Epigenetic modification regulates tumor progression and metastasis through EMT (Review)
- Authors:
- Tingshan Tan
- Pengfei Shi
- Muhammad Nadeem Abbas
- Yi Wang
- Jie Xu
- Yu Chen
- Hongjuan Cui
-
Affiliations: The 9th People's Hospital of Chongqing, Affiliated Hospital of Southwest University, Chongqing 400716, P.R. China, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China - Published online on: April 21, 2022 https://doi.org/10.3892/ijo.2022.5360
- Article Number: 70
-
Copyright: © Tan et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Rodenhiser DI: Epigenetic contributions to cancer metastasis. Clin Exp Metastasis. 26:5–18. 2009. View Article : Google Scholar | |
Timp W and Feinberg AP: Cancer as a dysregulated epigenome allowing cellular growth advantage at the expense of the host. Nat Rev Cancer. 13:497–510. 2013. View Article : Google Scholar | |
Dario LS, Rosa MA, Mariela E, Roberto G and Caterina C: Chromatin remodeling agents for cancer therapy. Rev Recent Clin Trials. 3:192–203. 2008. View Article : Google Scholar | |
Werner RJ, Kelly A and DIssa JJ: Epigenetics and precision oncology. Cancer J. 23:262–269. 2017. View Article : Google Scholar | |
Guan X: Cancer metastases: Challenges and opportunities. Acta Pharm Sin B. 5:402–418. 2015. View Article : Google Scholar | |
Pachmayr E, Treese C and Stein U: Underlying mechanisms for distant metastasis-molecular biology. Visc Med. 33:11–20. 2017. View Article : Google Scholar | |
Micalizzi DS, Maheswaran S and Haber DA: A conduit to metastasis: Circulating tumor cell biology. Genes Dev. 31:1827–1840. 2017. View Article : Google Scholar | |
Pastushenko I and Blanpain C: EMT transition states during tumor progression and metastasis. Trends Cell Biol. 29:212–226. 2019. View Article : Google Scholar | |
van Roy F and Berx G: The cell-cell adhesion molecule E-cadherin. Cell Mol Life Sci. 65:3756–3788. 2008. View Article : Google Scholar | |
Birchmeier W and Behrens J: Cadherin expression in carcinomas: Role in the formation of cell junctions and the prevention of invasiveness. Biochim Biophys Acta. 1198:11–26. 1994. | |
Berx G and van Roy F: Involvement of members of the cadherin superfamily in cancer. Cold Spring Harb Perspect Biol. 1:a0031292009. View Article : Google Scholar | |
Derksen PW, Liu X, Saridin F, van der Gulden H, Zevenhoven J, Evers B, van Beijnum JR, Griffioen AW, Vink J, Krimpenfort P, et al: Somatic inactivation of E-cadherin and p53 in mice leads to meta-static lobular mammary carcinoma through induction of anoikis resistance and angiogenesis. Cancer Cell. 10:437–449. 2006. View Article : Google Scholar | |
Wong SHM, Fang CM, Chuah LH, Leong CO and Ngai SC: E-cadherin: Its dysregulation in carcinogenesis and clinical implications. Crit Rev Oncol Hematol. 121:11–22. 2018. View Article : Google Scholar | |
Odero-Marah V, Hawsawi O, Henderson V and Sweeney J: Epithelial-mesenchymal transition (EMT) and prostate cancer. Adv Exp Med Biol. 1095:101–110. 2018. View Article : Google Scholar | |
Chiang SP, Cabrera RM and Segall JE: Tumor cell intravasation. Am J Physiol Cell Physiol. 311:C1–C14. 2016. View Article : Google Scholar | |
Hamilton G and Rath B: Mesenchymal-epithelial transition and circulating tumor cells in small cell lung cancer. Adv Exp Med Biol. 994:229–245. 2017. View Article : Google Scholar | |
