Aptamer‑based therapy for targeting key mediators of cancer metastasis (Review)
- Authors:
- Yahya Alhamhoom
- Homood M. As Sobeai
- Sary Alsanea
- Ali Alhoshani
-
Affiliations: Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Kingdom of Saudi Arabia, Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia - Published online on: April 14, 2022 https://doi.org/10.3892/ijo.2022.5355
- Article Number: 65
-
Copyright: © Alhamhoom et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Chiang CJ, Lo WC, Yang YW, You SL, Chen CJ and Lai MS: Incidence and survival of adult cancer patients in Taiwan, 2002-2012. J Formos Med Assoc. 115:1076–1088. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu CM, Peng CY, Liao YW, Lu MY, Tsai ML, Yeh JC, Yu CH and Yu CC: Sulforaphane targets cancer stemness and tumor initiating properties in oral squamous cell carcinomas via miR-200c induction. J Formos Med Assoc. 116:41–48. 2017. View Article : Google Scholar | |
Tsai CE, Wu KL, Chiu YC, Chuah SK, Tai WC, Hu ML and Liang CM: The incidence and clinical associated factors of interval colorectal cancers in Southern Taiwan. J Formos Med Assoc. 117:185–190. 2018. View Article : Google Scholar | |
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Dillekas H, Rogers MS and Straume O: Are 90% of deaths from cancer caused by metastases? Cancer Med. 8:5574–5576. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fidler IJ: The pathogenesis of cancer metastasis: The 'seed and soil' hypothesis revisited. Nat Rev Cancer. 3:453–458. 2003. View Article : Google Scholar : PubMed/NCBI | |
Stewart CM and Tsui DWY: Circulating cell-free DNA for non-invasive cancer management. Cancer Genet. 228-229:169–179. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hafeez U, Gan HK and Scott AM: Monoclonal antibodies as immunomodulatory therapy against cancer and autoimmune diseases. Curr Opin Pharmacol. 41:114–121. 2018. View Article : Google Scholar : PubMed/NCBI | |
Dominiak A, Chelstowska B, Olejarz W and Nowicka G: Communication in the cancer microenvironment as a target for therapeutic interventions. Cancers (Basel). 12:12322020. View Article : Google Scholar | |
Tuerk C and Gold L: Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 249:505–510. 1990. View Article : Google Scholar : PubMed/NCBI | |
Ellington AD and Szostak JW: In vitro selection of RNA molecules that bind specific ligands. Nature. 346:818–822. 1990. View Article : Google Scholar : PubMed/NCBI | |
Zhou J and Rossi J: Aptamers as targeted therapeutics: Current potential and challenges. Nat Rev Drug Discov. 16:181–202. 2017. View Article : Google Scholar | |
Toh SY, Citartan M, Gopinath SC and Tang TH: Aptamers as a replacement for antibodies in enzyme-linked immunosorbent assay. Biosens Bioelectron. 64:392–403. 2015. View Article : Google Scholar | |
Mascini M, Palchetti I and Tombelli S: Nucleic acid and peptide aptamers: Fundamentals and bioanalytical aspects. Angew Chem Int Ed Engl. 51:1316–1332. 2012. View Article : Google Scholar : PubMed/NCBI | |
Colas P, Cohen B, Jessen T, Grishina I, McCoy J and Brent R: Genetic selection of peptide aptamers that recognize and inhibit cyclin-dependent kinase 2. Nature. 380:548–550. 1996. View Article : Google Scholar : PubMed/NCBI | |
Reverdatto S, Burz DS and Shekhtman A: Peptide aptamers: Development and applications. Curr Top Med Chem. 15:1082–1101. 2015. View Article : Google Scholar : PubMed/NCBI | |
Han J, Gao L and Wang J and Wang J: Application and development of aptamer in cancer: From clinical diagnosis to cancer therapy. J Cancer. 11:6902–6915. 2020. View Article : Google Scholar : PubMed/NCBI | |
Pan Q, Luo F, Liu M and Zhang XL: Oligonucleotide aptamers: Promising and powerful diagnostic and therapeutic tools for infectious diseases. J Infect. 77:83–98. 2018. View Article : Google Scholar : PubMed/NCBI | |
Herrmann A, Priceman SJ, Swiderski P, Kujawski M, Xin H, Cherryholmes GA, Zhang W, Zhang C, Lahtz C, Kowolik C, et al: CTLA4 aptamer delivers STAT3 siRNA to tumor-associated and malignant T cells. J Clin Invest. 124:2977–2987. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ospina-Villa JD, Zamorano-Carrillo A, Castanon-Sanchez CA, Ramirez-Moreno E and Marchat LA: Aptamers as a promising approach for the control of parasitic diseases. Braz J Infect Dis. 20:610–618. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu M, Zaman K and Fortenberry YM: Overview of the therapeutic potential of aptamers targeting coagulation factors. Int J Mol Sci. 22:38972021. View Article : Google Scholar : PubMed/NCBI | |
Ninichuk V, Clauss S, Kulkarni O, Schmid H, Segerer S, Radomska E, Eulberg D, Buchner K, Selve N, Klussmann S and Anders HJ: Late onset of Ccl2 blockade with the Spiegelmer mNOX-E36-3′PEG prevents glomerulosclerosis and improves glomerular filtration rate in db/db mice. Am J Pathol. 172:628–637. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ng EW, Shima DT, Calias P, Cunningham ET Jr, Guyer DR and Adamis AP: Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov. 5:123–132. 2006. View Article : Google Scholar : PubMed/NCBI | |
