:892–898. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Zhao H and Zhang L: Identification of the tumor-suppressive function of circular RNA FOXO3 in non-small cell lung cancer through sponging miR-155. Mol Med Rep. 17:7692–7700. 2018.PubMed/NCBI | |
Zhu KP, Zhang CL, Ma XL, Hu JP, Cai T and Zhang L: Analyzing the interactions of mRNAs and ncRNAs to predict competing endogenous RNA networks in osteosarcoma chemo-resistance. Mol Ther. 27:518–530. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gong X, Li W, Dong L and Qu F: CircUBAP2 promotes SEMA6D expression to enhance the cisplatin resistance in osteosarcoma through sponging miR-506-3p by activating Wnt/β-catenin signaling pathway. J Mol Histol. 51:329–340. 2020. View Article : Google Scholar : PubMed/NCBI | |
Song YZ and Li JF: Circular RNA hsa_circ_0001564 regulates osteosarcoma proliferation and apoptosis by acting miRNA sponge. Biochem Biophys Res Commun. 495:2369–2375. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zheng S, Qian Z, Jiang F, Ge D, Tang J, Chen H, Yang J, Yao Y, Yan J, Zhao L, et al: CircRNA LRP6 promotes the development of osteosarcoma via negatively regulating KLF2 and APC levels. Am J Transl Res. 11:4126–4138. 2019.PubMed/NCBI | |
Deng N, Li L, Gao J, Zhou J, Wang Y, Wang C and Liu Y: Hsa_circ_0009910 promotes carcinogenesis by promoting the expression of miR-449a target IL6R in osteosarcoma. Biochem Biophys Res Commun. 495:189–196. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Gao X, Zhang M, Yan S, Sun C, Xiao F, Huang N, Yang X, Zhao K, Zhou H, et al: Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. J Natl Cancer Inst. 110:304–315. 2018. View Article : Google Scholar : PubMed/NCBI | |
Meng Q, Li S, Liu Y, Zhang S, Jin J, Zhang Y, Guo C, Liu B and Sun Y: Circular RNA circSCAF11 accelerates the glioma tumorigenesis through the miR-421/SP1/VEGFA axis. Mol Ther Nucleic Acids. 17:669–677. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yang M, Li G, Fan L, Zhang G, Xu J and Zhang J: Circular RNA circ_0034642 elevates BATF3 expression and promotes cell proliferation and invasion through miR-1205 in glioma. Biochem Biophys Res Commun. 508:980–985. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li X and Diao H: Circular RNA circ_0001946 acts as a competing endogenous RNA to inhibit glioblastoma progression by modulating miR-671-5p and CDR1. J Cell Physiol. 234:13807–13819. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen Z and Duan X: Hsa_circ_0000177-miR-638-FZD7-Wnt signaling cascade contributes to the malignant behaviors in glioma. DNA Cell Biol. 37:791–797. 2018. View Article : Google Scholar : PubMed/NCBI | |
Duan X, Liu D, Wang Y and Chen Z: Circular RNA hsa_circ_0074362 promotes glioma cell proliferation, migration, and invasion by attenuating the inhibition of miR-1236-3p on HOXB7 expression. DNA Cell Biol. 37:917–924. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Zhou Q, Qiu Q, Hou L, Wu M, Li J, Li X, Lu B, Cheng X, Liu P, et al: CircPLEKHM3 acts as a tumor suppressor through regulation of the miR-9/BRCA1/DNAJB6/KLF4/AKT1 axis in ovarian cancer. Mol Cancer. 18:1442019. View Article : Google Scholar : PubMed/NCBI | |
Chen Q, Zhang J, He Y and Wang Y: Hsa_circ_0061140 knockdown reverses FOXM1-mediated cell growth and metastasis in ovarian cancer through miR-370 sponge activity. Mol Ther Nucleic Acids. 13:55–63. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zong ZH, Du YP, Guan X, Chen S and Zhao Y: CircWHSC1 promotes ovarian cancer progression by regulating MUC1 and hTERT through sponging miR-145 and miR-1182. J Exp Clin Cancer Res. 38:4372019. View Article : Google Scholar : PubMed/NCBI | |
Zhong L, Wang Y, Cheng Y, Wang W, Lu B, Zhu L and Ma Y: Circular RNA circC3P1 suppresses hepatocellular carcinoma growth and metastasis through miR-4641/PCK1 pathway. Biochem Biophys Res Commun. 499:1044–1049. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Ren R, Wan D, Wang Y, Xue X, Jiang M, Shen J, Han Y, Liu F, Shi J, et al: Hsa_circ_101555 functions as a competing endogenous RNA of miR-597-5p to promote colorectal cancer progression. Oncogene. 38:6017–6034. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tu FL, Guo XQ, Wu HX, He ZY, Wang F, Sun AJ and Dai XD: Circ-0001313/miRNA-510-5p/AKT2 axis promotes the development and progression of colon cancer. Am J Transl Res. 2:281–291. 2020.PubMed/NCBI | |
