Identification of the most common BRCA alterations through analysis of germline mutation databases: Is droplet digital PCR an additional strategy for the assessment of such alterations in breast and ovarian cancer families?
- Authors:
- Alessandro Lavoro
- Aurora Scalisi
- Saverio Candido
- Guido Nicola Zanghì
- Roberta Rizzo
- Giuseppe Gattuso
- Giuseppe Caruso
- Massimo Libra
- Luca Falzone
-
Affiliations: Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy, Italian League Against Cancer, Section of Catania, I‑95122 Catania, Italy, Department of General Surgery and Medical‑Surgical Specialties, Policlinico‑Vittorio Emanuele Hospital, University of Catania, I‑95123 Catania, Italy, Epidemiology and Biostatistics Unit, National Cancer Institute IRCCS Fondazione ‘G. Pascale’, I‑80131 Naples, Italy - Published online on: April 6, 2022 https://doi.org/10.3892/ijo.2022.5349
- Article Number: 58
-
Copyright: © Lavoro et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 Cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Łukasiewicz S, Czeczelewski M, Forma A, Baj J, Sitarz R and Stanisławek A: Breast cancer-epidemiology, risk factors, classification, prognostic markers, and current treatment strategies-an updated review. Cancers (Basel). 13:42872021. View Article : Google Scholar | |
Falzone L, Scandurra G, Lombardo V, Gattuso G, Lavoro A, Distefano AB, Scibilia G and Scollo P: A multidisciplinary approach remains the best strategy to improve and strengthen the management of ovarian cancer (Review). Int J Oncol. 59:532021. View Article : Google Scholar : PubMed/NCBI | |
Winters S, Martin C, Murphy D and Shokar NK: Breast cancer epidemiology, prevention, and screening. Prog Mol Biol Transl Sci. 151:1–32. 2017. View Article : Google Scholar : PubMed/NCBI | |
La Vecchia C: Ovarian cancer: Epidemiology and risk factors. Eur J Cancer Prev. 26:55–62. 2017. View Article : Google Scholar | |
D'Alonzo M, Bounous VE, Villa M and Biglia N: Current evidence of the oncological benefit-risk profile of hormone replacement therapy. Medicina (Kaunas). 55:5732019. View Article : Google Scholar | |
Prentice RL, Aragaki AK, Chlebowski RT, Rossouw JE, Anderson GL, Stefanick ML, Wactawski-Wende J, Kuller LH, Wallace R, Johnson KC, et al: Randomized trial evaluation of the benefits and risks of menopausal hormone therapy among women 50-59 years of age. Am J Epidemiol. 190:365–375. 2021. View Article : Google Scholar | |
Beaber EF, Malone KE, Tang MT, Barlow WE, Porter PL, Daling JR and Li CI: Oral contraceptives and breast cancer risk overall and by molecular subtype among young women. Cancer Epidemiol Biomarkers Prev. 23:755–764. 2014. View Article : Google Scholar : PubMed/NCBI | |
Havrilesky LJ, Moorman PG, Lowery WJ, Gierisch JM, Coeytaux RR, Urrutia RP, Dinan M, McBroom AJ, Hasselblad V, Sanders GD and Myers ER: Oral contraceptive pills as primary prevention for ovarian cancer: A systematic review and meta-analysis. Obstet Gynecol. 112:139–147. 2013. View Article : Google Scholar | |
Benfatto G, Zanghì G, Catalano F, Di Stefano G, Fancello R, Mugavero F and Giovanetto A: Day surgery for breast cancer in the elderly. G Chir. 27:49–52. 2006.In Italian. PubMed/NCBI | |
Shoemaker ML, White MC, Wu M, Weir HK and Romieu I: Differences in breast cancer incidence among young women aged 20-49 years by stage and tumor characteristics, age, race, and ethnicity, 2004-2013. Breast Cancer Res Treat. 169:595–606. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sarink D, Wu AH, Le Marchand L, White KK, Park SY, Setiawan VW, Hernandez BY, Wilkens LR and Merritt MA: Racial/ethnic differences in ovarian cancer risk: Results from the multiethnic cohort study. Cancer Epidemiol Biomarkers Prev. 29:2019–2025. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zeinomar N, Knight JA, Genkinger JM, Phillips KA, Daly MB, Milne RL, Dite GS, Kehm RD, Liao Y, Southey MC, et al: Alcohol consumption, cigarette smoking, and familial breast cancer risk: Findings from the prospective family study cohort (ProF-SC). Breast Cancer Res. 21:1282019. View Article : Google Scholar : PubMed/NCBI | |
Friedenreich CM, Ryder-Burbidge C and McNeil J: Physical activity, obesity and sedentary behavior in cancer etiology: Epidemiologic evidence and biologic mechanisms. Mol Oncol. 15:790–800. 2021. View Article : Google Scholar : | |
Dunneram Y, Greenwood DC and Cade JE: Diet, menopause and the risk of ovarian, endometrial and breast cancer. Proc Nutr Soc. 78:438–448. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bryere J, Dejardin O, Launay L, Colonna M, Grosclaude P and Launoy G; French Network of Cancer Registries (FRANCIM): Socioeconomic status and site-specific cancer incidence, a Bayesian approach in a French cancer registries network study. Eur J Cancer Prev. 27:391–398. 2018. View Article : Google Scholar | |
