Role of macrophages in tumor progression and therapy (Review)
- Authors:
- Yiwei Xu
- Xiaomin Wang
- Lijuan Liu
- Jia Wang
- Jibiao Wu
- Changgang Sun
-
Affiliations: Institute of Integrated Medicine, School of Medicine, Qingdao University, Qingdao, Shandong 266073, P.R. China, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China, Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong 261041, P.R. China, State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, P.R. China - Published online on: April 1, 2022 https://doi.org/10.3892/ijo.2022.5347
- Article Number: 57
-
Copyright: © Xu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Maimela NR, Liu S and Zhang Y: Fates of CD8+ T cells in tumor microenvironment. Comput Struct Biotechnol J. 17:1–13. 2019. View Article : Google Scholar | |
Locati M, Curtale G and Mantovani A: Diversity, mechanisms, and significance of macrophage plasticity. Annu Rev Pathol. 15:123–147. 2020. View Article : Google Scholar | |
Goswami KK, Ghosh T, Ghosh S, Sarkar M, Bose A and Baral R: Tumor promoting role of anti-tumor macrophages in tumor microenvironment. Cell Immunol. 316:1–10. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang XM, Chen DG, Li SC, Zhu B and Li ZJ: Embryonic origin and subclonal evolution of tumor-associated macrophages imply preventive care for cancer. Cells. 10:9032021. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Yung MMH, Ngan HYS, Chan KKL and Chan DW: The impact of the tumor microenvironment on macrophage polarization in cancer metastatic progression. Int J Mol Sci. 22:65602021. View Article : Google Scholar : PubMed/NCBI | |
Yahaya MAF, Lila MAM, Ismail S, Zainol M and Afizan N: Tumour-associated macrophages (TAMs) in colon cancer and how to reeducate them. J Immunol Res. 2019:23682492019. View Article : Google Scholar : PubMed/NCBI | |
Castegna A, Gissi R, Menga A, Montopoli M, Favia M, Viola A and Canton M: Pharmacological targets of metabolism in disease: Opportunities from macrophages. Pharmacol Ther. 210:1075212020. View Article : Google Scholar : PubMed/NCBI | |
Chanmee T, Ontong P, Konno K and Itano N: Tumor-associated macrophages as major players in the tumor microenvironment. Cancers (Basel). 6:1670–1690. 2014. View Article : Google Scholar | |
Liu Q, Li Y, Niu Z, Zong Y, Wang M, Yao L, Lu Z, Liao Q and Zhao Y: Atorvastatin (Lipitor) attenuates the effects of aspirin on pancreatic cancerogenesis and the chemotherapeutic efficacy of gemcitabine on pancreatic cancer by promoting M2 polarized tumor associated macrophages. J Exp Clin Cancer Res. 35:332016. View Article : Google Scholar : PubMed/NCBI | |
Singhal S, Stadanlick J, Annunziata MJ, Rao AS, Bhojnagarwala PS, O'Brien S, Moon EK, Cantu E, Danet-Desnoyers G, Ra HJ, et al: Human tumor-associated monocytes/macrophages and their regulation of T cell responses in early-stage lung cancer. Sci Transl Med. 11:eaat15002019. View Article : Google Scholar : PubMed/NCBI | |
Gyori D, Lim EL, Grant FM, Spensberger D, Roychoudhuri R, Shuttleworth SJ, Okkenhaug K, Stephens LR and Hawkins PT: Compensation between CSF1R+ macrophages and Foxp3+ Treg cells drives resistance to tumor immunotherapy. JCI Insight. 3:e1206312018. View Article : Google Scholar : | |
Cassetta L and Pollard JW: Targeting macrophages: Therapeutic approaches in cancer. Nat Rev Drug Discov. 17:887–904. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Wang W, Wu H, Zhou Y, Qin X, Wang Y, Wu J, Sun XY, Yang Y, Xu H, et al: The essential role of PRAK in tumor metastasis and its therapeutic potential. Nat Commun. 12:17362021. View Article : Google Scholar : PubMed/NCBI | |
Fu LQ, Du WL, Cai MH, Yao JY, Zhao YY and Mou XZ: The roles of tumor-associated macrophages in tumor angiogenesis and metastasis. Cell Immunol. 353:1041192020. View Article : Google Scholar : PubMed/NCBI | |
Zhou Z, Xia G, Xiang Z, Liu M, Wei Z, Yan J, Chen W, Zhu J, Awasthi N, Sun X, et al: A C-X-C chemokine receptor type 2-dominated cross-talk between tumor cells and macrophages drives gastric cancer metastasis. Clin Cancer Res. 25:3317–3328. 2019. View Article : Google Scholar : PubMed/NCBI | |
Pastushenko I and Blanpain C: EMT transition states during tumor progression and metastasis. Trends Cell Biol. 29:212–226. 2019. View Article : Google Scholar | |
Paolillo M and Schinelli S: Extracellular matrix alterations in metastatic processes. Int J Mol Sci. 20:49472019. View Article : Google Scholar : | |
Li W, Zhang X, Wu F, Zhou Y, Bao Z, Li H, Zheng P and Zhao S: Gastric cancer-derived mesenchymal stromal cells trigger M2 macrophage polarization that promotes metastasis and EMT in gastric cancer. Cell Death Dis. 10:9182019. View Article : Google Scholar : PubMed/NCBI | |
Swierczak A and Pollard JW: Myeloid cells in metastasis. Cold Spring Harb Perspect Med. 10:a0380262020. View Article : Google Scholar | |