Gauthier NC and Roca-Cusachs P: Mechanosensing at integrin-mediated cell-matrix adhesions: From molecular to integrated mechanisms. Curr Opin Cell Biol. 50:20–26. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bissell MJ and Hines WC: Why don't we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med. 17:320–329. 2011. View Article : Google Scholar : PubMed/NCBI | |
Friedl P and Wolf K: Tumour-cell invasion and migration: Diversity and escape mechanisms. Nat Rev Cancer. 3:362–374. 2003. View Article : Google Scholar | |
Zheng X, Yu C and Xu M: Linking tumor microenvironment to plasticity of cancer stem cells: Mechanisms and application in cancer therapy. Front Oncol. 11:6783332021. View Article : Google Scholar : PubMed/NCBI | |
Krakhmal NV, Zavyalova MV, Denisov EV, Vtorushin SV and Perelmuter VM: Cancer invasion: Patterns and mechanisms. Acta Naturae. 7:17–28. 2015. View Article : Google Scholar : PubMed/NCBI | |
Thiery JP, Acloque H, Huang RY and Nieto MA: Epithelial-mesenchymal transitions in development and disease. Cell. 139:871–890. 2009. View Article : Google Scholar : PubMed/NCBI | |
Joyce JA and Pollard JW: Microenvironmental regulation of metastasis. Nat Rev Cancer. 9:239–252. 2009. View Article : Google Scholar : PubMed/NCBI | |
Dirat B, Bochet L, Dabek M, Daviaud D, Dauvillier S, Majed B, Wang YY, Meulle A, Salles B, Le Gonidec S, et al: Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res. 71:2455–2465. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gocheva V, Wang HW, Gadea BB, Shree T, Hunter KE, Garfall AL, Berman T and Joyce JA: IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev. 24:241–255. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gupta GP and Massague J: Cancer metastasis: Building a framework. Cell. 127:679–695. 2006. View Article : Google Scholar | |
Carmeliet P and Jain RK: Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov. 10:417–427. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gupta GP, Nguyen DX, Chiang AC, Bos PD, Kim JY, Nadal C, Gomis RR, Manova-Todorova K and Massagué J: Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature. 446:765–770. 2007. View Article : Google Scholar : PubMed/NCBI | |
Guo W and Giancotti FG: Integrin signalling during tumour progression. Nat Rev Mol Cell Biol. 5:816–826. 2004. View Article : Google Scholar : PubMed/NCBI | |
Douma S, Van Laar T, Zevenhoven J, Meuwissen R, Van Garderen E and Peeper DS: Suppression of anoikis and induction of metastasis by the neurotrophic receptor TrkB. Nature. 430:1034–1039. 2004. View Article : Google Scholar : PubMed/NCBI | |
Brown DM and Ruoslahti E: Metadherin, a cell surface protein in breast tumors that mediates lung metastasis. Cancer Cell. 5:365–374. 2004. View Article : Google Scholar : PubMed/NCBI | |
Auguste P, Fallavollita L, Wang N, Burnier J, Bikfalvi A and Brodt P: The host inflammatory response promotes liver metastasis by increasing tumor cell arrest and extravasation. Am J Pathol. 170:1781–1792. 2007. View Article : Google Scholar : PubMed/NCBI | |
Al-Mehdi AB, Tozawa K, Fisher AB, Shientag L, Lee A and Muschel RJ: Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: A new model for metastasis. Nat Med. 6:100–102. 2000. View Article : Google Scholar | |
Padua D, Zhang XH, Wang Q, Nadal C, Gerald WL, Gomis RR and Massagué J: TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell. 133:66–77. 2008. View Article : Google Scholar : PubMed/NCBI | |
Psaila B and Lyden D: The metastatic niche: Adapting the foreign soil. Nat Rev Cancer. 9:285–293. 2009. View Article : Google Scholar | |
Erler JT, Bennewith KL, Cox TR, Lang G, Bird D, Koong A, Le QT and Giaccia AJ: Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell. 15:35–44. 2009. View Article : Google Scholar | |
Chambers AF, Groom AC and MacDonald IC: Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer. 2:563–572. 2002. View Article : Google Scholar : PubMed/NCBI | |
Barkan D, El Touny LH, Michalowski AM, Smith JA, Chu I, Davis AS, Webster JD, Hoover S, Simpson RM, Gauldie J and Green JE: Metastatic growth from dormant cells induced by a col-I-enriched fibrotic environment. Cancer Res. 70:5706–5716. 2010. View Article : Google Scholar : PubMed/NCBI | |
Barkan D, Kleinman H, Simmons JL, Asmussen H, Kamaraju AK, Hoenorhoff MJ, Liu ZY, Costes SV, Cho EH, Lockett S, et al: Inhibition of metastatic outgrowth from single dormant tumor cells by targeting the cytoskeleton. Cancer Res. 68:6241–6250. 2008. View Article : Google Scholar : PubMed/NCBI | |
Shibue T and Weinberg RA: Integrin beta1-focal adhesion kinase signaling directs the proliferation of metastatic cancer cells disseminated in the lungs. Proc Natl Acad Sci USA. 106:10290–10295. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hiratsuka S, Duda DG, Huang Y, Goel S, Sugiyama T, Nagasawa T, Fukumura D and Jain RK: C-X-C receptor type 4 promotes metastasis by activating p38 mitogen-activated protein kinase in myeloid differentiation antigen (Gr-1)-positive cells. Proc Natl Acad Sci USA. 108:302–307. 2011. View Article : Google Scholar : | |