Falzone L, Grimaldi M, Celentano E, Augustin LSA and Libra M: Identification of modulated MicroRNAs associated with breast cancer, diet, and physical activity. Cancers (Basel). 12:25552020. View Article : Google Scholar | |
Park HL: Epigenetic biomarkers for environmental exposures and personalized breast cancer prevention. Int J Environ Res Public Health. 17:11812020. View Article : Google Scholar : | |
Singh A, Gupta S and Sachan M: Epigenetic biomarkers in the management of ovarian cancer: Current prospectives. Front Cell Dev Biol. 7:1822019. View Article : Google Scholar : PubMed/NCBI | |
Huang M, Xiao J, Nasca PC, Liu C, Lu Y, Lawrence WR, Wang L, Chen Q and Lin S: Do multiple environmental factors impact four cancers in women in the contiguous United States? Environ Res. 179(PtA): 1087822019. View Article : Google Scholar : PubMed/NCBI | |
Brewer HR, Jones ME, Schoemaker MJ, Ashworth A and Swerdlow AJ: Family history and risk of breast cancer: An analysis accounting for family structure. Breast Cancer Res Treat. 165:193–200. 2017. View Article : Google Scholar : PubMed/NCBI | |
Flaum N, Crosbie EJ, Edmondson RJ, Smith MJ and Evans DG: Epithelial ovarian cancer risk: A review of the current genetic landscape. Clin Genet. 97:54–63. 2020. View Article : Google Scholar : | |
Bethea TN, Ochs-Balcom HM, Bandera EV, Beeghly-Fadiel A, Camacho F, Chyn D, Cloyd EK, Harris HR, Joslin CE, Myers E, et al: First- and second-degree family history of ovarian and breast cancer in relation to risk of invasive ovarian cancer in African American and white women. Int J Cancer. 148:2964–2973. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Hao X, Song Z, Zhi X, Zhang S and Zhang J: Correlation between family history and characteristics of breast cancer. Sci Rep. 11:63602021. View Article : Google Scholar : PubMed/NCBI | |
Welcsh PL and King MC: BRCA1 and BRCA2 and the genetics of breast and ovarian cancer. Hum Mol Genet. 10:705–713. 2001. View Article : Google Scholar : PubMed/NCBI | |
Yoshida K and Miki Y: Role of BRCA1 and BRCA2 as regulators of DNA repair, transcription, and cell cycle in response to DNA damage. Cancer Sci. 95:866–871. 2004. View Article : Google Scholar : PubMed/NCBI | |
Paul A and Paul S: The breast cancer susceptibility genes (BRCA) in breast and ovarian cancers. Front Biosci (Landmark Ed). 19:605–618. 2014. View Article : Google Scholar | |
Venkitaraman AR: How do mutations affecting the breast cancer genes BRCA1 and BRCA2 cause cancer susceptibility? DNA Repair (Amst). 81:1026682019. View Article : Google Scholar | |
Paalosalo-Harris K and Skirton H: Mixed method systematic review: The relationship between breast cancer risk perception and health-protective behaviour in women with family history of breast cancer. J Adv Nurs. 73:760–764. 2017. View Article : Google Scholar | |
Hanley GE, McAlpine JN, Miller D, Huntsman D, Schrader KA, Gilks CB and Mitchell G: A population-based analysis of germline BRCA1 and BRCA2 testing among ovarian cancer patients in an era of histotype-specific approaches to ovarian cancer prevention. BMC Cancer. 18:2542018. View Article : Google Scholar : PubMed/NCBI | |
Moschetta M, George A, Kaye SB and Banerjee S: BRCA somatic mutations and epigenetic BRCA modifications in serous ovarian cancer. Ann Oncol. 27:1449–1455. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kuchenbaecker KB, Hopper JL, Barnes DR, Phillips KA, Mooij TM, Roos-Blom MJ, Jervis S, van Leeuwen FE, Milne RL, Andrieu N, et al: Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA. 317:2402–2416. 2017. View Article : Google Scholar : PubMed/NCBI | |
Neff RT, Senter L and Salani R: BRCA mutation in ovarian cancer: Testing, implications and treatment considerations. Ther Adv Med Oncol. 9:519–531. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kotsopoulos J: BRCA mutations and breast cancer prevention. Cancers (Basel). 10:5242018. View Article : Google Scholar | |
Cortesi L, Piombino C and Toss A: Germline mutations in other homologous recombination repair-related genes than BRCA1/2: Predictive or prognostic factors? J Pers Med. 11:2452021. View Article : Google Scholar : | |
Zhao W, Hu H, Mo Q, Guan Y, Li Y, Du Y and Li L: Function and mechanism of combined PARP-1 and BRCA genes in regulating the radiosensitivity of breast cancer cells. Int J Clin Exp Pathol. 12:3915–3920. 2019. | |