Zavyalova MV, Denisov EV, Tashireva LA, Savelieva OE, Kaigorodova EV, Krakhmal NV and Perelmuter VM: Intravasation as a key step in cancer metastasis. Biochemistry (Mosc). 84:762–772. 2019. View Article : Google Scholar | |
Wang J, Cao Z, Zhang XM, Nakamura M, Sun M, Hartman J, Harris RA, Sun Y and Cao Y: Novel mechanism of macrophage-mediated metastasis revealed in a zebrafish model of tumor development. Cancer Res. 75:306–315. 2015. View Article : Google Scholar | |
Chen XW, Yu TJ, Zhang J, Li Y, Chen HL, Yang GF, Yu W, Liu YZ, Liu XX, Duan CF, et al: CYP4A in tumor-associated macrophages promotes pre-metastatic niche formation and metastasis. Oncogene. 36:5045–5057. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ludwig N, Yerneni SS, Azambuja JH, Gillespie DG, Menshikova EV, Jackson EK and Whiteside TL: Tumor-derived exosomes promote angiogenesis via adenosine A2B receptor signaling. Angiogenesis. 23:599–610. 2020. View Article : Google Scholar : PubMed/NCBI | |
Min AKT, Mimura K, Nakajima S, Okayama H, Saito K, Sakamoto W, Fujita S, Endo H, Saito M, Saze Z, et al: Therapeutic potential of anti-VEGF receptor 2 therapy targeting for M2-tumor-associated macrophages in colorectal cancer. Cancer Immunol Immunother. 70:289–298. 2021. View Article : Google Scholar | |
Dong F, Ruan S, Wang J, Xia Y, Le K, Xiao X, Hu T and Wang Q: M2 macrophage-induced lncRNA PCAT6 facilitates tumorigenesis and angiogenesis of triple-negative breast cancer through modulation of VEGFR2. Cell Death Dis. 11:7282020. View Article : Google Scholar : PubMed/NCBI | |
Kessenbrock K, Plaks V and Werb Z: Matrix metalloproteinases: Regulators of the tumor microenvironment. Cell. 141:52–67. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wang B, Li Q, Wang J, Zhao S, Nashun B, Qin L and Chen X: Plasmodium infection inhibits tumor angiogenesis through effects on tumor-associated macrophages in a murine implanted hepatoma model. Cell Commun Signal. 18:1572020. View Article : Google Scholar : PubMed/NCBI | |
Anderson NM and Simon MC: The tumor microenvironment. Curr Biol. 30:R921–R925. 2020. View Article : Google Scholar : PubMed/NCBI | |
Fu T, Dai LJ, Wu SY, Xiao Y, Ma D, Jiang YZ and Shao ZM: Spatial architecture of the immune microenvironment orchestrates tumor immunity and therapeutic response. J Hematol Oncol. 14:982021. View Article : Google Scholar : PubMed/NCBI | |
Kirkiles-Smith NC, Harding MJ, Shepherd BR, Fader SA, Yi T, Wang Y, McNiff JM, Snyder EL, Lorber MI, Tellides G and Pober JS: Development of a humanized mouse model to study the role of macrophages in allograft injury. Transplantation. 87:189–197. 2009. View Article : Google Scholar : PubMed/NCBI | |
Comito G, Giannoni E, Segura CP, Barcellos-de-Souza P, Raspollini MR, Baroni G, Lanciotti M, Serni S and Chiarugi P: Cancer-associated fibroblasts and M2-polarized macrophages synergize during prostate carcinoma progression. Oncogene. 33:2423–2431. 2014. View Article : Google Scholar | |
Yang F, Wei Y, Han D, Li Y, Shi S, Jiao D, Wu J, Zhang Q, Shi C, Yang L, et al: Interaction with CD68 and Regulation of GAS6 expression by endosialin in fibroblasts drives recruitment and polarization of macrophages in hepatocellular carcinoma. Cancer Res. 80:3892–3905. 2020.PubMed/NCBI | |
Cho H, Seo Y, Loke KM, Kim SW, Oh SM, Kim JH, Soh J, Kim HS, Lee H, Kim J, et al: Cancer-Stimulated CAFs enhance monocyte differentiation and protumoral TAM Activation via IL6 and GM-CSF secretion. Clin Cancer Res. 24:5407–5421. 2018. View Article : Google Scholar : PubMed/NCBI | |
Najafi M, Farhood B and Mortezaee K: Extracellular matrix (ECM) stiffness and degradation as cancer drivers. J Cell Biochem. 120:2782–2790. 2019. View Article : Google Scholar | |
Ueshima E, Fujimori M, Kodama H, Felsen D, Chen J, Durack JC, Solomon SB, Coleman JA and Srimathveeravalli G: Macrophage-secreted TGF-β1 contributes to fibroblast activation and ureteral stricture after ablation injury. Am J Physiol Renal Physiol. 317:F52–F64. 2019. View Article : Google Scholar | |
Li G, Jin F, Du J, He Q, Yang B and Luo P: Macrophage-secreted TSLP and MMP9 promote bleomycin-induced pulmonary fibrosis. Toxicol Appl Pharmacol. 366:10–16. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hashimoto O, Yoshida M, Koma Y, Yanai T, Hasegawa D, Kosaka Y, Nishimura N and Yokozaki H: Collaboration of cancer-associated fibroblasts and tumour-associated macrophages for neuroblastoma development. J Pathol. 240:211–223. 2016. View Article : Google Scholar : PubMed/NCBI | |
Takahashi H, Sakakura K, Kudo T, Toyoda M, Kaira K, Oyama T and Chikamatsu K: Cancer-associated fibroblasts promote an immunosuppressive microenvironment through the induction and accumulation of protumoral macrophages. Oncotarget. 8:8633–8647. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang M, Su Z and Amoah Barnie P: Crosstalk among colon cancer-derived exosomes, fibroblast-derived exosomes, and macrophage phenotypes in colon cancer metastasis. Int Immunopharmacol. 81:1062982020. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Wang X, Ma X, Liu C, Wu J and Sun C: Natural polysaccharides and their derivates: A promising natural adjuvant for tumor immunotherapy. Front Pharmacol. 12:6218132021. View Article : Google Scholar : PubMed/NCBI | |