Guo JN, Li J, Zhu CL, Feng WT, Shao JX, Wan L, Huang MD and He JD: Comprehensive profile of differentially expressed circular RNAs reveals that hsa_circ_0000069 is upregulated and promotes cell proliferation, migration, and invasion in colorectal cancer. Onco Targets Ther. 9:7451–7458. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Zhang Y, Huang L, Zhang J, Pan F, Li B, Yan Y, Jia B, Liu H, Li S and Zheng W: Decreased expression of hsa_circ_001988 in colorectal cancer and its clinical significances. Int J Clin Exp Pathol. 8:16020–16025. 2015.PubMed/NCBI | |
Chen HY, Li XN, Ye CX, Chen ZL and Wang ZJ: Circular RNA circHUWE1 is upregulated and promotes cell proliferation, migration and invasion in colorectal cancer by sponging miR-486. Onco Targets Ther. 13:423–434. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhou C, Liu HS, Wang FW, Hu T, Liang ZX, Lan N, He XW, Zheng XB, Wu XJ, Xie D, et al: circCAMSAP1 promotes tumor growth in colorectal cancer via the miR-328-5p/E2F1 axis. Mol Ther. 28:914–928. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhu M, Xu Y, Chen Y and Yan F: Circular BANP, an upregulated circular RNA that modulates cell proliferation in colorectal cancer. Biomed Pharmacother. 88:138–144. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kun-Peng Z, Xiao-Long M and Chun-Lin Z: Overexpressed circPVT1, a potential new circular RNA biomarker, contributes to doxorubicin and cisplatin resistance of osteosarcoma cells by regulating ABCB1. Int J Biol Sci. 14:321–330. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zheng J, Liu X, Xue Y, Gong W, Ma J, Xi Z, Que Z and Liu Y: TTBK2 circular RNA promotes glioma malignancy by regulating miR-217/HNF1β/Derlin-1 pathway. J Hematol Oncol. 10:522017. View Article : Google Scholar : PubMed/NCBI | |
Xie H, Ren X, Xin S, Lan X, Lu G, Lin Y, Yang S, Zeng Z, Liao W, Ding YQ and Liang L: Emerging roles of circRNA_001569 targeting miR-145 in the proliferation and invasion of colorectal cancer. Oncotarget. 7:26680–26691. 2016. View Article : Google Scholar : PubMed/NCBI | |
Huang G, Zhu H, Shi Y, Wu W, Cai H and Chen X: cir-ITCH plays an inhibitory role in colorectal cancer by regulating the Wnt/β-catenin pathway. PLoS One. 10:e01312252015. View Article : Google Scholar : PubMed/NCBI | |
Xie F, Li Y, Wang M, Huang C, Tao D, Zheng F, Zhang H, Zeng F, Xiao X and Jiang G: Circular RNA BCRC-3 suppresses bladder cancer proliferation through miR-182-5p/p27 axis. Mol Cancer. 17:1442018. View Article : Google Scholar : PubMed/NCBI | |
Dong W, Bi J, Liu H, Yan D, He Q, Zhou Q, Wang Q, Xie R, Su Y, Yang M, et al: Circular RNA ACVR2A suppresses bladder cancer cells proliferation and metastasis through miR-626/EYA4 axis. Mol Cancer. 18:952019. View Article : Google Scholar : PubMed/NCBI | |
Chi BJ, Zhao DM, Liu L, Yin XZ, Wang FF, Bi S, Gui SL, Zhou SB, Qin WB, Wu DM and Wang SQ: Downregulation of hsa_circ_0000285 serves as a prognostic biomarker for bladder cancer and is involved in cisplatin resistance. Neoplasma. 66:197–202. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li M, Wang Y, Liu Y, Zhang X, Liu J and Wang P: Low expression of hsa_circ_0018069 in human bladder cancer and its clinical significance. Biomed Res Int. 2019:96818632019.PubMed/NCBI | |
Lu Q, Liu T, Feng H, Yang R, Zhao X, Chen W, Jiang B, Qin H, Guo X, Liu M, et al: Circular RNA circSLC8A1 acts as a sponge of miR-130b/miR-494 in suppressing bladder cancer progression via regulating PTEN. Mol Cancer. 18:1112019. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Chen RX, Wei WS, Li YH, Feng ZH, Tan L, Chen JW, Yuan GJ, Chen SL, Guo SJ, et al: PRMT5 circular RNA promotes metastasis of urothelial carcinoma of the Bladder through Sponging miR-30c to Induce Epithelial-Mesenchymal Transition. Clin Cancer Res. 24:6319–6330. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Sun Y, Ou Z, Yeh S, Huang CP, You B, Tsai YC, Sheu TJ, Zu X and Chang C: Androgen receptor-regulated circFNTA activates KRAS signaling to promote bladder cancer invasion. EMBO Rep. 21:e484672020. View Article : Google Scholar : PubMed/NCBI | |
Lin G, Sheng H, Xie H, Zheng Q, Shen Y, Shi G and Ye D: circLPAR1 is a novel biomarker of prognosis for muscle-invasive bladder cancer with invasion and metastasis by miR-762. Oncol Lett. 17:3537–3547. 2019.PubMed/NCBI | |