Liu X, Wu K, Zheng D, Luo C, Fan Y, Zhong X and Zheng H: Efficacy and safety of PARP inhibitors in advanced or metastatic triple-negative breast cancer: A systematic review and meta-analysis. Front Oncol. 11:7421392021. View Article : Google Scholar : PubMed/NCBI | |
Dickson KA, Xie T, Evenhuis C, Ma Y and Marsh DJ: PARP inhibitors display differential efficacy in models of BRCA mutant high-grade serous ovarian cancer. Int J Mol Sci. 22:85062021. View Article : Google Scholar : | |
Al-Thoubaity FK: Molecular classification of breast cancer: A retrospective cohort study. Ann Med Surg (Lond). 49:44–48. 2019. View Article : Google Scholar | |
Makki J: Diversity of breast carcinoma: Histological subtypes and clinical relevance. Clin Med Insights Pathol. 8:23–31. 2015. View Article : Google Scholar | |
Magro G, Salvatorelli L, Puzzo L, Piombino E, Bartoloni G, Broggi G and Vecchio GM: Practical approach to diagnosis of bland-looking spindle cell lesions of the breast. Pathologica. 111:344–360. 2019. View Article : Google Scholar | |
Gorodetska I, Kozeretska I and Dubrovska A: BRCA genes: The role in genome stability, cancer stemness and therapy resistance. J Cancer. 10:2109–2127. 2019. View Article : Google Scholar : | |
Tung NM and Garber JE: BRCA1/2 testing: Therapeutic implications for breast cancer management. Br J Cancer. 119:141–152. 2018. View Article : Google Scholar : PubMed/NCBI | |
Broggi G, Filetti V, Ieni A, Rapisarda V, Ledda C, Vitale E, Varricchio S, Russo D, Lombardo C, Tuccari G, et al: MacroH2A1 immunoexpression in breast cancer. Front Oncol. 10:15192020. View Article : Google Scholar : PubMed/NCBI | |
Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S, Liu Q, Cochran C, Bennett LM and Ding W: A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science. 266:66–71. 1994. View Article : Google Scholar : PubMed/NCBI | |
Nelson AC and Holt JT: Impact of RING and BRCT domain mutations on BRCA1 protein stability, localization and recruitment to DNA damage. Radiat Res. 174:1–13. 2010. View Article : Google Scholar : PubMed/NCBI | |
Christou CM and Kyriacou K: BRCA1 and its network of interacting partners. Biology (Basel). 2:40–63. 2013. | |
Xia Y, Pao GM, Chen HW, Verma IM and Hunter T: Enhancement of BRCA1 E3 ubiquitin ligase activity through direct interaction with the BARD1 protein. J Biol Chem. 278:5255–5263. 2003. View Article : Google Scholar | |
Manke IA, Lowery DM, Nguyen A and Yaffe MB: BRCT repeats as phosphopeptide-binding modules involved in protein targeting. Science. 302:636–639. 2003. View Article : Google Scholar : PubMed/NCBI | |
Clapperton JA, Manke IA, Lowery DM, Ho T, Haire LF, Yaffe MB and Smerdon SJ: Structure and mechanism of BRCA1 BRCT domain recognition of phosphorylated BACH1 with implications for cancer. Nat Struct Mol Biol. 11:512–518. 2004. View Article : Google Scholar : PubMed/NCBI | |
Thanassoulas A, Nomikos M, Theodoridou M, Yannoukakos D, Mastellos D and Nounesis G: Thermodynamic study of the BRCT domain of BARD1 and its interaction with the -pSER-X-X-Phemotif-containing BRIP1 peptide. Biochim Biophys Acta. 1804:1908–1916. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wang B, Matsuoka S, Ballif BA, Zhang D, Smogorzewska A, Gygi SP and Elledge SJ: Abraxas and RAP80 form a BRCA1 protein complex required for the DNA damage response. Science. 316:1194–1198. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chen CF, Li S, Chen Y, Chen PL, Sharp ZD and Lee WH: The nuclear localization sequences of the BRCA1 protein interact with the importin-alpha subunit of the nuclear transport signal receptor. J Biol Chem. 271:32863–32868. 1996. View Article : Google Scholar : PubMed/NCBI | |
Caestecker KW and Van de Walle GR: The role of BRCA1 in DNA double-strand repair: past and present. Exp Cell Res. 319:575–587. 2013. View Article : Google Scholar | |
Savage KI and Harkin DP: BRCA1, a 'complex' protein involved in the maintenance of genomic stability. FEBS J. 282:630–646. 2015. View Article : Google Scholar | |
Sharma B, Kaur RP, Raut S and Munshi A: BRCA1 mutation spectrum, functions, and therapeutic strategies: The story so far. Curr Probl Cancer. 42:189–207. 2018. View Article : Google Scholar : PubMed/NCBI | |
Takaoka M and Miki Y: BRCA1 gene: Function and deficiency. Int J Clin Oncol. 23:36–44. 2018. View Article : Google Scholar | |
Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER III, Hurov KE, Luo J, Bakalarski CE, Zhao Z, Solimini N, Lerenthal Y, et al: ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science. 316:1160–1166. 2007. View Article : Google Scholar : PubMed/NCBI | |
Smith J, Tho LM, Xu N and Gillespie DA: The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Adv Cancer Res. 108:73–112. 2010. View Article : Google Scholar : PubMed/NCBI | |