Kishton RJ, Sukumar M and Restifo NP: Metabolic Regulation of T cell longevity and function in tumor immunotherapy. Cell Metab. 26:94–109. 2017. View Article : Google Scholar : PubMed/NCBI | |
Walsh AJ, Mueller KP, Tweed K, Jones I, Walsh CM, Piscopo NJ, Niemi NM, Pagliarini DJ, Saha K and Skala MC: Classification of T-cell activation via autofluorescence lifetime imaging. Nat Biomed Eng. 5:77–88. 2021. View Article : Google Scholar : | |
Erlandsson A, Carlsson J, Lundholm M, Fält A, Andersson SO, Andrén O and Davidsson S: M2 macrophages and regulatory T cells in lethal prostate cancer. Prostate. 79:363–369. 2019. View Article : Google Scholar : | |
Liu C, Chikina M, Deshpande R, Menk AV, Wang T, Tabib T, Brunazzi EA, Vignali KM, Sun M, Stolz DB, et al: Treg cells promote the SREBP1-dependent metabolic fitness of tumor-promoting macrophages via repression of CD8+ T cell-derived interferon-γ. Immunity. 51:381–397.e6. 2019. View Article : Google Scholar | |
Wu Q, Zhou W, Yin S, Zhou Y, Chen T, Qian J, Su R, Hong L, Lu H, Zhang F, et al: Blocking triggering receptor expressed on myeloid cells-1-positive tumor-associated macrophages induced by hypoxia reverses immunosuppression and anti-programmed cell death ligand 1 resistance in liver cancer. Hepatology. 70:198–214. 2019. View Article : Google Scholar : PubMed/NCBI | |
La Fleur L, Botling J, He F, Pelicano C, Zhou C, He C, Palano G, Mezheyeuski A, Micke P, Ravetch JV, et al: Targeting MARCO and IL37R on immunosuppressive macrophages in lung cancer blocks regulatory T cells and supports cytotoxic lymphocyte function. Cancer Res. 81:956–967. 2021. View Article : Google Scholar | |
Zhou J, Li X, Wu X, Zhang T, Zhu Q and Wang X, Wang H, Wang K, Lin Y and Wang X: Exosomes released from tumor-associated macrophages transfer miRNAs That Induce a Treg/Th17 cell imbalance in epithelial ovarian cancer. Cancer Immunol Res. 6:1578–1592. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang D, Yang L, Yue D, Cao L, Li L, Wang D, Ping Y, Shen Z, Zheng Y, Wang L and Zhang Y: Macrophage-derived CCL22 promotes an immunosuppressive tumor microenvironment via IL-8 in malignant pleural effusion. Cancer Lett. 452:244–253. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li L, Han L, Sun F, Zhou J, Ohaegbulam KC, Tang X, Zang X, Steinbrecher KA, Qu Z and Xiao G: NF-κB RelA renders tumor-associated macrophages resistant to and capable of directly suppressing CD8+ T cells for tumor promotion. Oncoimmunology. 7:e14352502018. View Article : Google Scholar | |
Fujimori D, Kinoshita J, Yamaguchi T, Nakamura Y, Gunjigake K, Ohama T, Sato K, Yamamoto M, Tsukamoto T, Nomura S, et al: Established fibrous peritoneal metastasis in an immunocompetent mouse model similar to clinical immune microenvironment of gastric cancer. BMC Cancer. 20:10142020. View Article : Google Scholar : PubMed/NCBI | |
Hu B, Wang Z, Zeng H, Qi Y, Chen Y, Wang T, Wang J, Chang Y, Bai Q, Xia Y, et al: Blockade of DC-SIGN+ Tumor-Associated macrophages reactivates antitumor immunity and improves immunotherapy in muscle-invasive bladder cancer. Cancer Res. 80:1707–1719. 2020.PubMed/NCBI | |
Śledzińska A, Vila de Mucha M, Bergerhoff K, Hotblack A, Demane DF, Ghorani E, Akarca AU, Marzolini MAV, Solomon I, Vargas FA, et al: Regulatory T cells restrain interleukin-2- and Blimp-1-dependent acquisition of cytotoxic function by CD4+ T cells. Immunity. 52:151–166.e6. 2020. View Article : Google Scholar | |
Eisel D, Das K, Dickes E, König R, Osen W and Eichmüller SB: Cognate interaction with CD4+ T cells instructs tumor-associated macrophages to acquire M1-Like phenotype. Front Immunol. 10:2192019. View Article : Google Scholar | |
Bogen B, Fauskanger M, Haabeth OA and Tveita A: CD4+ T cells indirectly kill tumor cells via induction of cytotoxic macrophages in mouse models. Cancer Immunol Immunother. 68:1865–1873. 2019. View Article : Google Scholar : PubMed/NCBI | |
Nakayama T, Hirahara K, Onodera A, Endo Y, Hosokawa H, Shinoda K, Tumes DJ and Okamoto Y: Th2 cells in health and disease. Annu Rev Immunol. 35:53–84. 2017. View Article : Google Scholar | |
Shirabe K, Mano Y, Muto J, Matono R, Motomura T, Toshima T, Takeishi K, Uchiyama H, Yoshizumi T, Taketomi A, et al: Role of tumor-associated macrophages in the progression of hepatocellular carcinoma. Surg Today. 42:1–7. 2012. View Article : Google Scholar | |
Fu C and Jiang A: Dendritic cells and CD8 T cell immunity in tumor microenvironment. Front Immunol. 9:30592018. View Article : Google Scholar | |
Gardner A and Ruffell B: Dendritic cells and cancer immunity. Trends Immunol. 37:855–865. 2016. View Article : Google Scholar : PubMed/NCBI | |