McAllister SS, Gifford AM, Greiner AL, Kelleher SP, Saelzler MP, Ince TA, Reinhardt F, Harris LN, Hylander BL, Repasky EA and Weinberg RA: Systemic endocrine instigation of indolent tumor growth requires osteopontin. Cell. 133:994–1005. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kang SY, Halvorsen OJ, Gravdal K, Bhattacharya N, Lee JM, Liu NW, Johnston BT, Johnston AB, Haukaas SA, Aamodt K, et al: Prosaposin inhibits tumor metastasis via paracrine and endocrine stimulation of stromal p53 and Tsp-1. Proc Natl Acad Sci USA. 106:12115–12120. 2009. View Article : Google Scholar : PubMed/NCBI | |
Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, Qian D, Diehn M, Liu H, Panula SP, Chiao E, et al: Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell. 138:592–603. 2009. View Article : Google Scholar : PubMed/NCBI | |
Cai S, Yan J, Xiong H, Liu Y, Peng D and Liu Z: Investigations on the interface of nucleic acid aptamers and binding targets. Analyst. 143:5317–5338. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ni S, Zhuo Z, Pan Y, Yu Y, Li F, Liu J, Wang L, Wu X, Li D, Wan Y, et al: Recent progress in aptamer discoveries and modifications for therapeutic applications. ACS Appl Mater Interfaces. 13:9500–9519. 2021. View Article : Google Scholar | |
Zhang Y, Lai BS and Juhas M: Recent advances in aptamer discovery and applications. Molecules. 24:9412019. View Article : Google Scholar : | |
Dong Y, Zhang T, Lin X, Feng J, Luo F, Gao H, Wu Y, Deng R and He Q: Graphene/aptamer probes for small molecule detection: from in vitro test to in situ imaging. Mikrochim Acta. 187:1792020. View Article : Google Scholar : PubMed/NCBI | |
Cho SJ, Woo HM, Kim KS, Oh JW and Jeong YJ: Novel system for detecting SARS coronavirus nucleocapsid protein using an ssDNA aptamer. J Biosci Bioeng. 112:535–540. 2011. View Article : Google Scholar : PubMed/NCBI | |
Li HY, Jia WN, Li XY, Zhang L, Liu C and Wu J: Advances in detection of infectious agents by aptamer-based technologies. Emerg Microbes Infect. 9:1671–1681. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hassan EM, Willmore WG and DeRosa MC: Aptamers: Promising tools for the detection of circulating tumor cells. Nucleic Acid Ther. 26:335–347. 2016. View Article : Google Scholar : PubMed/NCBI | |
Orava EW, Cicmil N and Gariepy J: Delivering cargoes into cancer cells using DNA aptamers targeting internalized surface portals. Biochim Biophys Acta. 1798:2190–2200. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhang GX, Liu YL, Yang M, Huang WS and Xu JH: An aptamer-based, fluorescent and radionuclide dual-modality probe. Biochimie. 171-172:55–62. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hashemitabar S, Yazdian-Robati R, Hashemi M, Ramezani M, Abnous K and Kalalinia F: ABCG2 aptamer selectively delivers doxorubicin to drug-resistant breast cancer cells. J Biosci. 44:392019. View Article : Google Scholar : PubMed/NCBI | |
Kruspe S and Giangrande PH: Aptamer-siRNA chimeras: Discovery, progress and future prospects. Biomedicines. 5:452017. View Article : Google Scholar | |
Jiang L, Wang H and Chen S: Aptamer (AS1411)-conjugated liposome for enhanced therapeutic efficacy of miRNA-29b in ovarian cancer. J Nanosci Nanotechnol. 20:2025–2031. 2020. View Article : Google Scholar | |
Meng HM, Liu H, Kuai H, Peng R, Mo L and Zhang XB: Aptamer-integrated DNA nanostructures for biosensing, bioimaging and cancer therapy. Chem Soc Rev. 45:2583–2602. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xiang D, Shigdar S, Qiao G, Wang T, Kouzani AZ, Zhou SF, Kong L, Li Y, Pu C and Duan W: Nucleic acid aptamer-guided cancer therapeutics and diagnostics: The next generation of cancer medicine. Theranostics. 5:23–42. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wu C, Han D, Chen T, Peng L, Zhu G, You M, Qiu L, Sefah K, Zhang X and Tan W: Building a multifunctional aptamer-based DNA nanoassembly for targeted cancer therapy. J Am Chem Soc. 135:18644–18650. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kuwahara M and Sugimoto N: Molecular evolution of functional nucleic acids with chemical modifications. Molecules. 15:5423–5444. 2010. View Article : Google Scholar : PubMed/NCBI | |
Mayer G: The chemical biology of aptamers. Angew Chem Int Ed Engl. 48:2672–2689. 2009. View Article : Google Scholar : PubMed/NCBI | |
Turner JJ, Hoos JS, Vonhoff S and Klussmann S: Methods for L-ribooligonucleotide sequence determination using LCMS. Nucleic Acids Res. 39:e1472011. View Article : Google Scholar : PubMed/NCBI | |
Lee CH, Lee SH, Kim JH, Noh YH, Noh GJ and Lee SW: Pharmacokinetics of a Cholesterol-conjugated aptamer against the Hepatitis C Virus (HCV) NS5B protein. Mol Ther Nucleic Acids. 4:e2542015. View Article : Google Scholar : PubMed/NCBI | |
Dougan H, Lyster DM, Vo CV, Stafford A, Weitz JI and Hobbs JB: Extending the lifetime of anticoagulant oligodeoxynucleotide aptamers in blood. Nucl Med Biol. 27:289–297. 2000. View Article : Google Scholar | |