Syed A and Tainer JA: The MRE11-RAD50-NBS1 complex conducts the orchestration of damage signaling and outcomes to stress in DNA replication and repair. Annu Rev Biochem. 87:263–294. 2018. View Article : Google Scholar : PubMed/NCBI | |
Simhadri S, Vincelli G, Huo Y, Misenko S, Foo TK, Ahlskog J, Sørensen CS, Oakley GG, Ganesan S, Bunting SF and Xia B: PALB2 connects BRCA1 and BRCA2 in the G2/M checkpoint response. Oncogene. 38:1585–1596. 2019. View Article : Google Scholar : | |
Zhao W, Steinfeld JB, Liang F, Chen X, Maranon DG, Ma CJ, Kwon Y, Rao T, Wang W, Sheng C, et al: BRCA1-BARD1 promotes RAD51-mediated homologous DNA pairing. Nature. 550:360–365. 2017. View Article : Google Scholar : PubMed/NCBI | |
Coleman KA and Greenberg RA: The BRCA1-RAP80 complex regulates DNA repair mechanism utilization by restricting end resection. J Biol Chem. 286:13669–13680. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kumaraswamy E and Shiekhattar R: Activation of BRCA1/BRCA2-associated helicase BACH1 is required for timely progression through S phase. Mol Cell Biol. 27:6733–6741. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Zhang H, Kajino K and Greene MI: BRCA1 binds c-Myc and inhibits its transcriptional and transforming activity in cells. Oncogene. 17:1939–1948. 1998. View Article : Google Scholar : PubMed/NCBI | |
Chai YL, Cui J, Shao N, Shyam E, Reddy P and Rao VN: The second BRCT domain of BRCA1 proteins interacts with p53 and stimulates transcription from the p21WAF1/CIP1 promoter. Oncogene. 18:263–268. 1999. View Article : Google Scholar : PubMed/NCBI | |
Thurn KT, Thomas S, Raha P, Qureshi I and Munster PN: Histone deacetylase regulation of ATM-mediated DNA damage signaling. Mol Cancer Ther. 12:2078–2087. 2013. View Article : Google Scholar : PubMed/NCBI | |
Buckley NE, Hosey AM, Gorski JJ, Purcell JW, Mulligan JM, Harkin DP and Mullan PB: BRCA1 regulates IFN-gamma signaling through a mechanism involving the type I IFNs. Mol Cancer Res. 5:261–270. 2007. View Article : Google Scholar : PubMed/NCBI | |
Tan W, Zheng L, Lee WH and Boyer TG: Functional dissection of transcription factor ZBRK1 reveals zinc fingers with dual roles in DNA-binding and BRCA1-dependent transcriptional repression. J Biol Chem. 279:6576–6587. 2004. View Article : Google Scholar | |
Harte MT, O'Brien GJ, Ryan NM, Gorski JJ, Savage KI, Crawford NT, Mullan PB and Harkin DP: BRD7, a subunit of SWI/SNF complexes, binds directly to BRCA1 and regulates BRCA1-dependent transcription. Cancer Res. 70:2538–2547. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yoshino Y, Qi H, Fujita H, Shirota M, Abe S, Komiyama Y, Shindo K, Nakayama M, Matsuzawa A, Kobayashi A, et al: BRCA1-interacting protein OLA1 requires interaction with BARD1 to regulate centrosome number. Mol Cancer Res. 16:1499–1511. 2018. View Article : Google Scholar : PubMed/NCBI | |
Harkin DP, Bean JM, Miklos D, Song YH, Truong VB, Englert C, Christians FC, Ellisen LW, Maheswaran S, Oliner JD and Haber DA: Induction of GADD45 and JNK/SAPK-dependent apoptosis following inducible expression of BRCA1. Cell. 97:575–586. 1999. View Article : Google Scholar : PubMed/NCBI | |
Wooster R, Bignell G, Lancaster J, Swift S, Seal S, Mangion J, Collins N, Gregory S, Gumbs C and Micklem G: Identification of the breast cancer susceptibility gene BRCA2. Nature. 378:789–792. 1995. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Silver DP, Walpita D, Cantor SB, Gazdar AF, Tomlinson G, Couch FJ, Weber BL, Ashley T, Livingston DM and Scully R: Stable interaction between the products of the BRCA1 and BRCA2 tumor suppressor genes in mitotic and meiotic cells. Mol Cell. 2:317–328. 1998. View Article : Google Scholar : PubMed/NCBI | |
Sharan SK and Bradley A: Functional characterization of BRCA1 and BRCA2: Clues from their interacting proteins. J Mammary Gland Biol Neoplasia. 3:413–421. 1998. View Article : Google Scholar | |
Oliver AW, Swift S, Lord CJ, Ashworth A and Pearl LH: Structural basis for recruitment of BRCA2 by PALB2. EMBO Rep. 10:990–996. 2009. View Article : Google Scholar : PubMed/NCBI | |
Carreira A, Hilario J, Amitani I, Baskin RJ, Shivji MK, Venkitaraman AR and Kowalczykowski SC: The BRC repeats of BRCA2 modulate the DNA-binding selectivity of RAD51. Cell. 136:1032–1043. 2009. View Article : Google Scholar : PubMed/NCBI | |
Davies OR and Pellegrini L: Interaction with the BRCA2 C terminus protects RAD51-DNA filaments from disassembly by BRC repeats. Nat Struct Mol Biol. 14:475–483. 2007. View Article : Google Scholar : PubMed/NCBI | |
Moynahan ME, Pierce AJ and Jasin M: BRCA2 is required for homology-directed repair of chromosomal breaks. Mol Cell. 7:263–272. 2001. View Article : Google Scholar : PubMed/NCBI | |