Verneau J, Sautés-Fridman C and Sun CM: Dendritic cells in the tumor microenvironment: Prognostic and theranostic impact. Semin Immunol. 48:1014102020. View Article : Google Scholar : PubMed/NCBI | |
Chaib M, Chauhan SC and Makowski L: Friend or foe? Recent strategies to target myeloid cells in cancer. Front Cell Dev Biol. 8:3512020. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Li Z, Skrzypczynska KM, Fang Q, Zhang W, O'Brien SA, He Y, Wang L, Zhang Q, Kim A, et al: Single-cell analyses inform mechanisms of myeloid-targeted therapies in colon cancer. Cell. 181442–459. (29)2020. View Article : Google Scholar : PubMed/NCBI | |
Dammeijer F, Lievense LA, Kaijen-Lambers ME, van Nimwegen M, Bezemer K, Hegmans JP, van Hall T, Hendriks RW and Aerts JG: Depletion of tumor-associated macrophages with a CSF-1R kinase inhibitor enhances antitumor immunity and survival induced by DC immunotherapy. Cancer Immunol Res. 5:535–546. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ruffell B, Chang-Strachan D, Chan V, Rosenbusch A, Ho CM, Pryer N, Daniel D, Hwang ES, Rugo HS and Coussens LM: Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. Cancer Cell. 26:623–637. 2014. View Article : Google Scholar : PubMed/NCBI | |
Llopiz D, Ruiz M, Silva L, Repáraz D, Aparicio B, Egea J, Lasarte JJ, Redin E, Calvo A, Angel M, et al: Inhibition of adjuvant-induced TAM receptors potentiates cancer vaccine immunogenicity and therapeutic efficacy. Cancer Lett. 499:279–289. 2021. View Article : Google Scholar : | |
Meza Guzman LG, Keating N and Nicholson SE: Natural killer cells: Tumor surveillance and signaling. Cancers (Basel). 12:9522020. View Article : Google Scholar | |
Krneta T, Gillgrass A, Poznanski S, Chew M, Lee AJ, Kolb M and Ashkar AA: M2-polarized and tumor-associated macrophages alter NK cell phenotype and function in a contact-dependent manner. J Leukoc Biol. 101:285–295. 2017. View Article : Google Scholar | |
Bellora F, Castriconi R, Dondero A, Reggiardo G, Moretta L, Mantovani A, Moretta A and Bottino C: The interaction of human natural killer cells with either unpolarized or polarized macrophages results in different functional outcomes. Proc Natl Acad Sci USA. 107:21659–21664. 2010. View Article : Google Scholar : PubMed/NCBI | |
Eisinger S, Sarhan D, Boura VF, Ibarlucea-Benitez I, Tyystjärvi S, Oliynyk G, Arsenian-Henriksson M, Lane D, Wikström SL, Kiessling R, et al: Targeting a scavenger receptor on tumor-associated macrophages activates tumor cell killing by natural killer cells. Proc Natl Acad Sci USA. 117:32005–32016. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sprinzl MF, Reisinger F, Puschnik A, Ringelhan M, Ackermann K, Hartmann D, Schiemann M, Weinmann A, Galle PR, Schuchmann M, et al: Sorafenib perpetuates cellular anticancer effector functions by modulating the crosstalk between macrophages and natural killer cells. Hepatology. 57:2358–2368. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kim J and Bae JS: Tumor-associated macrophages and neutrophils in tumor microenvironment. Mediators Inflamm. 2016:60581472016. View Article : Google Scholar : PubMed/NCBI | |
Kim IS, Gao Y, Welte T, Wang H, Liu J, Janghorban M, Sheng K, Niu Y, Goldstein A, Zhao N, et al: Immuno-subtyping of breast cancer reveals distinct myeloid cell profiles and immunotherapy resistance mechanisms. Nat Cell Biol. 21:1113–1126. 2019. View Article : Google Scholar : PubMed/NCBI | |
Braza MS, Conde P, Garcia M, Cortegano I, Brahmachary M, Pothula V, Fay F, Boros P, Werner SA, Ginhoux F, et al: Neutrophil derived CSF1 induces macrophage polarization and promotes transplantation tolerance. Am J Transplant. 18:1247–1255. 2018. View Article : Google Scholar : PubMed/NCBI | |
Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS and Albelda SM: Polarization of tumor-associated neutrophil phenotype by TGF-beta: 'N1' versus 'N2' TAN. Cancer Cell. 16:183–194. 2009. View Article : Google Scholar : PubMed/NCBI | |
Andzinski L, Kasnitz N, Stahnke S, Wu CF, Gereke M, von Köckritz-Blickwede M, Schilling B, Brandau S, Weiss S and Jablonska J: Type I IFNs induce anti-tumor polarization of tumor associated neutrophils in mice and human. Int J Cancer. 138:1982–1993. 2016. View Article : Google Scholar | |
Ye L, Zhang T, Kang Z, Guo G, Sun Y, Lin K, Huang Q, Shi X, Ni Z, Ding N, et al: Tumor-infiltrating immune cells act as a marker for prognosis in colorectal cancer. Front Immunol. 10:23682019. View Article : Google Scholar : PubMed/NCBI | |
Zhou Z, Wang P, Sun R, Li J, Hu Z, Xin H, Luo C, Zhou J, Fan J and Zhou S: Tumor-associated neutrophils and macrophages interaction contributes to intrahepatic cholangiocarcinoma progression by activating STAT3. J Immunother Cancer. 9:e0019462021. View Article : Google Scholar : PubMed/NCBI | |