Healy JM, Lewis SD, Kurz M, Boomer RM, Thompson KM, Wilson C and McCauley TG: Pharmacokinetics and biodistribution of novel aptamer compositions. Pharm Res. 21:2234–2246. 2004. View Article : Google Scholar | |
Marshall ML and Wagstaff KM: Internalized functional DNA aptamers as alternative cancer therapies. Front Pharmacol. 11:11152020. View Article : Google Scholar : PubMed/NCBI | |
Thiel WH, Thiel KW, Flenker KS, Bair T, Dupuy AJ, McNamara JO II, Miller FJ and Giangrande PH: Cell-internalization SELEX: Method for identifying cell-internalizing RNA aptamers for delivering siRNAs to target cells. Methods Mol Biol. 1218:187–199. 2015. View Article : Google Scholar : | |
Alamudi SH, Kimoto M and Hirao I: Uptake mechanisms of cell-internalizing nucleic acid aptamers for applications as pharmacological agents. RSC Med Chem. 12:1640–1649. 2021. View Article : Google Scholar : PubMed/NCBI | |
Nagel-Wolfrum K, Buerger C, Wittig I, Butz K, Hoppe-Seyler F and Groner B: The interaction of specific peptide aptamers with the DNA binding domain and the dimerization domain of the transcription factor Stat3 inhibits transactivation and induces apoptosis in tumor cells. Mol Cancer Res. 2:170–182. 2004.PubMed/NCBI | |
Taylor RE and Zahid M: Cell penetrating peptides, novel vectors for gene therapy. Pharmaceutics. 12:2252020. View Article : Google Scholar : | |
Moutal A, Francois-Moutal L, Brittain JM, Khanna M and Khanna R: Differential neuroprotective potential of CRMP2 peptide aptamers conjugated to cationic, hydrophobic, and amphipathic cell penetrating peptides. Front Cell Neurosci. 8:4712014. | |
Famulok M, Blind M and Mayer G: Intramers as promising new tools in functional proteomics. Chem Biol. 8:931–939. 2001. View Article : Google Scholar : PubMed/NCBI | |
Kunz C, Borghouts C, Buerger C and Groner B: Peptide aptamers with binding specificity for the intracellular domain of the ErbB2 receptor interfere with AKT signaling and sensitize breast cancer cells to Taxol. Mol Cancer Res. 4:983–998. 2006. View Article : Google Scholar : PubMed/NCBI | |
Shiozawa Y, Nie B, Pienta KJ, Morgan TM and Taichman RS: Cancer stem cells and their role in metastasis. Pharmacol Ther. 138:285–293. 2013. View Article : Google Scholar : PubMed/NCBI | |
Velasco-Velazquez MA, Popov VM, Lisanti MP and Pestell RG: The role of breast cancer stem cells in metastasis and therapeutic implications. Am J Pathol. 179:2–11. 2011. View Article : Google Scholar : PubMed/NCBI | |
Eyler CE and Rich JN: Survival of the fittest: Cancer stem cells in therapeutic resistance and angiogenesis. J Clin Oncol. 26:2839–2845. 2008. View Article : Google Scholar | |
Chiou SH, Wang ML, Chou YT, Chen CJ, Hong CF, Hsieh WJ, Chang HT, Chen YS, Lin TW, Hsu HS and Wu CW: Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation. Cancer Res. 70:10433–10444. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chiou SH, Yu CC, Huang CY, Lin SC, Liu CJ, Tsai TH, Chou SH, Chien CS, Ku HH and Lo JF: Positive correlations of Oct-4 and Nanog in oral cancer stem-like cells and high-grade oral squamous cell carcinoma. Clin Cancer Res. 14:4085–4095. 2008. View Article : Google Scholar : PubMed/NCBI | |
Leis O, Eguiara A, Lopez-Arribillaga E, Alberdi MJ, Hernandez-Garcia S, Elorriaga K, Pandiella A, Rezola R and Martin AG: Sox2 expression in breast tumours and activation in breast cancer stem cells. Oncogene. 31:1354–1365. 2012. View Article : Google Scholar | |
Lonardo E, Hermann PC, Mueller MT, Huber S, Balic A, Miranda-Lorenzo I, Zagorac S, Alcala S, Rodriguez-Arabaolaza I, Ramirez JC, et al: Nodal/Activin signaling drives self-renewal and tumorigenicity of pancreatic cancer stem cells and provides a target for combined drug therapy. Cell Stem Cell. 9:433–446. 2011. View Article : Google Scholar : PubMed/NCBI | |
Paranjape AN, Balaji SA, Mandal T, Krushik EV, Nagaraj P, Mukherjee G and Rangarajan A: Bmi1 regulates self-renewal and epithelial to mesenchymal transition in breast cancer cells through Nanog. BMC Cancer. 14:7852014. View Article : Google Scholar : PubMed/NCBI | |
Villodre ES, Kipper FC, Pereira MB and Lenz G: Roles of OCT4 in tumorigenesis, cancer therapy resistance and prognosis. Cancer Treat Rev. 51:1–9. 2016. View Article : Google Scholar | |
Hochedlinger K, Yamada Y, Beard C and Jaenisch R: Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell. 121:465–477. 2005. View Article : Google Scholar | |
Wei X, He J, Wang J, Yang X and Ma B: Bmi-1 is essential for the oncogenic potential in CD133(+) human laryngeal cancer cells. Tumour Biol. 36:8931–8942. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chao HM, Huang HX, Chang PH, Tseng KC, Miyajima A and Chern E: Y-box binding protein-1 promotes hepatocellular carcinoma-initiating cell progression and tumorigenesis via Wnt/beta-catenin pathway. Oncotarget. 8:2604–2616. 2017. View Article : Google Scholar | |
Chen YR, Sekine K, Nakamura K, Yanai H, Tanaka M and Miyajima A: Y-box binding protein-1 down-regulates expression of carbamoyl phosphate synthetase-I by suppressing CCAAT enhancer-binding protein-alpha function in mice. Gastroenterology. 137:330–340. 2009. View Article : Google Scholar : PubMed/NCBI | |