Zhang J, Zhao X, Zhang J, Zheng X and Li F: Circular RNA hsa_circ_0023404 exerts an oncogenic role in cervical cancer through regulating miR-136/TFCP2/YAP pathway. Biochem Biophys Res Commun. 501:428–433. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Shen J and Jiang Y: Circ_0027599/PHDLA1 suppresses gastric cancer progression by sponging miR-101-3p.1. Cell Biosci. 8:582018. View Article : Google Scholar : PubMed/NCBI | |
Zhong S, Wang J, Hou J, Zhang Q, Xu H, Hu J, Zhao J and Feng J: Circular RNA hsa_circ_0000993 inhibits metastasis of gastric cancer cells. Epigenomics. 10:1301–1313. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sun H, Xi P, Sun Z, Wang Q, Zhu B, Zhou J, Jin H, Zheng W, Tang W, Cao H and Cao X: Circ-SFMBT2 promotes the proliferation of gastric cancer cells through sponging miR-182-5p to enhance CREB1 expression. Cancer Manag Res. 10:5725–5734. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ding L, Zhao Y, Dang S, Wang Y, Li X, Yu X, Li Z, Wei J, Liu M and Li G: Circular RNA circ-DONSON facilitates gastric cancer growth and invasion via NURF complex dependent activation of transcription factor SOX4. Mol Cancer. 18:452019. View Article : Google Scholar : PubMed/NCBI | |
Li P, Chen S, Chen H, Mo X, Li T, Shao Y, Xiao B and Guo J: Using circular RNA as a novel type of biomarker in the screening of gastric cancer. Clin Chim Acta. 444:132–136. 2015. View Article : Google Scholar : PubMed/NCBI | |
Pan H, Li T, Jiang Y, Pan C, Ding Y, Huang Z, Yu H and Kong D: Overexpression of circular RNA ciRS-7 abrogates the tumor suppressive effect of miR-7 on gastric cancer via PTEN/PI3K/AKT signaling pathway. J Cell Biochem. 119:440–446. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Wang S, Wang H, Cao J, Huang X, Chen Z, Xu P, Sun G, Xu J, Lv J and Xu Z: Circular RNA circNRIP1 acts as a microRNA-149-5p sponge to promote gastric cancer progression via the AKT1/mTOR pathway. Mol Cancer. 18:202019. View Article : Google Scholar : PubMed/NCBI | |
Fang J, Hong H, Xue X, Zhu X, Jiang L, Qin M, Liang H and Gao L: A novel circular RNA, circFAT1(e2), inhibits gastric cancer progression by targeting miR-548g in the cytoplasm and interacting with YBX1 in the nucleus. Cancer Lett. 442:222–232. 2019. View Article : Google Scholar : PubMed/NCBI | |
Rong D, Lu C, Zhang B, Fu K, Zhao S, Tang W and Cao H: CircPSMC3 suppresses the proliferation and metastasis of gastric cancer by acting as a competitive endogenous RNA through sponging miR-296-5p. Mol Cancer. 18:252019. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Liu Y, Bian Z, Zhang J, Zhang R, Chen X, Huang Y, Wang Y and Zhu J: Circular RNA YAP1 inhibits the proliferation and invasion of gastric cancer cells by regulating the miR-367-5p/p27 Kip1 axis. Mol Cancer. 17:1512018. View Article : Google Scholar : PubMed/NCBI | |
Zhou LH, Yang YC, Zhang RY, Wang P, Pang MH and Liang LQ: CircRNA_0023642 promotes migration and invasion of gastric cancer cells by regulating EMT. Eur Rev Med Pharmacol Sci. 22:2297–2303. 2018.PubMed/NCBI | |
Zhang J, Liu H, Hou L, Wang G, Zhang R, Huang Y, Chen X and Zhu J: Circular RNA_LARP4 inhibits cell proliferation and invasion of gastric cancer by sponging miR-424-5p and regulating LATS1 expression. Mol Cancer. 16:1512017. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Hou L, Liang R, Chen X, Zhang R, Chen W and Zhu J: CircDLST promotes the tumorigenesis and metastasis of gastric cancer by sponging miR-502-5p and activating the NRAS/MEK1/ERK1/2 signaling. Mol Cancer. 18:802019. View Article : Google Scholar : PubMed/NCBI | |
Yang F, Hu A, Li D, Wang J, Guo Y, Liu Y, Li H, Chen Y, Wang X, Huang K, et al: Circ-HuR suppresses HuR expression and gastric cancer progression by inhibiting CNBP transactivation. Mol Cancer. 18:1582019. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Zhang X, Li Z, Wang W, Li B, Huang X, Sun G, Xu J, Li Q, Xu Z, et al: Circular RNA profile identifies circOSBPL10 as an oncogenic factor and prognostic marker in gastric cancer. Oncogene. 38:6985–7001. 2019. View Article : Google Scholar : PubMed/NCBI | |