Zhou SL, Zhou ZJ, Hu ZQ, Huang XW, Wang Z, Chen EB, Fan J, Cao Y, Dai Z and Zhou J: Tumor-associated neutrophils recruit macrophages and T-regulatory cells to promote progression of hepatocellular carcinoma and resistance to sorafenib. Gastroenterology. 150:1646–1658.e17. 2016. View Article : Google Scholar : PubMed/NCBI | |
Haider P, Kral-Pointner JB, Mayer J, Richter M, Kaun C, Brostjan C, Eilenberg W, Fischer MB, Speidl WS, Hengstenberg C, et al: Neutrophil extracellular trap degradation by differently polarized macrophage subsets. Arterioscler Thromb Vasc Biol. 40:2265–2278. 2020. View Article : Google Scholar : PubMed/NCBI | |
Marichal T, Tsai M and Galli SJ: Mast cells: Potential positive and negative roles in tumor biology. Cancer Immunol Res. 1:269–279. 2013. View Article : Google Scholar | |
Khazaie K, Blatner NR, Khan MW, Gounari F, Gounaris E, Dennis K, Bonertz A, Tsai FN, Strouch MJ, Cheon E, et al: The significant role of mast cells in cancer. Cancer Metastasis Rev. 30:45–60. 2011. View Article : Google Scholar : PubMed/NCBI | |
Khan MW, Keshavarzian A, Gounaris E, Melson JE, Cheon EC, Blatner NR, Chen ZE, Tsai FN, Lee G, Ryu H, et al: PI3K/AKT signaling is essential for communication between tissue-infiltrating mast cells, macrophages, and epithelial cells in colitis-induced cancer. Clin Cancer Res. 19:2342–2354. 2013. View Article : Google Scholar : PubMed/NCBI | |
Galli SJ, Borregaard N and Wynn TA: Phenotypic and functional plasticity of cells of innate immunity: Macrophages, mast cells and neutrophils. Nat Immunol. 12:1035–1044. 2011. View Article : Google Scholar : PubMed/NCBI | |
Taskinen M, Karjalainen-Lindsberg ML and Leppä S: Prognostic influence of tumor-infiltrating mast cells in patients with follicular lymphoma treated with rituximab and CHOP. Blood. 111:4664–4667. 2008. View Article : Google Scholar : PubMed/NCBI | |
Tan SY, Fan Y, Luo HS, Shen ZX, Guo Y and Zhao LJ: Prognostic significance of cell infiltrations of immunosurveillance in colorectal cancer. World J Gastroenterol. 11:1210–1214. 2005. View Article : Google Scholar : PubMed/NCBI | |
Attramadal CG, Kumar S, Gao J, Boysen ME, Halstensen TS and Bryne M: Low mast cell density predicts poor prognosis in oral squamous cell carcinoma and reduces survival in head and neck squamous cell carcinoma. Anticancer Res. 36:5499–5506. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tataroğlu C, Kargi A, Ozkal S, Eşrefoğlu N and Akkoçlu A: Association of macrophages, mast cells and eosinophil leukocytes with angiogenesis and tumor stage in non-small cell lung carcinomas (NSCLC). Lung Cancer. 43:47–54. 2004. View Article : Google Scholar | |
Peng SH, Deng H, Yang JF, Xie PP, Li C, Li H and Feng DY: Significance and relationship between infiltrating inflammatory cell and tumor angiogenesis in hepatocellular carcinoma tissues. World J Gastroenterol. 11:6521–6524. 2005. View Article : Google Scholar | |
Affara NI, Ruffell B, Medler TR, Gunderson AJ, Johansson M, Bornstein S, Bergsland E, Steinhoff M, Li Y, Gong Q, et al: B cells regulate macrophage phenotype and response to chemotherapy in squamous carcinomas. Cancer Cell. 25:809–821. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wong SC, Puaux AL, Chittezhath M, Shalova I, Kajiji TS, Wang X, Abastado JP, Lam KP and Biswas SK: Macrophage polarization to a unique phenotype driven by B cells. Eur J Immunol. 40:2296–2307. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhou M, Li W, Wen Z, Sheng Y, Ren H, Dong H, Cao M, Hu HM and Wang LX: Macrophages enhance tumor-derived autophagosomes (DRibbles)-induced B cells activation by TLR4/MyD88 and CD40/CD40L. Exp Cell Res. 331:320–330. 2015. View Article : Google Scholar | |
Lykken JM and Tedder TF: The tumor microenvironment regulates CD19 and CD20 immunotherapy for lymphoma. Cancer J. 21:351–356. 2015. View Article : Google Scholar : PubMed/NCBI | |
Dahal LN, Dou L, Hussain K, Liu R, Earley A, Cox KL, Murinello S, Tracy I, Forconi F, Steele AJ, et al: STING activation reverses lymphoma-mediated resistance to antibody immunotherapy. Cancer Res. 77:3619–3631. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sawa-Wejksza K and Kandefer-Szerszeń M: Tumor-associated macrophages as target for antitumor therapy. Arch Immunol Ther Exp (Warsz). 66:97–111. 2018. View Article : Google Scholar | |
Wang Y, Zhang Q, Chen Y, Liang CL, Liu H, Qiu F and Dai Z: Antitumor effects of immunity-enhancing traditional Chinese medicine. Biomed Pharmacother. 121:1095702020. View Article : Google Scholar | |
He J, Yin P and Xu K: Effect and molecular mechanisms of traditional Chinese medicine on tumor targeting tumor-associated macrophages. Drug Des Devel Ther. 14:907–919. 2020. View Article : Google Scholar : PubMed/NCBI | |
Guerriero JL: Macrophages: The road less traveled, changing anticancer therapy. Trends Mol Med. 24:472–489. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li H, Li L, Mei H, Pan G, Wang X, Huang X, Wang T, Jiang Z, Zhang L and Sun L: Antitumor properties of triptolide: Phenotype regulation of macrophage differentiation. Cancer Biol Ther. 21:178–188. 2020. View Article : Google Scholar : | |