Guerra C, Schuhmacher AJ, Cañamero M, Grippo PJ, Verdaguer L, Pérez-Gallego L, Dubus P, Sandgren EP and Barbacid M: Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell. 11:291–302. 2007. View Article : Google Scholar : PubMed/NCBI | |
Macdonald J, Henri J, Goodman L, Xiang D, Duan W and Shigdar S: Development of a bifunctional aptamer targeting the transferrin receptor and epithelial cell adhesion molecule (EpCAM) for the treatment of brain cancer metastases. Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. ACS Chem Neurosci. 8:777–784. 2017. View Article : Google Scholar | |
Yin H, Xiong G, Guo S, Xu C, Xu R, Guo P and Shu D: Delivery of Anti-miRNA for Triple-negative breast cancer therapy Using RNA nanoparticles targeting stem cell marker CD133. Mol Ther. 27:1252–1261. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zeng YB, Yu ZC, He YN, Zhang T, Du LB, Dong YM, Chen HW, Zhang YY and Wang WQ: Salinomycin-loaded lipid-polymer nanoparticles with anti-CD20 aptamers selectively suppress human CD20+ melanoma stem cells. Acta Pharmacol Sin. 39:261–274. 2018. View Article : Google Scholar : | |
Zhang Y, Leonard M, Shu Y, Yang Y, Shu D, Guo P and Zhang X: Overcoming tamoxifen resistance of human breast cancer by targeted gene silencing using multifunctional pRNA nanoparticles. ACS Nano. 11:335–346. 2017. View Article : Google Scholar | |
Zhou G, Da Won Bae S, Nguyen R, Huo X, Han S, Zhang Z, Hebbard L, Duan W, Eslam M, Liddle C, et al: An aptamer-based drug delivery agent (CD133-apt-Dox) selectively and effectively kills liver cancer stem-like cells. Cancer Lett. 501:124–132. 2021. View Article : Google Scholar | |
Kim DM, Kim M, Park HB, Kim KS and Kim DE: Anti-MUC1/CD44 dual-aptamer-conjugated liposomes for cotargeting breast cancer cells and cancer stem cells. ACS Applied Bio Materials. 2:4622–4633. 2019. View Article : Google Scholar | |
Talmadge JE and Fidler IJ: AACR centennial series: The biology of cancer metastasis: Historical perspective. Cancer Res. 70:5649–5669. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sleeman JP, Nazarenko I and Thiele W: Do all roads lead to Rome? Routes to metastasis development. Int J Cancer. 128:2511–2526. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liljefors M, Nilsson B, Fagerberg J, Ragnhammar P, Mellstedt H and Frodin JE: Clinical effects of a chimeric anti-EpCAM monoclonal antibody in combination with granulocyte-macrophage colony-stimulating factor in patients with metastatic colorectal carcinoma. Int J Oncol. 26:1581–1589. 2005.PubMed/NCBI | |
Scarberry KE, Mezencev R and McDonald JF: Targeted removal of migratory tumor cells by functionalized magnetic nanoparticles impedes metastasis and tumor progression. Nanomedicine (Lond). 6:69–78. 2011. View Article : Google Scholar | |
Orava EW, Abdul-Wahid A, Huang EH, Mallick AI and Gariepy J: Blocking the attachment of cancer cells in vivo with DNA aptamers displaying anti-adhesive properties against the carcinoembryonic antigen. Mol Oncol. 7:799–811. 2013. View Article : Google Scholar : PubMed/NCBI | |
Abdul-Wahid A, Huang EH, Cydzik M, Bolewska-Pedyczak E and Gariepy J: The carcinoembryonic antigen IgV-like N domain plays a critical role in the implantation of metastatic tumor cells. Mol Oncol. 8:337–350. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang XK, Peng Y, Tao HR, Zhou FF, Zhang C, Su F, Wang SP, Liu Q, Xu LH, Pan XK, et al: Inhibition of adhesion and metastasis of HepG2 hepatocellular carcinoma cells in vitro by DNA aptamer against sialyl Lewis X. J Huazhong Univ Sci Technolog Med Sci. 37:343–347. 2017. View Article : Google Scholar | |
Brodt P, Fallavollita L, Bresalier RS, Meterissian S, Norton CR and Wolitzky BA: Liver endothelial E-selectin mediates carcinoma cell adhesion and promotes liver metastasis. Int J Cancer. 71:612–619. 1997. View Article : Google Scholar : PubMed/NCBI | |
Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, Dingli F, Loew D, Tkach M and Théry C: Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci USA. 113:E968–E977. 2016. View Article : Google Scholar : PubMed/NCBI | |
Minciacchi VR, Freeman MR and Di Vizio D: Extracellular vesicles in cancer: Exosomes, microvesicles and the emerging role of large oncosomes. Semin Cell Dev Biol. 40:41–51. 2015. View Article : Google Scholar : PubMed/NCBI | |
Raposo G and Stoorvogel W: Extracellular vesicles: Exosomes, microvesicles, and friends. J Cell Biol. 200:373–383. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yang F, Ning Z, Ma L, Liu W, Shao C, Shu Y and Shen H: Exosomal miRNAs and miRNA dysregulation in cancer-associated fibroblasts. Mol Cancer. 16:1482017. View Article : Google Scholar : PubMed/NCBI | |
Colombo M, Raposo G and Thery C: Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 30:255–289. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gould SJ and Raposo G: As we wait: Coping with an imperfect nomenclature for extracellular vesicles. J Extracell Vesicles. 2:203892013. View Article : Google Scholar | |