Huang M, He YR, Liang LC, Huang Q and Zhu ZQ: Circular RNA hsa_circ_0000745 may serve as a diagnostic marker for gastric cancer. World J Gastroenterol. 23:6330–6338. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sun H, Tang W, Rong D, Jin H, Fu K, Zhang W, Liu Z, Cao H and Cao X: Hsa_circ_0000520, a potential new circular RNA biomarker, is involved in gastric carcinoma. Cancer Biomark. 21:299–306. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lai Z, Yang Y, Yan Y, Li T, Li Y, Wang Z, Shen Z, Ye Y, Jiang K and Wang S: Analysis of co-expression networks for circular RNAs and mRNAs reveals that circular RNAs hsa_circ_0047905, hsa_circ_0138960 and has-circRNA7690-15 are candidate oncogenes in gastric cancer. Cell Cycle. 16:2301–2311. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ma HB, Yao YN, Yu JJ, Chen XX and Li HF: Extensive profiling of circular RNAs and the potential regulatory role of circRNA-000284 in cell proliferation and invasion of cervical cancer via sponging miR-506. Am J Transl Res. 10:592–604. 2018.PubMed/NCBI | |
Xu Y, Leng K, Yao Y, Kang P, Liao G, Han Y, Shi G, Ji D, Huang P, Zheng W, et al: A circular RNA, Cholangiocarcinoma-Associated Circular RNA 1, contributes to cholangiocarcinoma progression, induces angiogenesis, and disrupts vascular endothelial barriers. Hepatology. 73:1419–1435. 2021. View Article : Google Scholar : PubMed/NCBI | |
Dudekula DB, Panda AC, Grammatikakis I, De S, Abdelmohsen K and Gorospe M: CircInteractome: A web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol. 13:34–42. 2016. View Article : Google Scholar : PubMed/NCBI | |
Vo JN, Cieslik M, Zhang Y, Shukla S, Xiao L, Zhang Y, Wu YM, Dhanasekaran SM, Engelke CG, Cao X, et al: The landscape of circular RNA in cancer. Cell. 176:869–881.e13. 2019. View Article : Google Scholar : PubMed/NCBI | |
Rodrigues PM, Vogel A, Arrese M, Balderramo DC, Valle JW and Banales JM: Next-generation biomarkers for cholangiocarcinoma. Cancers. 13:32222021. View Article : Google Scholar : PubMed/NCBI | |
Huang L, Rong Y, Tang X, Yi K, Wu J and Wang F: Circular RNAs are promising biomarkers in liquid biopsy for the diagnosis of non-small cell lung cancer. Front Mol Biosci. 8:6257222021. View Article : Google Scholar : PubMed/NCBI | |
Arias I: Mechanisms and consequences of ion transport in the liver. Prog Liver Dis. 8:145–159. 1986.PubMed/NCBI | |
Chen S, Li T, Zhao Q, Xiao B and Guo J: Using circular RNA hsa_circ_0000190 as a new biomarker in the diagnosis of gastric cancer. Clin Chim Acta. 466:167–171. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sun X, Kong S, Jiang C, Jing R, Ju S and Cong H: Diagnostic value of circular RNA hsa_circ_0002874 expression in peripheral blood of patients with gastric cancer. Lab Med. 53:65–70. 2022. View Article : Google Scholar : PubMed/NCBI | |
Qin M, Liu G, Huo X, Tao X, Sun X, Ge Z, Yang J, Fan J, Liu L and Qin W: Hsa_circ_0001649: A circular RNA and potential novel biomarker for hepatocellular carcinoma. Cancer Biomark. 16:161–169. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Zhou Y, Yang G, He S, Qiu X, Zhang L, Deng Q and Zheng F: Using circular RNA SMARCA5 as a potential novel biomarker for hepatocellular carcinoma. Clin Chim Acta. 492:37–44. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ji W, Qiu C, Wang M, Mao N, Wu S and Dai Y: Hsa_circ_0001649: A circular RNA and potential novel biomarker for colorectal cancer. Biochem Biophys Res Commun. 497:122–126. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li S, Sun X, Miao S, Lu T, Wang Y, Liu J and Jiao W: Hsa_circ_0000729, a potential prognostic biomarker in lung adenocarcinoma. Thoracic Cancer. 9:924–930. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ning L, Long B, Zhang W, Yu M, Wang S, Cao D, Yang J, Shen K, Huang Y and Lang J: Circular RNA profiling reveals circEXOC6B and circN4BP2L2 as novel prognostic biomarkers in epithelial ovarian cancer. Int J Oncol. 53:2637–2646. 2018.PubMed/NCBI | |
Wu G, Zhou W, Pan X, Sun Z, Sun Y, Xu H, Shi P, Li J, Gao L and Tian X: Circular RNA profiling reveals exosomal circ_0006156 as a novel biomarker in papillary thyroid cancer. Mol Ther Nucleic Acids. 19:1134–1144. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Zeng X, Ding T, Guo L, Li Y, Ou S and Yuan H: Microarray profile of circular RNAs identifies hsa_circ_0014130 as a new circular RNA biomarker in non-small cell lung cancer. Sci Rep. 8:28782018. View Article : Google Scholar : PubMed/NCBI | |
Yin WB, Yan MG, Fang X, Guo JJ, Xiong W and Zhang RP: Circulating circular RNA hsa_circ_0001785 acts as a diagnostic biomarker for breast cancer detection. Clin Chim Acta. 487:363–368. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Yang S, Chen W, Dong X, Zhang R, Ye H, Mei X, Liu H, Fang Y and He C: Circular RNA circYPEL2: A novel biomarker in cervical cancer. Genes (Basel). 13:382022. View Article : Google Scholar | |