Jia X, Yu F, Wang J, Iwanowycz S, Saaoud F, Wang Y, Hu J, Wang Q and Fan D: Emodin suppresses pulmonary metastasis of breast cancer accompanied with decreased macrophage recruitment and M2 polarization in the lungs. Breast Cancer Res Treat. 148:291–302. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li H, Huang N, Zhu W, Wu J, Yang X, Teng W, Tian J, Fang Z, Luo Y, Chen M and Li Y: Modulation the crosstalk between tumor-associated macrophages and non-small cell lung cancer to inhibit tumor migration and invasion by ginsenoside Rh2. BMC Cancer. 18:5792018. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Sun M, Yao W, Wang F, Li X, Wang W, Li J, Gao Z, Qiu L, You R, et al: Compound kushen injection relieves tumor-associated macrophage-mediated immunosuppression through TNFR1 and sensitizes hepatocellular carcinoma to sorafenib. J Immunother Cancer. 8:e0003172020. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Wu W, Zhu X, Ng W, Gong C, Yao C, Ni Z, Yan X, Fang C and Zhu S: The Ancient Chinese decoction Yu-Ping-Feng Suppresses Orthotopic lewis lung cancer tumor growth through increasing M1 macrophage polarization and CD4(+) T cell cytotoxicity. Front Pharmacol. 10:13332019. View Article : Google Scholar | |
Wang S, Ma L, Wang Z, He H, Chen H, Duan Z, Li Y, Si Q, Chuang TH, Chen C and Luo Y: Lactate dehydrogenase-A (LDH-A) preserves cancer stemness and recruitment of tumor-associated macrophages to promote breast cancer progression. Front Oncol. 11:6544522021. View Article : Google Scholar : PubMed/NCBI | |
Laviron M and Boissonnas A: Ontogeny of tumor-associated macrophages. Front Immunol. 10:17992019. View Article : Google Scholar : PubMed/NCBI | |
Mantovani A, Marchesi F, Malesci A, Laghi L and Allavena P: Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol. 14:399–416. 2017. View Article : Google Scholar : PubMed/NCBI | |
Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, Kaiser EA, Snyder LA and Pollard JW: CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature. 475:222–225. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Yao X, Xu Y, Zhang Q, Wang H, Zhao L, Wen G, Liu Y, Jing L and Sun X: Dahuang Zhechong Pill suppresses colorectal cancer liver metastasis via ameliorating exosomal CCL2 primed pre-metastatic niche. J Ethnopharmacol. 238:1118782019. View Article : Google Scholar : PubMed/NCBI | |
Wu CY, Cherng JY, Yang YH, Lin CL, Kuan FC, Lin YY, Lin YS, Shu LH, Cheng YC, Liu HT, et al: Danshen improves survival of patients with advanced lung cancer and targeting the relationship between macrophages and lung cancer cells. Oncotarget. 8:90925–90947. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Schulte BC, Zhou Y, Haribhai D, Mackinnon AC, Plaza JA, Williams CB and Hwang ST: Depletion of M2-like tumor-associated macrophages delays cutaneous T-cell lymphoma development in vivo. J Invest Dermatol. 134:2814–2822. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zeisberger SM, Odermatt B, Marty C, Zehnder-Fjällman AH, Ballmer-Hofer K and Schwendener RA: Clodronate-liposome-mediated depletion of tumour-associated macrophages: A new and highly effective antiangiogenic therapy approach. Br J Cancer. 95:272–281. 2006. View Article : Google Scholar : PubMed/NCBI | |
Baert T, Vankerckhoven A, Riva M, Van Hoylandt A, Thirion G, Holger G, Mathivet T, Vergote I and Coosemans A: Myeloid derived suppressor cells: Key drivers of immunosuppression in ovarian cancer. Front Immunol. 10:12732019. View Article : Google Scholar : PubMed/NCBI | |
Etzerodt A, Tsalkitzi K, Maniecki M, Damsky W, Delfini M, Baudoin E, Moulin M, Bosenberg M, Graversen JH, Auphan-Anezin N, et al: Specific targeting of CD163+ TAMs mobilizes inflammatory monocytes and promotes T cell-mediated tumor regression. J Exp Med. 216:2394–2411. 2019. View Article : Google Scholar : PubMed/NCBI | |
Scott EM, Jacobus EJ, Lyons B, Frost S, Freedman JD, Dyer A, Khalique H, Taverner WK, Carr A, Champion BR, et al: Bi- and tri-valent T cell engagers deplete tumour-associated macrophages in cancer patient samples. J Immunother Cancer. 7:3202019. View Article : Google Scholar : PubMed/NCBI | |
Galletti G, Caligaris-Cappio F and Bertilaccio MT: B cells and macrophages pursue a common path toward the development and progression of chronic lymphocytic leukemia. Leukemia. 30:2293–2301. 2016. View Article : Google Scholar : PubMed/NCBI | |