Li W, Ma H, Zhang J, Zhu L, Wang C and Yang Y: Unraveling the roles of CD44/CD24 and ALDH1 as cancer stem cell markers in tumorigenesis and metastasis. Sci Rep. 7:138562017. View Article : Google Scholar : PubMed/NCBI | |
van Niel G, D'Angelo G and Raposo G: Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 19:213–228. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hannafon BN and Ding WQ: Intercellular communication by exosome-derived microRNAs in cancer. Int J Mol Sci. 14:14240–14269. 2013. View Article : Google Scholar : PubMed/NCBI | |
Milane L, Singh A, Mattheolabakis G, Suresh M and Amiji MM: Exosome mediated communication within the tumor microenvironment. J Control Release. 219:278–294. 2015. View Article : Google Scholar : PubMed/NCBI | |
Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ and Lotvall JO: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 9:654–659. 2007. View Article : Google Scholar : PubMed/NCBI | |
Gezer U, Ozgur E, Cetinkaya M, Isin M and Dalay N: Long non-coding RNAs with low expression levels in cells are enriched in secreted exosomes. Cell Biol Int. 38:1076–1079. 2014.PubMed/NCBI | |
Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L, et al: Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 22:256–264. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sun T, Kalionis B, Lv G, Xia S and Gao W: Role of exosomal noncoding RNAs in lung carcinogenesis. Biomed Res Int. 2015:1258072015. View Article : Google Scholar : PubMed/NCBI | |
Hood JL, San RS and Wickline SA: Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis. Cancer Res. 71:3792–3801. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lobb RJ, Lima LG and Moller A: Exosomes: Key mediators of metastasis and pre-metastatic niche formation. Semin Cell Dev Biol. 67:3–10. 2017. View Article : Google Scholar : PubMed/NCBI | |
Luga V, Zhang L, Viloria-Petit AM, Ogunjimi AA, Inanlou MR, Chiu E, Buchanan M, Hosein AN, Basik M and Wrana JL: Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell. 151:1542–1556. 2012. View Article : Google Scholar : PubMed/NCBI | |
Peinado H, Alečković M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, García-Santos G, Ghajar C, et al: Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med. 18:883–891. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tominaga N, Kosaka N, Ono M, Katsuda T, Yoshioka Y, Tamura K, Lötvall J, Nakagama H and Ochiya T: Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood-brain barrier. Nat Commun. 6:67162015. View Article : Google Scholar : PubMed/NCBI | |
Fong MY, Zhou W, Liu L, Alontaga AY, Chandra M, Ashby J, Chow A, O'Connor ST, Li S, Chin AR, et al: Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat Cell Biol. 17:183–194. 2015. View Article : Google Scholar : PubMed/NCBI | |
Szajnik M, Czystowska M, Szczepanski MJ, Mandapathil M and Whiteside TL: Tumor-derived microvesicles induce, expand and up-regulate biological activities of human regulatory T cells (Treg). PLoS One. 5:e114692010. View Article : Google Scholar : PubMed/NCBI | |
van der Vos KE, Abels ER, Zhang X, Lai C, Carrizosa E, Oakley D, Prabhakar S, Mardini O, Crommentuijn MH, Skog J, et al: Directly visualized glioblastoma-derived extracellular vesicles transfer RNA to microglia/macrophages in the brain. Neuro Oncol. 18:58–69. 2016. View Article : Google Scholar | |
Zhang L, Zhang S, Yao J, Lowery FJ, Zhang Q, Huang WC, Li P, Li M, Wang X, Zhang C, et al: Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature. 527:100–104. 2015. View Article : Google Scholar : PubMed/NCBI | |
Esposito CL, Quintavalle C, Ingenito F, Rotoli D, Roscigno G, Nuzzo S, Thomas R, Catuogno S, de Franciscis V and Condorelli G: Identification of a novel RNA aptamer that selectively targets breast cancer exosomes. Mol Ther Nucleic Acids. 23:982–994. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xie X, Nie H, Zhou Y, Lian S, Mei H, Lu Y, Dong H, Li F, Li T, Li B, et al: Eliminating blood oncogenic exosomes into the small intestine with aptamer-functionalized nanoparticles. Nat Commun. 10:54762019. View Article : Google Scholar : PubMed/NCBI | |
Dunn GP, Old LJ and Schreiber RD: The immunobiology of cancer immunosurveillance and immunoediting. Immunity. 21:137–148. 2004. View Article : Google Scholar : PubMed/NCBI | |
Leek RD, Lewis CE, Whitehouse R, Greenall M, Clarke J and Harris AL: Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res. 56:4625–4629. 1996.PubMed/NCBI | |
DeNardo DG, Barreto JB, Andreu P, Vasquez L, Tawfik D, Kolhatkar N and Coussens LM: CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell. 16:91–102. 2009. View Article : Google Scholar : PubMed/NCBI | |
Moaaz M, Lotfy H, Elsherbini B, Motawea MA and Fadali G: TGF-beta Enhances the Anti-inflammatory effect of tumor-infiltrating CD33+11b+HLA-DR myeloid-derived suppressor cells in gastric cancer: A possible relation to MicroRNA-494. Asian Pac J Cancer Prev. 21:3393–3403. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shitara K and Nishikawa H: Regulatory T cells: A potential target in cancer immunotherapy. Ann N Y Acad Sci. 1417:104–115. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kumar V, Patel S, Tcyganov E and Gabrilovich DI: The Nature of Myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol. 37:208–220. 2016. View Article : Google Scholar : | |