Zhao B, Li L, Wang L, Wang CY, Yu J and Guan KL: Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. Genes Dev. 26:54–68. 2012. View Article : Google Scholar | |
Pantel K and Speicher MR: The biology of circulating tumor cells. Oncogene. 35:1216–1224. 2016. View Article : Google Scholar | |
Joyce JA and Pollard JW: Microenvironmental regulation of metastasis. Nat Rev Cancer. 9:239–252. 2009. View Article : Google Scholar | |
Paoletti C and Hayes DF: Circulating tumor cells. Adv Exp Med Biol. 882:235–258. 2016. View Article : Google Scholar | |
Haemmerle M, Stone RL, Menter DG, Afshar-Kharghan V and Sood AK: The platelet lifeline to cancer: Challenges and opportunities. Cancer Cell. 33:965–983. 2018. View Article : Google Scholar | |
Fu BM: Tumor metastasis in the microcirculation. Adv Exp Med Biol. 1097:201–218. 2018. View Article : Google Scholar | |
Bui TM, Wiesolek HL and Sumagin R: ICAM-1: A master regulator of cellular responses in inflammation, injury resolution, and tumorigenesis. J Leukoc Biol. 108:787–799. 2020. View Article : Google Scholar | |
Sarvaiya PJ, Guo D, Ulasov I, Gabikian P and Lesniak MS: Chemokines in tumor progression and metastasis. Oncotarget. 4:2171–2185. 2013. View Article : Google Scholar | |
Mielgo A and Schmid MC: Liver Tropism in Cancer: The hepatic metastatic niche. Cold Spring Harb Perspect Med. 10:a0372592020. View Article : Google Scholar | |
Walker S, Busatto S, Pham A, Tian M, Suh A, Carson K, Quintero A, Lafrence M, Malik H, Santana MX and Wolfram J: Extracellular vesicle-based drug delivery systems for cancer treatment. Theranostics. 9:8001–8017. 2019. View Article : Google Scholar | |
Pramani KA, Jones S, Gao Y, Sweet C, Vangara A, Begum S and Ray PC: Multifunctional hybrid graphene oxide for circulating tumor cell isolation and analysis. Adv Drug Deliv Rev. 125:21–35. 2018. View Article : Google Scholar | |
Dabagh M and Randles A: Role of deformable cancer cells on wall shear stress-associated-VEGF secretion by endothelium in microvasculature. PLoS One. 14:e02114182019. View Article : Google Scholar | |
Hsu SK, Chiu CC, Dahms HU, Chou CK, Cheng CM, Chang WT, Cheng KC, Wang HD and Lin IL: Unfolded protein response (UPR) in survival, dormancy, immunosuppression, metastasis, and treatments of cancer cells. Int J Mol Sci. 20:25182019. View Article : Google Scholar | |
Hu X, Zang X and Lv Y: Detection of circulating tumor cells: Advances and critical concerns. Oncol Lett. 21:4222021. View Article : Google Scholar | |
Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA, et al: VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 438:820–827. 2005. View Article : Google Scholar | |
Liu T, Xu H, Huang M, Ma W, Saxena D, Lustig RA, Alonso-Basanta M, Zhang Z, O'Rourke DM, Zhang L, et al: Circulating glioma cells exhibit stem cell-like properties. Cancer Res. 78:6632–6642. 2018. | |
Malanchi I, Santamaria-Martínez A, Susanto E, Peng H, Lehr HA, Delaloye JF and Huelsken J: Interactions between cancer stem cells and their niche govern metastatic colonization. Nature. 481:85–89. 2011. View Article : Google Scholar | |
Oskarsson T, Batlle E and Massagué J: Metastatic stem cells: Sources, niches, and vital pathways. Cell Stem Cell. 14:306–321. 2014. View Article : Google Scholar | |
Kaminsky ZA, Tang T, Wang SC, Ptak C, Oh GH, Wong AH, Feldcamp LA, Virtanen C, Halfvarson J, Tysk C, et al: DNA methylation profiles in monozygotic and dizygotic twins. Nat Genet. 41:240–245. 2009. View Article : Google Scholar | |