Deci MB, Ferguson SW, Scatigno SL and Nguyen J: Modulating macrophage polarization through CCR2 inhibition and multivalent engagement. Mol Pharm. 15:2721–2731. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bonapace L, Coissieux MM, Wyckoff J, Mertz KD, Varga Z, Junt T and Bentires-Alj M: Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis. Nature. 515:130–133. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fujiwara T, Yakoub MA, Chandler A, Christ AB, Yang G, Ouerfelli O, Rajasekhar VK, Yoshida A, Kondo H, Hata T, et al: CSF1/CSF1R signaling inhibitor pexidartinib (PLX3397) reprograms tumor-associated macrophages and stimulates T-cell infiltration in the sarcoma microenvironment. Mol Cancer Ther. 20:1388–1399. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sluijter M, van der Sluis TC, van der Velden PA, Versluis M, West BL, van der Burg SH and van Hall T: Inhibition of CSF-1R supports T-cell mediated melanoma therapy. PLoS One. 9:e1042302014. View Article : Google Scholar : PubMed/NCBI | |
Atzori MG, Ceci C, Ruffini F, Trapani M, Barbaccia ML, Tentori L, D'Atri S, Lacal PM and Graziani G: Role of VEGFR-1 in melanoma acquired resistance to the BRAF inhibitor vemurafenib. J Cell Mol Med. 24:465–475. 2020. View Article : Google Scholar | |
Linde N, Lederle W, Depner S, van Rooijen N, Gutschalk CM and Mueller MM: Vascular endothelial growth factor-induced skin carcinogenesis depends on recruitment and alternative activation of macrophages. J Pathol. 227:17–28. 2012. View Article : Google Scholar : PubMed/NCBI | |
Huang Z, Gan J, Long Z, Guo G, Shi X, Wang C, Zang Y, Ding Z, Chen J, Zhang J and Dong L: Targeted delivery of let-7b to reprogramme tumor-associated macrophages and tumor infiltrating dendritic cells for tumor rejection. Biomaterials. 90:72–84. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wu L, Zhang X, Zheng L, Zhao H, Yan G, Zhang Q, Zhou Y, Lei J, Zhang J, Wang J, et al: RIPK3 orchestrates fatty acid metabolism in tumor-associated macrophages and hepatocarcinogenesis. Cancer Immunol Res. 8:710–721. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yu Q, Wang Y, Dong L, He Y, Liu R, Yang Q, Cao Y, Wang Y, Jia A, Bi Y and Liu G: Regulations of Glycolytic activities on macrophages functions in tumor and infectious inflammation. Front Cell Infect Microbiol. 10:2872020. View Article : Google Scholar : PubMed/NCBI | |
Baer C, Squadrito ML, Laoui D, Thompson D, Hansen SK, Kiialainen A, Hoves S, Ries CH, Ooi CH and De Palma M: Suppression of microRNA activity amplifies IFN-γ-induced macrophage activation and promotes anti-tumour immunity. Nat Cell Biol. 18:790–802. 2016. View Article : Google Scholar : PubMed/NCBI | |
Andersen MN, Etzerodt A, Graversen JH, Holthof LC, Moestrup SK, Hokland M and Møller HJ: STAT3 inhibition specifically in human monocytes and macrophages by CD163-targeted corosolic acid-containing liposomes. Cancer Immunol Immunother. 68:489–502. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shi C, Liu T, Guo Z, Zhuang R, Zhang X and Chen X: Reprogramming Tumor-associated macrophages by nanoparticle-based reactive oxygen species photogeneration. Nano Lett. 18:7330–7342. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Cao S, Liang S, Tan CH, Luo B, Xu X and Saw PE: Differently charged super-paramagnetic iron oxide nanoparticles preferentially induced M1-like phenotype of macrophages. Front Bioeng Biotechnol. 8:5372020. View Article : Google Scholar : PubMed/NCBI | |
Shan H, Dou W, Zhang Y and Qi M: Targeted ferritin nanoparticle encapsulating CpG oligodeoxynucleotides induces tumor-associated macrophage M2 phenotype polarization into M1 phenotype and inhibits tumor growth. Nanoscale. 12:22268–22280. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bhattacharya U, Gutter-Kapon L, Kan T, Boyango I, Barash U, Yang SM, Liu J, Gross-Cohen M, Sanderson RD, Shaked Y, et al: Heparanase and chemotherapy synergize to drive macrophage activation and enhance tumor growth. Cancer Res. 80:57–68. 2020. View Article : Google Scholar : | |
Halbrook CJ, Pontious C, Kovalenko I, Lapienyte L, Dreyer S, Lee HJ, Thurston G, Zhang Y, Lazarus J, Sajjakulnukit P, et al: Macrophage-released pyrimidines inhibit gemcitabine therapy in pancreatic cancer. Cell Metab. 29:1390–1399.e6. 2019. View Article : Google Scholar : PubMed/NCBI | |
Buchholz SM, Goetze RG, Singh SK, Ammer-Herrmenau C, Richards FM, Jodrell DI, Buchholz M, Michl P, Ellenrieder V, Hessmann E and Neesse A: Depletion of macrophages improves therapeutic response to gemcitabine in murine pancreas cancer. Cancers (Basel). 12:19782020. View Article : Google Scholar | |
Liu Q, Wu H, Li Y, Zhang R, Kleeff J, Zhang X, Cui M, Liu J, Li T, Gao J, et al: Combined blockade of TGf-β1 and GM-CSF improves chemotherapeutic effects for pancreatic cancer by modulating tumor microenvironment. Cancer Immunol Immunother. 69:1477–1492. 2020. View Article : Google Scholar : PubMed/NCBI | |
Baghdadi M, Wada H, Nakanishi S, Abe H, Han N, Putra WE, Endo D, Watari H, Sakuragi N, Hida Y, et al: Chemotherapy-induced IL34 enhances immunosuppression by tumor-associated macrophages and mediates survival of chemoresistant lung cancer cells. Cancer Res. 76:6030–6042. 2016. View Article : Google Scholar : PubMed/NCBI | |