Roy R, Chun J and Powell SN: BRCA1 and BRCA2: Different roles in a common pathway of genome protection. Nat Rev Cancer. 12:68–78. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yuan SS, Lee SY, Chen G, Song M, Tomlinson GE and Lee EY: BRCA2 is required for ionizing radiation-induced assembly of Rad51 complex in vivo. Cancer Res. 59:3547–3551. 1999.PubMed/NCBI | |
Milner J, Ponder B, Hughes-Davies L, Seltmann M and Kouzarides T: Transcriptional activation functions in BRCA2. Nature. 386:772–773. 1997. View Article : Google Scholar : PubMed/NCBI | |
Davies AA, Masson JY, McIlwraith MJ, Stasiak AZ, Stasiak A, Venkitaraman AR and West SC: Role of BRCA2 in control of the RAD51 recombination and DNA repair protein. Mol Cell. 7:273–282. 2001. View Article : Google Scholar : PubMed/NCBI | |
Esashi F, Galkin VE, Yu X, Egelman EH and West SC: Stabilization of RAD51 nucleoprotein filaments by the C-terminal region of BRCA2. Nat Struct Mol Biol. 14:468–474. 2007. View Article : Google Scholar : PubMed/NCBI | |
Henderson BR: Regulation of BRCA1, BRCA2 and BARD1 intracellular trafficking. Bioessays. 27:884–893. 2005. View Article : Google Scholar : PubMed/NCBI | |
Couturier AM, Fleury H, Patenaude AM, Bentley VL, Rodrigue A, Coulombe Y, Niraj J, Pauty J, Berman JN, Dellaire G, et al: Roles for APRIN (PDS5B) in homologous recombination and in ovarian cancer prediction. Nucleic Acids Res. 44:10879–10897. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yang H, Jeffrey PD, Miller J, Kinnucan E, Sun Y, Thoma NH, Zheng N, Chen PL, Lee WH and Pavletich NP: BRCA2 function in DNA binding and recombination from a BRCA2-DSS1-ssDNA structure. Science. 297:1837–1848. 2002. View Article : Google Scholar : PubMed/NCBI | |
Buisson R, Niraj J, Pauty J, Maity R, Zhao W, Coulombe Y, Sung P and Masson JY: Breast cancer proteins PALB2 and BRCA2 stimulate polymerase η in recombination-associated DNA synthesis at blocked replication forks. Cell Rep. 6:553–564. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hussain S, Wilson JB, Medhurst AL, Hejna J, Witt E, Ananth S, Davies A, Masson JY, Moses R, West SC, et al: Direct interaction of FANCD2 with BRCA2 in DNA damage response pathways. Hum Mol Genet. 13:1241–1248. 2004. View Article : Google Scholar : PubMed/NCBI | |
Higgs MR and Stewart GS: Protection or resection: BOD1L as a novel replication fork protection factor. Nucleus. 7:34–40. 2016. View Article : Google Scholar : PubMed/NCBI | |
Preobrazhenska O, Yakymovych M, Kanamoto T, Yakymovych I, Stoika R, Heldin CH and Souchelnytskyi S: BRCA2 and Smad3 synergize in regulation of gene transcription. Oncogene. 21:5660–5664. 2002. View Article : Google Scholar : PubMed/NCBI | |
Hughes-Davies L, Huntsman D, Ruas M, Fuks F, Bye J, Chin SF, Milner J, Brown LA, Hsu F, Gilks B, et al: EMSY links the BRCA2 pathway to sporadic breast and ovarian cancer. Cell. 115:523–535. 2003. View Article : Google Scholar : PubMed/NCBI | |
Marmorstein LY, Kinev AV, Chan GK, Bochar DA, Beniya H, Epstein JA, Yen TJ and Shiekhattar R: A human BRCA2 complex containing a structural DNA binding component influences cell cycle progression. Cell. 104:247–257. 2001. View Article : Google Scholar : PubMed/NCBI | |
Singh JK, Smith R, Rother MB, de Groot AJL, Wiegant WW, Vreeken K, D'Augustin O, Kim RQ, Qian H, Krawczyk PM, et al: Zinc finger protein ZNF384 is an adaptor of Ku to DNA during classical non-homologous end-joining. Nat Commun. 12:65602021. View Article : Google Scholar : PubMed/NCBI | |
Prakash R, Zhang Y, Feng W and Jasin M: Homologous recombination and human health: The roles of BRCA1, BRCA2, and associated proteins. Cold Spring Harb Perspect Biol. 7:a0166002015. View Article : Google Scholar : PubMed/NCBI | |
Huang KL, Mashl RJ, Wu Y, Ritter DI, Wang J, Oh C, Paczkowska M, Reynolds S, Wyczalkowski MA, Oak N, et al: Pathogenic Germline variants in 10,389 adult cancers. Cell. 173:355–370. 2018. View Article : Google Scholar : PubMed/NCBI | |
Van Hout CV, Tachmazidou I, Backman JD, Hoffman JD, Liu D, Pandey AK, Gonzaga-Jauregui C, Khalid S, Ye B, Banerjee N, et al: Exome sequencing and characterization of 49,960 individuals in the UK Biobank. Nature. 586:749–756. 2020. View Article : Google Scholar : PubMed/NCBI | |
Engel C and Fischer C: Breast cancer risks and risk prediction models. Breast Care (Basel). 10:7–12. 2015. View Article : Google Scholar | |
Wu H, Wu X and Liang Z: Impact of germline and somatic BRCA1/2 mutations: Tumor spectrum and detection platforms. Gene Ther. 24:601–609. 2017. View Article : Google Scholar : PubMed/NCBI | |