Sarvaiya PJ, Guo D, Ulasov I, Gabikian P and Lesniak MS: Chemokines in tumor progression and metastasis. Oncotarget. 4:2171–2185. 2013. View Article : Google Scholar : PubMed/NCBI | |
Briukhovetska D, Dorr J, Endres S, Libby P, Dinarello CA and Kobold S: Interleukins in cancer: From biology to therapy. Nat Rev Cancer. 21:481–499. 2021. View Article : Google Scholar : | |
Manrique-Rincón AJ, Ruas LP, Fogagnolo CT, Brenneman RJ, Berezhnoy A, Castelucci B, Consonni SR, Gilboa E and Bajgelman MC: Aptamer-mediated transcriptional gene silencing of Fox 3 inhibits regulatory T cells and potentiates antitumor response. Mol Ther Nucleic Acids. 25:143–151. 2021. View Article : Google Scholar | |
Borsig L, Wolf MJ, Roblek M, Lorentzen A and Heikenwalder M: Inflammatory chemokines and metastasis-tracing the accessory. Oncogene. 33:3217–3224. 2014. View Article : Google Scholar | |
Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS and Albelda SM: Polarization of tumor-associated neutrophil phenotype by TGF-beta: 'N1' versus 'N2' TAN. Cancer Cell. 16:183–194. 2009. View Article : Google Scholar : PubMed/NCBI | |
Tan W, Zhang W, Strasner A, Grivennikov S, Cheng JQ, Hoffman RM and Karin M: Tumour-infiltrating regulatory T cells stimulate mammary cancer metastasis through RANKL-RANK signalling. Nature. 470:548–553. 2011. View Article : Google Scholar : PubMed/NCBI | |
Monteiro AC, Leal AC, Goncalves-Silva T, Mercadante AC, Kestelman F, Chaves SB, Azevedo RB, Monteiro JP and Bonomo A: T cells induce pre-metastatic osteolytic disease and help bone metastases establishment in a mouse model of metastatic breast cancer. PLoS One. 8:e681712013. View Article : Google Scholar | |
Blomberg OS, Spagnuolo L and de Visser KE: Immune regulation of metastasis: Mechanistic insights and therapeutic opportunities. Dis Model Mech. 11:dmm0362362018. View Article : Google Scholar : PubMed/NCBI | |
Kitamura T, Qian BZ and Pollard JW: Immune cell promotion of metastasis. Nat Rev Immunol. 15:73–86. 2015. View Article : Google Scholar : PubMed/NCBI | |
Roth F, De La Fuente AC, Vella JL, Zoso A, Inverardi L and Serafini P: Aptamer-mediated blockade of IL4Rα triggers apoptosis of MDSCs and limits tumor progression. Cancer Res. 72:1373–1383. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Mai J, Shen J, Wolfram J, Li Z, Zhang G, Xu R, Li Y, Mu C, Zu Y, et al: A Novel DNA Aptamer for dual targeting of polymorphonuclear myeloid-derived suppressor cells and tumor cells. Theranostics. 8:31–44. 2018. View Article : Google Scholar : PubMed/NCBI | |
Eberting CL, Shrayer DP, Butmarc J and Falanga V: Histologic progression of B16 F10 metastatic melanoma in C57BL/6 mice over a six week time period: Distant metastases before local growth. J Dermatol. 31:299–304. 2004. View Article : Google Scholar : PubMed/NCBI | |
Meyer C, Eydeler K, Magbanua E, Zivkovic T, Piganeau N, Lorenzen I, Grötzinger J, Mayer G, Rose-John S and Hahn U: Interleukin-6 receptor specific RNA aptamers for cargo delivery into target cells. RNA Biol. 9:67–80. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gupta S, Hirota M, Waugh SM, Murakami I, Suzuki T, Muraguchi M, Shibamori M, Ishikawa Y, Jarvis TC, Carter JD, et al: Chemically modified DNA aptamers bind interleukin-6 with high affinity and inhibit signaling by blocking its interaction with interleukin-6 receptor. J Biol Chem. 289:8706–8719. 2014. View Article : Google Scholar : PubMed/NCBI | |
Berezhnoy A, Stewart CA, McNamara JO II, Thiel W, Giangrande P, Trinchieri G and Gilboa E: Isolation and optimization of murine IL-10 receptor blocking oligonucleotide aptamers using high-throughput sequencing. Mol Ther. 20:1242–1250. 2012. View Article : Google Scholar : | |
Levay A, Brenneman R, Hoinka J, Sant D, Cardone M, Trinchieri G, Przytycka TM and Berezhnoy A: Identifying high-affinity aptamer ligands with defined cross-reactivity using high-throughput guided systematic evolution of ligands by exponential enrichment. Nucleic Acids Res. 43:e822015. View Article : Google Scholar : PubMed/NCBI | |
Yoon S, Huang KW, Andrikakou P, Vasconcelos D, Swiderski P, Reebye V, Sodergren M, Habib N and Rossi JJ: Targeted Delivery of C/EBPalpha-saRNA by RNA aptamers shows anti-tumor effects in a mouse model of advanced PDAC. Mol Ther Nucleic Acids. 18:142–154. 2019. View Article : Google Scholar : | |
Camorani S, Passariello M, Agnello L, Pedone E, Pirone L, Chesta CA, Palacios RE, Fedele M and Cerchia L: Aptamer targeted therapy potentiates immune checkpoint blockade in triple-negative breast cancer. J Exp Clin Cancer Res. 39:1802020. View Article : Google Scholar : | |
Quirico L, Orso F, Esposito CL, Bertone S, Coppo R, Conti L, Catuogno S, Cavallo F, de Franciscis V and Taverna D: Axl-148b chimeric aptamers inhibit breast cancer and melanoma progression. Int J Biol Sci. 16:1238–1251. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shelley G, Dai J, Keller JM and Keller ET: Pheno-SELEX: Engineering Anti-metastatic aptamers through targeting the invasive phenotype using systemic evolution of ligands by exponential enrichment. Bioengineering (Basel). 8:2122021. View Article : Google Scholar | |