Bonizzato A, Gaffo E, Te Kronnie G and Bortoluzzi S: CircRNAs in hematopoiesis and hematological malignancies. Blood Cancer J. 6:e483. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ahmed I, Karedath T, Andrews SS, Al-Azwani IK, Mohamoud YA, Querleu D, Rafii A and Malek JA: Altered expression pattern of circular RNAs in primary and metastatic sites of epithelial ovarian carcinoma. Oncotarget. 7:36366–36381. 2016. View Article : Google Scholar : PubMed/NCBI | |
Haemmerle M, Stone RL, Menter DG, Afshar-Kharghan V and Sood AK: The platelet lifeline to cancer: Challenges and opportunities. Cancer Cell. 33:965–983. 2018. View Article : Google Scholar : PubMed/NCBI | |
Dou Y, Cha DJ, Franklin JL, Higginbotham JN, Jeppesen DK, Weaver AM, Prasad N, Levy S, Coffey RJ, Patton JG and Zhang B: Circular RNAs are down-regulated in KRAS mutant colon cancer cells and can be transferred to exosomes. Sci Rep. 6:379822016. View Article : Google Scholar : PubMed/NCBI | |
Pan B, Qin J, Liu X, He B, Wang X, Pan Y, Sun H, Xu T, Xu M, Chen X, et al: Identification of serum exosomal hsa-circ-0004771 as a novel diagnostic biomarker of colorectal cancer. Front Genet. 10:10962019. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Yanfang W, Li J, Jiang P, Peng T, Chen K, Zhao X, Zhang Y, Zhen P, Zhu J and Li X: Tumor-released exosomal circular RNA PDE8A promotes invasive growth via the miR-338/MACC1/MET pathway in pancreatic cancer. Cancer Lett. 432:237–250. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ping L, Jian-Jun C, Chu-Shu L, Guang-Hua L and Ming Z: Silencing of circ_0009910 inhibits acute myeloid leukemia cell growth through increasing miR-20a-5p. Blood Cells Mol Dis. 75:41–47. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li W, Zhong C, Jiao J, Li P, Cui B, Ji C and Ma D: Characterization of hsa_circ_0004277 as a new biomarker for acute myeloid leukemia via circular RNA profile and bioinformatics analysis. Int J Mol Sci. 18:5972017. View Article : Google Scholar : PubMed/NCBI | |
Sun YM, Wang WT, Zeng ZC, Chen TQ, Han C, Pan Q, Huang W, Fang K, Sun LY, Zhou YF, et al: circMYBL2, a circRNA from MYBL2, regulates FLT3 translation by recruiting PTBP1 to promote FLT3-ITD AML progression. Blood. 134:1533–1546. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cao HX, Miao CF, Sang LN, Huang YM, Zhang R, Sun L and Jiang ZX: Circ_0009910 promotes imatinib resistance through ULK1-induced autophagy by sponging miR-34a-5p in chronic myeloid leukemia. Life Sci. 243:1172552020. View Article : Google Scholar : PubMed/NCBI | |
Wu Z, Sun H, Liu W, Zhu H, Fu J, Yang C, Fan L, Wang L, Liu Y, Xu W, et al: Circ-RPL15: A plasma circular RNA as novel oncogenic driver to promote progression of chronic lymphocytic leukemia. Leukemia. 34:919–923. 2020. View Article : Google Scholar : PubMed/NCBI | |
Qian Z, Liu H, Li M, Shi J, Li N, Zhang Y, Zhang X, Lv J, Xie X, Bai Y, et al: Potential diagnostic power of blood circular RNA expression in active pulmonary tuberculosis. EBioMedicine. 27:18–26. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhao Z, Li X, Gao C, Jian D, Hao P, Rao L and Li M: Peripheral blood circular RNA hsa_circ_0124644 can be used as a diagnostic biomarker of coronary artery disease. Sci Rep. 7:399182017. View Article : Google Scholar : PubMed/NCBI | |
Yu J, Ding WB, Wang MC, Guo XG, Xu J, Xu QG, Yang Y, Sun SH, Liu JF, Qin LX, et al: Plasma circular RNA panel to diagnose hepatitis B virus-related hepatocellular carcinoma: A large-scale, multicenter study. Int J Cancer. 146:1754–1763. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lin J, Cai D, Li W, Yu T, Mao H, Jiang S and Xiao B: Plasma circular RNA panel acts as a novel diagnostic biomarker for colorectal cancer. Clin Biochem. 74:60–68. 2019. View Article : Google Scholar : PubMed/NCBI | |
DeSantis CE, Bray F, Ferlay J, Lortet-Tieulent J, Anderson BO and Jemal A: International variation in female breast cancer incidence and mortality rates. Cancer Epidemiol Biomark Prev. 24:1495–1506. 2015. View Article : Google Scholar : PubMed/NCBI | |
Galasso M, Costantino G, Pasquali L, Minotti L, Baldassari F, Corrà F, Agnoletto C and Volinia S: Profiling of the predicted circular RNAs in ductal in situ and invasive breast cancer: A pilot study. Int J Genomics. 2016:45038402016. View Article : Google Scholar : PubMed/NCBI | |