Seo A, Steinberg-Shemer O, Unal S, Casadei S, Walsh T, Gumruk F, Shalev S, Shimamura A, Akarsu NA, Tamary H and King MC: Mechanism for survival of homozygous nonsense mutations in the tumor suppressor gene BRCA1. Proc Natl Acad Sci USA. 115:5241–5246. 2018. View Article : Google Scholar : | |
Petrucelli N, Daly MB and Pal T: BRCA1- and BRCA2-Associated Hereditary Breast and Ovarian Cancer. GeneReviews®. Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Mirzaa GM and Amemiya A: University of Washington; Seattle: pp. 1993–2022. 2022 | |
Winter C, Nilsson MP, Olsson E, George AM, Chen Y, Kvist A, Törngren T, Vallon-Christersson J, Hegardt C, Häkkinen J, et al: Targeted sequencing of BRCA1 and BRCA2 across a large unselected breast cancer cohort suggests that one-third of mutations are somatic. Ann Oncol. 27:1532–1538. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cline MS, Liao RG, Parsons MT, Paten B, Alquaddoomi F, Antoniou A, Baxter S, Brody L, Cook-Deegan R, Coffin A, et al: BRCA challenge: BRCA exchange as a global resource for variants in BRCA1 and BRCA2. PLoS Genet. 26:e10077522018. View Article : Google Scholar | |
Anczuków O, Ware MD, Buisson M, Zetoune AB, Stoppa-Lyonnet D, Sinilnikova OM and Mazoyer S: Does the nonsense-mediated mRNA decay mechanism prevent the synthesis of truncated BRCA1, CHK2, and p53 proteins? Hum Mutat. 29:65–73. 2008. View Article : Google Scholar | |
Roa BB, Boyd AA, Volcik K and Richards CS: Ashkenazi Jewish population frequencies for common mutations in BRCA1 and BRCA2. Nat Genet. 14:185–187. 1996. View Article : Google Scholar : PubMed/NCBI | |
Struewing JP, Abeliovich D, Peretz T, Avishai N, Kaback MM, Collins FS and Brody LC: The carrier frequency of the BRCA1 185delAG mutation is approximately 1 percent in Ashkenazi Jewish individuals. Nat Genet. 11:198–200. 1995. View Article : Google Scholar : PubMed/NCBI | |
Ozolina S, Sinicka O, Jankevics E, Inashkina I, Lubinski J, Gorski B, Gronwald J, Nasedkina T, Fedorova O, Lyubchenko L and Tihomirova L: The 4154delA mutation carriers in the BRCA1 gene share a common ancestry. Fam Cancer. 8:1–4. 2009. View Article : Google Scholar | |
Kaufman B, Laitman Y, Gronwald J, Lubinski J and Friedman E: Haplotype of the C61G BRCA1 mutation in Polish and Jewish individuals. Genet Test Mol Biomarkers. 13:465–469. 2009. View Article : Google Scholar : PubMed/NCBI | |
Borg A, Dørum A, Heimdal K, Maehle L, Hovig E and Møller P: BRCA1 1675delA and 1135insA account for one third of Norwegian familial breast-ovarian cancer and are associated with later disease onset than less frequent mutations. Dis Markers. 15:79–84. 1999. View Article : Google Scholar : PubMed/NCBI | |
Møller P, Heimdal K, Apold J, Fredriksen A, Borg A, Hovig E, Hagen A, Hagen B, Pedersen JC, Maehle L, et al: Genetic epidemiology of BRCA1 mutations in Norway. Eur J Cancer. 37:2428–2434. 2001. View Article : Google Scholar : PubMed/NCBI | |
Heimdal K, Maehle L, Apold J, Pedersen JC and Møller P: The Norwegian founder mutations in BRCA1: High penetrance confirmed in an incident cancer series and differences observed in the risk of ovarian cancer. Eur J Cancer. 39:2205–2213. 2003. View Article : Google Scholar : PubMed/NCBI | |
Sarantaus L, Huusko P, Eerola H, Launonen V, Vehmanen P, Rapakko K, Gillanders E, Syrjäkoski K, Kainu T, Vahteristo P, et al: Multiple founder effects and geographical clustering of BRCA1 and BRCA2 families in Finland. Eur J Hum Genet. 8:757–763. 2000. View Article : Google Scholar : PubMed/NCBI | |
Thomassen M, Hansen TV, Borg A, Lianee HT, Wikman F, Pedersen IS, Bisgaard ML, Nielsen FC, Kruse TA and Gerdes AM: BRCA1 and BRCA2 mutations in Danish families with hereditary breast and/or ovarian cancer. Acta Oncol. 47:772–777. 2008. View Article : Google Scholar : PubMed/NCBI | |
Einbeigi Z, Bergman A, Kindblom LG, Martinsson T, Meis-Kindblom JM, Nordling M, Suurküla M, Wahlström J, Wallgren A and Karlsson P: A founder mutation of the BRCA1 gene in Western Sweden associated with a high incidence of breast and ovarian cancer. Eur J Cancer. 37:1904–1909. 2001. View Article : Google Scholar : PubMed/NCBI | |
Muller D, Bonaiti-Pellié C, Abecassis J, Stoppa-Lyonnet D and Fricker JP: BRCA1 testing in breast and/or ovarian cancer families from northeastern France identifies two common mutations with a founder effect. Fam Cancer. 3:15–20. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hartmann C, John AL, Klaes R, Hofmann W, Bielen R, Koehler R, Janssen B, Bartram CR, Arnold N and Zschocke J: Large BRCA1 gene deletions are found in 3% of German high-risk breast cancer families. Hum Mutat. 24:5342004. View Article : Google Scholar : PubMed/NCBI | |