Li T, Li Y, Rehmani H, Guo J, Padia R, Calbay O, Ding Z, Jiang Y, Jin L and Huang S: Attenuated miR-203b-3p is critical for ovarian cancer progression and aptamer/miR-203b-3p chimera can be explored as a therapeutic. Adv Cancer Biol-Metastasis. 4:1000312022. View Article : Google Scholar | |
Liu K, Xie F, Zhao T, Zhang R, Gao A, Chen Y, Li H, Zhang S, Xiao Z, Li J, et al: Targeting SOX2 protein with peptide aptamers for therapeutic gains against esophageal squamous cell carcinoma. Mol Ther. 28:901–913. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lincoff AM, Mehran R, Povsic TJ, Zelenkofske SL, Huang Z, Armstrong PW, Steg PG, Bode C, Cohen MG, Buller C, et al: Effect of the REG1 anticoagulation system versus bivalirudin on outcomes after percutaneous coronary intervention (REGULATE-PCI): A randomised clinical trial. Lancet. 387:349–356. 2016. View Article : Google Scholar | |
Bruno JG: Potential inherent stimulation of the innate immune system by nucleic acid aptamers and possible corrective approaches. Pharmaceuticals (Basel). 11:622018. View Article : Google Scholar | |
Verhoef JJ, Carpenter JF, Anchordoquy TJ and Schellekens H: Potential induction of anti-PEG antibodies and complement activation toward PEGylated therapeutics. Drug Discov Today. 19:1945–1952. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ganson NJ, Povsic TJ, Sullenger BA, Alexander JH, Zelenkofske SL, Sailstad JM, Rusconi CP and Hershfield MS: Pre-existing anti-polyethylene glycol antibody linked to first-exposure allergic reactions to pegnivacogin, a PEGylated RNA aptamer. J Allergy Clin Immunol. 137:1610–1613.e7. 2016. View Article : Google Scholar | |
Shen W, De Hoyos CL, Sun H, Vickers TA, Liang XH and Crooke ST: Acute hepatotoxicity of 2′fluoro-modified 5-10-5 gapmer phosphorothioate oligonucleotides in mice correlates with intracellular protein binding and the loss of DBHS proteins. Nucleic Acids Res. 46:2204–2217. 2018. View Article : Google Scholar : PubMed/NCBI | |
Burdick AD, Sciabola S, Mantena SR, Hollingshead BD, Stanton R, Warneke JA, Zeng M, Martsen E, Medvedev A, Makarov SS, et al: Sequence motifs associated with hepatotoxicity of locked nucleic acid-modified antisense oligonucleotides. Nucleic Acids Res. 42:4882–4891. 2014. View Article : Google Scholar : PubMed/NCBI | |
Penedones A, Mendes D, Alves C and Batel Marques F: Safety monitoring of ophthalmic biologics: A systematic review of pre- and postmarketing safety data. J Ocul Pharmacol Ther. 30:729–751. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tessier Y, Achanzar W, Mihalcik L, Amuzie C, Andersson P, Parry JD, Moggs J and Whiteley LO: Outcomes of the European federation of pharmaceutical industries and associations oligonucleotide Working Group Survey on Nonclinical Practices and Regulatory Expectations for Therapeutic Oligonucleotide Safety Assessment. Nucleic Acid Ther. 31:7–20. 2021. View Article : Google Scholar | |
Kim J, Yao F, Xiao Z, Sun Y and Ma L: MicroRNAs and metastasis: Small RNAs play big roles. Cancer Metastasis Rev. 37:5–15. 2018. View Article : Google Scholar : | |
Chan SH and Wang LH: Regulation of cancer metastasis by microRNAs. J Biomed Sci. 22:92015. View Article : Google Scholar : PubMed/NCBI | |
Sczepanski JT and Joyce GF: Specific inhibition of MicroRNA processing using L-RNA aptamers. J Am Chem Soc. 137:16032–16037. 2015. View Article : Google Scholar : PubMed/NCBI | |
Daei P, Ramezanpour M, Khanaki K, Tabarzad M, Nikokar I, Hedayati Ch M and Elmi A: Aptamer-based targeted delivery of miRNA let-7d to gastric cancer cells as a novel anti-tumor therapeutic agent. Iran J Pharm Res. 17:1537–1549. 2018.PubMed/NCBI | |
Esposito CL, Catuogno S and de Franciscis V: Aptamer-MiRNA conjugates for cancer cell-targeted delivery. Methods Mol Biol. 1364:197–208. 2016. View Article : Google Scholar | |
Wang H, Zhao X, Guo C, Ren D, Zhao Y, Xiao W and Jiao W: Aptamer-dendrimer bioconjugates for targeted delivery of miR-34a expressing plasmid and antitumor effects in non-small cell lung cancer cells. PLoS One. 10:e01391362015. View Article : Google Scholar : PubMed/NCBI | |
Guo JU, Agarwal V, Guo H and Bartel DP: Expanded identification and characterization of mammalian circular RNAs. Genome Biol. 15:4092014. View Article : Google Scholar : PubMed/NCBI | |
Chen LL and Yang L: Regulation of circRNA biogenesis. RNA Biol. 12:381–388. 2015. View Article : Google Scholar : PubMed/NCBI | |
Du WW, Yang W, Liu E, Yang Z, Dhaliwal P and Yang BB: Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res. 44:2846–2858. 2016. View Article : Google Scholar : PubMed/NCBI | |
Guarnerio J, Bezzi M, Jeong JC, Paffenholz SV, Berry K, Naldini MM, Lo-Coco F, Tay Y, Beck AH and Pandolfi PP: Oncogenic role of Fusion-circRNAs derived from cancer-associated chromosomal translocations. Cell. 165:289–302. 2016. View Article : Google Scholar |