Salvagno C, Ciampricotti M, Tuit S, Hau CS, van Weverwijk A, Coffelt SB, Kersten K, Vrijland K, Kos K, Ulas T, et al: Therapeutic targeting of macrophages enhances chemotherapy efficacy by unleashing type I interferon response. Nat Cell Biol. 21:511–521. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wanderley CW, Colón DF, Luiz JPM, Oliveira FF, Viacava PR, Leite CA, Pereira JA, Silva CM, Silva CR, Silva RL, et al: Paclitaxel reduces tumor growth by reprogramming tumor-associated macrophages to an M1 profile in a TLR4-dependent manner. Cancer Res. 78:5891–5900. 2018.PubMed/NCBI | |
Jin H, He Y, Zhao P, Hu Y, Tao J, Chen J and Huang Y: Targeting lipid metabolism to overcome EMT-associated drug resistance via integrin β3/FAK pathway and tumor-associated macrophage repolarization using legumain-activatable delivery. Theranostics. 9:265–278. 2019. View Article : Google Scholar : | |
Inoue T, Fujishima S, Ikeda E, Yoshie O, Tsukamoto N, Aiso S, Aikawa N, Kubo A, Matsushima K and Yamaguchi K: CCL22 and CCL17 in rat radiation pneumonitis and in human idiopathic pulmonary fibrosis. Eur Respir J. 24:49–56. 2004. View Article : Google Scholar : PubMed/NCBI | |
Shiao SL, Ruffell B, DeNardo DG, Faddegon BA, Park CC and Coussens LM: TH2-polarized CD4(+) T cells and macrophages limit efficacy of radiotherapy. Cancer Immunol Res. 3:518–525. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jarosz-Biej M, Smolarczyk R, Cichoń T, Drzyzga A, Czapla J, Urbaś Z, Pilny E, Matuszczak S and Wojcieszek P: Brachytherapy in a Single dose of 10Gy as an 'in situ' Vaccination. Int J Mol Sci. 21:45852020. View Article : Google Scholar | |
Teresa Pinto A, Laranjeiro Pinto M, Patrícia Cardoso A, Monteiro C, Teixeira Pinto M, Filipe Maia A, Castro P, Figueira R, Monteiro A, Marques M, et al: Ionizing radiation modulates human macrophages towards a pro-inflammatory phenotype preserving their pro-invasive and pro-angiogenic capacities. Sci Rep. 6:187652016. View Article : Google Scholar : PubMed/NCBI | |
Rödel F, Frey B, Manda K, Hildebrandt G, Hehlgans S, Keilholz L, Seegenschmiedt MH, Gaipl US and Rödel C: Immunomodulatory properties and molecular effects in inflammatory diseases of low-dose x-irradiation. Front Oncol. 2:1202012. View Article : Google Scholar : PubMed/NCBI | |
Seifert L, Werba G, Tiwari S, Giao Ly NN, Nguy S, Alothman S, Alqunaibit D, Avanzi A, Daley D, Barilla R, et al: Radiation therapy induces macrophages to suppress T-cell responses against pancreatic tumors in mice. Gastroenterology. 150:1659–1672.e5. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jones KI, Tiersma J, Yuzhalin AE, Gordon-Weeks AN, Buzzelli J, Im JH and Muschel RJ: Radiation combined with macrophage depletion promotes adaptive immunity and potentiates checkpoint blockade. EMBO Mol Med. 10:e93422018. View Article : Google Scholar : PubMed/NCBI | |
Candas-Green D, Xie B, Huang J, Fan M, Wang A, Menaa C, Zhang Y, Zhang L, Jing D, Azghadi S, et al: Dual blockade of CD47 and HER2 eliminates radioresistant breast cancer cells. Nat Commun. 11:45912020. View Article : Google Scholar : PubMed/NCBI | |
Meziani L, Mondini M, Petit B, Boissonnas A, Thomas de Montpreville V, Mercier O, Vozenin MC and Deutsch E: CSF1R inhibition prevents radiation pulmonary fibrosis by depletion of interstitial macrophages. Eur Respir J. 51:17021202018. View Article : Google Scholar : PubMed/NCBI | |
Riley RS, June CH, Langer R and Mitchell MJ: Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov. 18:175–196. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kruger S, Ilmer M, Kobold S, Cadilha BL, Endres S, Ormanns S, Schuebbe G, Renz BW, D'Haese JG, Schloesser H, et al: Advances in cancer immunotherapy 2019-latest trends. J Exp Clin Cancer Res. 38:2682019. View Article : Google Scholar | |
Peranzoni E, Lemoine J, Vimeux L, Feuillet V, Barrin S, Kantari-Mimoun C, Bercovici N, Guérin M, Biton J, Ouakrim H, et al: Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti-PD-1 treatment. Proc Natl Acad Sci USA. 115:E4041–E4050. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gordon SR, Maute RL, Dulken BW, Hutter G, George BM, McCracken MN, Gupta R, Tsai JM, Sinha R, Corey D, et al: PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature. 545:495–499. 2017. View Article : Google Scholar : PubMed/NCBI | |
Klichinsky M, Ruella M, Shestova O, Lu XM, Best A, Zeeman M, Schmierer M, Gabrusiewicz K, Anderson NR, Petty NE, et al: Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat Biotechnol. 38:947–953. 2020. View Article : Google Scholar : PubMed/NCBI | |
Advani R, Flinn I, Popplewell L, Forero A, Bartlett NL, Ghosh N, Kline J, Roschewski M, LaCasce A, Collins GP, et al: CD47 blockade by Hu5F9-G4 and rituximab in Non-Hodgkin's lymphoma. N Engl J Med. 379:1711–1721. 2018. View Article : Google Scholar : PubMed/NCBI | |
Rao L, Zhao SK, Wen C, Tian R, Lin L, Cai B, Sun Y, Kang F, Yang Z, He L, et al: Activating macrophage-mediated cancer immunotherapy by genetically edited nanoparticles. Adv Mater. 32:e20048532020. View Article : Google Scholar : PubMed/NCBI |