Pisano M, Cossu A, Persico I, Palmieri G, Angius A, Casu G, Palomba G, Sarobba MG, Rocca PC, Dedola MF, et al: Identification of a founder BRCA2 mutation in Sardinia. Br J Cancer. 82:553–559. 2000. View Article : Google Scholar : PubMed/NCBI | |
Baudi F, Quaresima B, Grandinetti C, Cuda G, Faniello C, Tassone P, Barbieri V, Bisegna R, Ricevuto E, Conforti S, et al: Evidence of a founder mutation of BRCA1 in a highly homogeneous population from southern Italy with breast/ovarian cancer. Hum Mutat. 18:163–164. 2001. View Article : Google Scholar : PubMed/NCBI | |
Cipollini G, Tommasi S, Paradiso A, Aretini P, Bonatti F, Brunetti I, Bruno M, Lombardi G, Schittulli F, Sensi E, et al: Genetic alterations in hereditary breast cancer. Ann Oncol. 15(Supp 1): SI7–SI13. 2004. View Article : Google Scholar | |
Ikeda N, Miyoshi Y, Yoneda K, Shiba E, Sekihara Y, Kinoshita M and Noguchi S: Frequency of BRCA1 and BRCA2 germline mutations in Japanese breast cancer families. Int J Cancer. 91:83–88. 2001. View Article : Google Scholar : PubMed/NCBI | |
Sekine M, Nagata H, Tsuji S, Hirai Y, Fujimoto S, Hatae M, Kobayashi I, Fujii T, Nagata I, Ushijima K, et al: Japanese Familial Ovarian Cancer Study Group. Mutational analysis of BRCA1 and BRCA2 and clinicopathologic analysis of ovarian cancer in 82 ovarian cancer families: Two common founder mutations of BRCA1 in Japanese population. Clin Cancer Res. 7:3144–3150. 2001.PubMed/NCBI | |
Kang E and Kim SW: The korean hereditary breast cancer study: Review and future perspectives. J Breast Cancer. 16:245–253. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kang E, Seong MW, Park SK, Lee JW, Lee J, Kim LS, Lee JE, Kim SY, Jeong J, Han SA, et al: Korean hereditary breast cancer study group. The prevalence and spectrum of BRCA1 and BRCA2 mutations in Korean population: Recent update of the Korean hereditary breast cancer (KOHBRA) study. Breast Cancer Res Treat. 151:157–168. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kwong A, Ng EK, Wong CL, Law FB, Au T, Wong HN, Kurian AW, West DW, Ford JM and Ma ES: Identification of BRCA1/2 founder mutations in Southern Chinese breast cancer patients using gene sequencing and high resolution DNA melting analysis. PLoS One. 7:e439942012. View Article : Google Scholar : PubMed/NCBI | |
De Leon Matsuda ML, Liede A, Kwan E, Mapua CA, Cutiongco EM, Tan A, Borg A and Narod SA: BRCA1 and BRCA2 mutations among breast cancer patients from the Philippines. Int J Cancer. 98:596–603. 2002. View Article : Google Scholar : PubMed/NCBI | |
Concolino P and Capoluongo E: Detection of BRCA1/2 large genomic rearrangements in breast and ovarian cancer patients: An overview of the current methods. Expert Rev Mol Diagn. 19:795–802. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bhaskaran SP, Chandratre K, Gupta H, Zhang L, Wang X, Cui J, Kim YC, Sinha S, Jiang L, Lu B, et al: Germline variation in BRCA1/2 is highly ethnic-specific: Evidence from over 30,000 Chinese hereditary breast and ovarian cancer patients. Int J Cancer. 145:962–973. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hoogerbrugge N and Jongmans MC: Finding all BRCA pathogenic mutation carriers: Best practice models. Eur J Hum Genet. 24(Suppl 1): S19–S26. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hawsawi YM, Al-Numair NS, Sobahy TM, Al-Ajmi AM, Al-Harbi RM, Baghdadi MA, Oyouni AA and Alamer OM: The role of BRCA1/2 in hereditary and familial breast and ovarian cancers. Mol Genet Genomic Med. 7:e8792019. View Article : Google Scholar : PubMed/NCBI | |
Hodgson A and Turashvili G: Pathology of hereditary breast and ovarian cancer. Front Oncol. 10:5317902020. View Article : Google Scholar : PubMed/NCBI | |
Venter JC, Adams MD, Sutton GG, Kerlavage AR, Smith HO and Hunkapiller M: Shotgun sequencing of the human genome. Science. 280:1540–1542. 1998. View Article : Google Scholar : PubMed/NCBI | |
Sanger F and Coulson AR: A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol. 94:441–448. 1975. View Article : Google Scholar : PubMed/NCBI | |
Wallace AJ: New challenges for BRCA testing: A view from the diagnostic laboratory. Eur J Hum Genet. 24(Suppl 1): S10–S18. 2016. View Article : Google Scholar : PubMed/NCBI | |
Serratì S, De Summa S, Pilato B, Petriella D, Lacalamita R, Tommasi S and Pinto R: Next-generation sequencing: Advances and applications in cancer diagnosis. Onco Targets Ther. 9:7355–7365. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kumar KR, Cowley MJ and Davis RL: Next-generation sequencing and emerging technologies. Semin Thromb Hemost. 45:661–673. 2019. View Article : Google Scholar : PubMed/NCBI | |