Chen B, Wei W, Huang X and Xie X, Kong Y, Dai D, Yang L, Wang J, Tang H and Xie X: circEPSTI1 as a prognostic marker and mediator of triple-negative breast cancer progression. Theranostics. 8:4003–4015. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sang Y, Chen B, Song X, Li Y, Liang Y, Han D, Zhang N, Zhang H, Liu Y, Chen T, et al: circRNA_0025202 regulates tamoxifen sensitivity and tumor progression via regulating the miR-182-5p/FOXO3a axis in breast cancer. Mol Ther. 27:1638–1652. 2019. View Article : Google Scholar : PubMed/NCBI | |
Douillard JY, Tribodet H, Aubert D, Shepherd FA, Rosell R, Ding K, Veillard AS, Seymour L, Le Chevalier T, Spiro S, et al: Adjuvant cisplatin and vinorelbine for completely resected non-small cell lung cancer: Subgroup analysis of the Lung Adjuvant Cisplatin Evaluation. J Thorac Oncol. 5:220–228. 2010. View Article : Google Scholar : PubMed/NCBI | |
Romaszko AM: Multiple primary lung cancer. A literature review. 27:725–730. 2018.PubMed/NCBI | |
Wan L, Zhang L, Fan K, Cheng ZX, Sun QC and Wang JJ: Circular RNA-ITCH Suppresses lung cancer proliferation via inhibiting the Wnt/β-catenin pathway. Biomed Res Int. 2016:15794902016. View Article : Google Scholar : PubMed/NCBI | |
Caiment F, Gaj S, Claessen S and Kleinjans J: High-throughput data integration of RNA-miRNA-circRNA reveals novel insights into mechanisms of benzo[a]pyrene-induced carcinogenicity. Nucleic Acids Res. 43:2525–2534. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liang WC, Wong CW, Liang PP, Shi M, Cao Y, Rao ST, Tsui SK, Waye MM, Zhang Q, Fu WM and Zhang JF: Translation of the circular RNA circbeta-catenin promotes liver cancer cell growth through activation of the Wnt pathway. Genome Biol. 20:842019. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Zhao Y, Wang Y and Jin C: Circular RNA circHIAT1 inhibits cell growth in hepatocellular carcinoma by regulating miR-3171/PTEN axis. Biomed Pharmacother. 116:1089322019. View Article : Google Scholar : PubMed/NCBI | |
Yu L, Gong X, Sun L, Zhou Q, Lu B and Zhu L: The Circular RNA Cdr1as Act as an oncogene in hepatocellular carcinoma through targeting miR-7 Expression. PLoS One. 11:e01583472016. View Article : Google Scholar : PubMed/NCBI | |
Xu L, Zhang M, Zheng X, Yi P, Lan C and Xu M: The circular RNA ciRS-7 (Cdr1as) acts as a risk factor of hepatic microvascular invasion in hepatocellular carcinoma. J Cancer Res Clin Oncol. 143:17–27. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lu WY: Roles of the circular RNA circ-Foxo3 in breast cancer progression. Cell Cycle. 16:589–590. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Zhong Y, Li J and Shan A: Circular RNA circ-NT5C2 acts as an oncogene in osteosarcoma proliferation and metastasis through targeting miR-448. Oncotarget. 8:114829–114838. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gong L, Li W, Dong L and Qu F: Correction to: CircUBAP2 promotes SEMA6D expression to enhance the cisplatin resistance in osteosarcoma through sponging miR-506-3p by activating Wnt/β-catenin signaling pathway. J Mol Histol. 51:4712020. View Article : Google Scholar : PubMed/NCBI | |
Bachmayr-Heyda A, Reiner AT, Auer K, Sukhbaatar N, Aust S, Bachleitner-Hofmann T, Mesteri I, Grunt TW, Zeillinger R and Pils D: Correlation of circular RNA abundance with proliferation-exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues. Sci Rep. 5:80572015. View Article : Google Scholar : PubMed/NCBI | |
Song X, Zhang N, Han P, Moon BS, Lai RK, Wang K and Lu W: Circular RNA profile in gliomas revealed by identification tool UROBORUS. Nucleic Acids Res. 44:e872016. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Huang N, Yang X, Luo J, Yan S, Xiao F, Chen W, Gao X, Zhao K, Zhou H, et al: A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis. Oncogene. 37:1805–1814. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhao Z, Ji M, Wang Q, He N and Li Y: Circular RNA Cdr1as Upregulates SCAI to suppress cisplatin resistance in ovarian cancer via miR-1270 suppression. Mol Ther Nucleic Acids. 18:24–33. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Xia B, Xu Y, Zhang Y, Xu J and Lou G: Circular RNA (hsa_circ_0051240) promotes cell proliferation, migration and invasion in ovarian cancer through miR-637/KLK4 axis. Artif Cells Nanomed Biotechnol. 47:1224–1233. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhong Z, Lv M and Chen J: Screening differential circular RNA expression profiles reveals the regulatory role of circTCF25-miR-103a-3p/miR-107-CDK6 pathway in bladder carcinoma. Sci Rep. 6:309192016. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Chen RX, Wei WS, Li YH, Feng ZH, Tan L, Chen JW, Yuan GJ, Chen SL, Guo SJ, et al: Correction: PRMT5 Circular RNA promotes metastasis of urothelial carcinoma of the bladder through sponging miR-30c to induce epithelial-mesenchymal transition. Clin Cancer Res. 27:26642021. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Wan B, Liu L, Zhou L and Zeng Q: Circular RNA circMTO1 suppresses bladder cancer metastasis by sponging miR-221 and inhibiting epithelial-to-mesenchymal transition. Biochem Biophys Res Commun. 508:991–996. 2019. View Article : Google Scholar : PubMed/NCBI | |
Karimi P, Islami F, Anandasabapathy S, Freedman ND and Kamangar F: Gastric cancer: Descriptive epidemiology, risk factors, screening, and prevention. Cancer Epidemiol Biomarkers Prev. 23:700–713. 2014. View Article : Google Scholar : PubMed/NCBI | |
Rong D, Lu C, Zhang B, Fu K, Zhao S, Tang W and Cao H: Correction to: CircPSMC3 suppresses the proliferation and metastasis of gastric cancer by acting as a competitive endogenous RNA through sponging miR-296-5p. Mol Cancer. 19:1402020. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Liu Y, Bian Z, Zhang J, Zhang R, Chen X, Huang Y, Wang Y and Zhu J: Correction to: Circular RNA YAP1 inhibits the proliferation and invasion of gastric cancer cells by regulating the miR-367-5p/p27 Kip1 axis. Mol Cancer. 18:1172019. View Article : Google Scholar : PubMed/NCBI | |
Calabrese L and Velcheti V: Checkpoint immunotherapy: Good for cancer therapy, bad for rheumatic diseases. Ann Rheum Dis. 76:1–3. 2017. View Article : Google Scholar : PubMed/NCBI | |
Finn OJ: Cancer immunology. N Engl J Med. 358:2704–2715. 2008. View Article : Google Scholar : PubMed/NCBI | |
Cervantes-Villagrana RD, Albores-García D, Cervantes-Villagrana AR and García-Acevez SJ: Tumor-induced neurogenesis and immune evasion as targets of innovative anti-cancer therapies. Signal Transduct Target Ther. 5:992020. View Article : Google Scholar : PubMed/NCBI | |
Arneth B: Tumor microenvironment. Medicina (Kaunas). 56:152020. View Article : Google Scholar | |
Tavakoli F, Sartakhti JS, Manshaei MH and Basanta D: Cancer immunoediting: A game theoretical approach. In Silico Biology. 14:1–2. 2020. View Article : Google Scholar | |
Wilkinson K, Ng W, Roberts TL, Becker TM, Lim SH, Chua W and Lee CS: Tumour immune microenvironment biomarkers predicting cytotoxic chemotherapy efficacy in colorectal cancer. J Clin Pathol. 74:625–634. 2021. View Article : Google Scholar : PubMed/NCBI | |
Song H, Liu Q and Liao Q: Circular RNA and tumor microenvironment. Cancer Cell Int. 20:2112020. View Article : Google Scholar : PubMed/NCBI | |
Ma Z, Shuai Y, Gao X, Wen X and Ji J: Circular RNAs in the tumour microenvironment. Mol Cancer. 19:82020. View Article : Google Scholar : PubMed/NCBI | |
Carlos-Reyes Á, Romero-Garcia S, Contreras-Sanzón E, Ruiz V and Prado-Garcia H: Role of circular RNAs in the regulation of immune cells in response to cancer therapies. Front Genet. 13:8232382022. View Article : Google Scholar : PubMed/NCBI | |
Katopodi T, Petanidis S, Domvri K, Zarogoulidis P, Anestakis D, Charalampidis C, Tsavlis D, Bai C, Huang H, Freitag L, et al: Kras-driven intratumoral heterogeneity triggers infiltration of M2 polarized macrophages via the circHIPK3/PTK2 immunosuppressive circuit. Sci Rep. 11:154552021. View Article : Google Scholar : PubMed/NCBI | |
Shang A, Gu C, Wang W, Wang X, Sun J, Zeng B, Chen C, Chang W, Ping Y, Ji P, et al: Exosomal circPACRGL promotes progression of colorectal cancer via the miR-142-3p/miR-506-3p-TGF-β1 axis. Mol Cancer. 19:1172020. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Peng Z, Wang Y, Yang Y, Fan R, Gao K, Zhang H, Xie Z and Jiang W: Immune microenvironment change and involvement of circular RNAs in TIL cells of recurrent nasopharyngeal carcinoma. Front Cell Dev Biol. 9:7222242021. View Article : Google Scholar : PubMed/NCBI | |
Haanen JB: Immune checkpoint inhibitors for the treatment of cancer. Ann Oncol. 26:vii72015. View Article : Google Scholar | |