Idris SF, Ahmad SS, Scott MA, Vassiliou GS and Hadfield J: The role of high-throughput technologies in clinical cancer genomics. Expert Rev Mol Diagn. 13:167–181. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cheon JY, Mozersky J and Cook-Deegan R: Variants of uncertain significance in BRCA: A harbinger of ethical and policy issues to come? Genome Med. 6:1212014. View Article : Google Scholar | |
Wong RSJ and Lee SC: BRCA sequencing of tumors: Understanding its implications in the oncology community. Chin Clin Oncol. 9:662020. View Article : Google Scholar : PubMed/NCBI | |
Pujol P, Barberis M, Beer P, Friedman E, Piulats JM, Capoluongo ED, Foncillas JG, Ray-Coquard I, Penault-Llorca F, Foulkes WD, et al: Clinical practice guidelines for BRCA1 and BRCA2 genetic testing. Eur J Cancer. 146:30–47. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ, Makarewicz AJ, Bright IJ, Lucero MY, Hiddessen AL, Legler TC, et al: High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem. 83:8604–8610. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pinheiro LB, Coleman VA, Hindson CM, Herrmann J, Hindson BJ, Bhat S and Emslie KR: Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal Chem. 84:1003–1011. 2012. View Article : Google Scholar : | |
Olmedillas-López S, García-Arranz M and García-Olmo D: Current and emerging applications of droplet digital PCR in Oncology. Mol Diagn Ther. 21:493–510. 2017. View Article : Google Scholar : PubMed/NCBI | |
Postel M, Roosen A, Laurent-Puig P, Taly V and Wang-Renault SF: Droplet-based digital PCR and next generation sequencing for monitoring circulating tumor DNA: A cancer diagnostic perspective. Expert Rev Mol Diagn. 18:7–17. 2018. View Article : Google Scholar | |
Stella M, Falzone L, Caponnetto A, Gattuso G, Barbagallo C, Battaglia R, Mirabella F, Broggi G, Altieri R, Certo F, et al: Serum extracellular vesicle-derived circHIPK3 and circS-MARCA5 are two novel diagnostic biomarkers for glioblastoma multiforme. Pharmaceuticals (Basel). 14:6182021. View Article : Google Scholar | |
Crimi S, Falzone L, Gattuso G, Grillo CM, Candido S, Bianchi A and Libra M: droplet digital PCR analysis of liquid biopsy samples unveils the diagnostic role of hsa-miR-133a-3p and hsa-miR-375-3p in oral cancer. Biology (Basel). 9:3792020. | |
Falzone L, Gattuso G, Tsatsakis A, Spandidos D and Libra M: Current and innovative methods for the diagnosis of COVID-19 infection (Review). Int J Mol Med. 47:1002021. View Article : Google Scholar : | |
Falzone L, Musso N, Gattuso G, Bongiorno D, Palermo CI, Scalia G, Libra M and Stefani S: Sensitivity assessment of droplet digital PCR for SARS-CoV-2 detection. Int J Mol Med. 46:957–964. 2020. View Article : Google Scholar : PubMed/NCBI | |
Preobrazhenskaya EV, Bizin IV, Kuligina ES, Shleykina AY, Suspitsin EN, Zaytseva OA, Anisimova EI, Laptiev SA, Gorodnova TV, Belyaev AM, et al: Detection of BRCA1 gross rearrangements by droplet digital PCR. Breast Cancer Res Treat. 165:765–770. 2017. View Article : Google Scholar : PubMed/NCBI | |
Oscorbin I, Kechin A, Boyarskikh U and Filipenko M: Multiplex ddPCR assay for screening copy number variations in BRCA1 gene. Breast Cancer Res Treat. 178:545–555. 2019. View Article : Google Scholar : PubMed/NCBI | |
Khalique S, Pettitt SJ, Kelly G, Tunariu N, Natrajan R, Banerjee S and Lord CJ: Longitudinal analysis of a secondary BRCA2 mutation using digital droplet PCR. J Pathol Clin Res. 6:3–11. 2020. View Article : Google Scholar : | |
De Paolis E, De Bonis M, Concolino P, Piermattei A, Fagotti A, Urbani A, Scambia G, Minucci A and Capoluongo E: Droplet digital PCR for large genomic rearrangements detection: A promising strategy in tissue BRCA1 testing. Clin Chim Acta. 513:17–24. 2021. View Article : Google Scholar | |
Manchanda R, Sun L, Patel S, Evans O, Wilschut J, De Freitas Lopes AC, Gaba F, Brentnall A, Duffy S, Cui B, et al: Economic evaluation of population-based BRCA1/BRCA2 mutation testing across multiple countries and health systems. Cancers (Basel). 12:19292020. View Article : Google Scholar | |
Garcia J, Forestier J, Dusserre E, Wozny AS, Geiguer F, Merle P, Tissot C, Ferraro-Peyret C, Jones FS, Edelstein DL, et al: Cross-platform comparison for the detection of RAS mutations in cfDNA (ddPCR Biorad detection assay, BEAMing assay, and NGS strategy). Oncotarget. 9:21122–21131. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ratajska M, Koczkowska M, Żuk M, Gorczyński A, Kuźniacka A, Stukan M, Biernat W, Limon J and Wasąg B: Detection of BRCA1/2 mutations in circulating tumor DNA from patients with ovarian cancer. Oncotarget. 8:101325–101332. 2017. View Article : Google Scholar : PubMed/NCBI |