Incorvaia L, Fanale D, Badalamenti G, Barraco N, Bono M, Corsini LR, Galvano A, Gristina V, Listì A, Vieni S, et al: Programmed death ligand 1 (PD-L1) as a predictive biomarker for pembrolizumab therapy in patients with advanced non-small-cell lung cancer (NSCLC). Adv Ther. 36:2600–2617. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hong W, Xue M, Jiang J, Zhang Y and Gao X: Circular RNA circ-CPA4/let-7 miRNA/PD-L1 axis regulates cell growth, stemness, drug resistance and immune evasion in non-small cell lung cancer (NSCLC). J Exp Clin Cancer Res. 39:1492020. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Zhao X, Wang Y, Ren F, Sun D, Yan Y, Kong X, Bu J, Liu M and Xu S: circRNA-002178 act as a ceRNA to promote PDL1/PD1 expression in lung adenocarcinoma. Cell Death Dis. 11:322020. View Article : Google Scholar : PubMed/NCBI | |
Deng L, Liu G, Zheng C, Zhang L, Kang Y and Yang F: Circ-LAMP1 promotes T-cell lymphoblastic lymphoma progression via acting as a ceRNA for miR-615-5p to regulate DDR2 expression. Gene. 701:146–151. 2019. View Article : Google Scholar : PubMed/NCBI | |
Pitzalis C, Jones GW, Bombardieri M and Jones SA: Ectopic lymphoid-like structures in infection, cancer and autoimmunity. Nat Rev Immunol. 14:447–462. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zheng L, Liu L, Lin L, Tang H, Fan X, Lin H and Li X: Cecal CircRNAs are associated with the response to salmonella enterica serovar enteritidis inoculation in the chicken. Front Immunol. 10:11862019. View Article : Google Scholar : PubMed/NCBI | |
Weng Q, Chen M, Li M, Zheng YF, Shao G, Fan W, Xu XM and Ji J: Global microarray profiling identified hsa_circ_0064428 as a potential immune-associated prognosis biomarker for hepatocellular carcinoma. J Med Genet. 56:32–38. 2019. View Article : Google Scholar : PubMed/NCBI | |
Huang Q, Huang QY, Sun Y and Wu SY: High-throughput data reveals novel circular RNAs via competitive endogenous RNA networks associated with human intracranial aneurysms. Med Sci Monit. 25:4819–4830. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ou ZL, Luo Z, Wei W, Liang S, Gao TL and Lu YB: Hypoxia-induced shedding of MICA and HIF1A-mediated immune escape of pancreatic cancer cells from NK cells: Role of circ_0000977/miR-153 axis. RNA Biol. 16:1592–1603. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Zhang Y, Li X, Zhang M and Lv K: Microarray analysis of circular RNA expression patterns in polarized macrophages. Int J Mol Med. 39:373–379. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zou Y, Zheng S, Deng X, Yang A and Xie X, Tang H and Xie X: The role of circular RNA CDR1as/ciRS-7 in regulating tumor microenvironment: A pan-cancer analysis. Biomolecules. 9:4292019. View Article : Google Scholar : PubMed/NCBI | |
Shi H, Zhou Y, Jia E, Liu Z, Pan M, Bai Y, Zhao X and Ge Q: Comparative analysis of circular RNA enrichment methods. RNA Biol. 19:55–67. 2022. View Article : Google Scholar : PubMed/NCBI | |
Giannoukos G, Ciulla DM, Huang K, Haas BJ, Izard J, Levin JZ, Livny J, Earl AM, Gevers D, Ward DV, et al: Efficient and robust RNA-seq process for cultured bacteria and complex community transcriptomes. Genome Biol. 13:R232012. View Article : Google Scholar : PubMed/NCBI | |
Chaabane M, Williams RM, Stephens AT and Park JW: circDeep: Deep learning approach for circular RNA classification from other long non-coding RNA. Bioinformatics. 36:73–80. 2020. View Article : Google Scholar : PubMed/NCBI | |
Amin N, McGrath A and Chen YP: Evaluation of deep learning in non-coding RNA classification. Nat Machine Intelligence. 1:246–256. 2019. View Article : Google Scholar | |
Chakraborty C, Sharma AR, Sharma G, Doss CGP and Lee SS: Therapeutic miRNA and siRNA: Moving from bench to clinic as next generation medicine. Mol Ther Nucleic Acids. 8:132–143. 2017. View Article : Google Scholar : PubMed/NCBI | |
Baptista B, Riscado M, Queiroz J, Pichon C and Sousa F: Non-coding RNAs: Emerging from the discovery to therapeutic applications. Biochem Pharmacol. 189:1144692021. View Article : Google Scholar : PubMed/NCBI | |
Damase TR, Sukhovershin R, Boada C, Taraballi F, Pettigrew RI and Cooke JP: The limitless future of RNA therapeutics. Front Bioeng Biotechnol. 9:6281372021. View Article : Google Scholar : PubMed/NCBI | |
You X and Conrad TO: Acfs: Accurate circRNA identification and quantification from RNA-Seq data. Sci Rep. 6:388202016. View Article : Google Scholar : PubMed/NCBI | |
Wang K, Singh D, Zeng Z, Coleman SJ, Huang Y, Savich GL, He X, Mieczkowski P, Grimm SA, Perou CM, et al: MapSplice: Accurate mapping of RNA-seq reads for splice junction discovery. Nucleic Acids Res. 38:e1782010. View Article : Google Scholar : PubMed/NCBI |