Riggs AD: X inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet. 14:9–25. 1975. View Article : Google Scholar | |
Cooper DN: Eukaryotic DNA methylation. Human Genet. 64:315–333. 1983. View Article : Google Scholar | |
Compere SJ and Palmiter RD: DNA methylation controls the inducibility of the mouse metallothionein-I gene lymphoid cells. Cell. 25:233–240. 1981. View Article : Google Scholar | |
Dong Z, Pu L and Cui H: Mitoepigenetics and its emerging roles in cancer. Front Cell Dev Biol. 8:42020. View Article : Google Scholar | |
Moore LD, Le T and Fan G: DNA methylation and its basic function. Neuropsychopharmacology. 38:23–38. 2013. View Article : Google Scholar | |
Morgan AE, Davies TJ and Mc Auley MT: The role of DNA methylation in ageing and cancer. Proc Nutr Soc. 77:412–422. 2018. View Article : Google Scholar | |
Zhao H, Yang L and Cui H: SIRT1 regulates autophagy and diploidization in parthenogenetic haploid embryonic stem cells. Biochem Biophys Res Commun. 464:1163–1170. 2015. View Article : Google Scholar | |
Lyko F: The DNA methyltransferase family: A versatile toolkit for epigenetic regulation. Nat Rev Genet. 19:81–92. 2018. View Article : Google Scholar | |
Kausar S, Abbas MN and Cui H: A review on the DNA methyltransferase family of insects: Aspect and prospects. Int J Biol Macromol. 186:289–302. 2021. View Article : Google Scholar | |
Dong Z and Cui H: Epigenetic modulation of metabolism in glioblastoma. Semin Cancer Biol. 57:45–51. 2019. View Article : Google Scholar | |
Anteneh H, Fang J and Song J: Structural basis for impairment of DNA methylation by the DNMT3A R882H mutation. Nat Commu. 11:22942020. View Article : Google Scholar | |
Hayashi K, Hishikawa A and Itoh H: DNA damage repair and DNA methylation in the kidney. Am J Nephrol. 50:81–91. 2019. View Article : Google Scholar | |
de Araújo ÉS, Pramio DT, Kashiwabara AY, Pennacchi PC, Maria-Engler SS, Achatz MI, Campos AH, Duprat JP, Rosenberg C, Carraro DM and Krepischi AC: DNA methylation levels of melanoma risk genes are associated with clinical characteristics of melanoma patients. Biomed Res Int. 2015:3764232015. View Article : Google Scholar | |
Farhadova S, Gomez-Velazquez M and Feil R: Stability and lability of parental methylation imprints in development and disease. Genes (Basel). 10:9992019. View Article : Google Scholar | |
Horvath S and Raj K: DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet. 19:371–384. 2018. View Article : Google Scholar | |
Wu A, Cremaschi P, Wetterskog D, Conteduca V, Franceschini GM, Kleftogiannis D, Jayaram A, Sandhu S, Wong SQ, Benelli M, et al: Genome-wide plasma DNA methylation features of metastatic prostate cancer. J Clin Invest. 130:1991–2000. 2020. View Article : Google Scholar | |
Hermann A, Goyal R and Jeltsch A: The Dnmt1 DNA-(cytosine-C5)-methyltransferase methylates DNA processively with high preference for hemimethylated target sites. J Biol Chem. 279:48350–48359. 2004. View Article : Google Scholar | |
Espada J, Ballestar E, Fraga MF, Villar-Garea A, Juarranz A, Stockert JC, Robertson KD, Fuks F and Esteller M: Human DNA methyltransferase 1 is required for maintenance of the histone H3 modification pattern. J Biol Chem. 279:37175–37184. 2004. View Article : Google Scholar | |
Lee E, Wang J, Yumoto K, Jung Y, Cackowski FC, Decker AM, Li Y, Franceschi RT, Pienta KJ and Taichman RS: DNMT1 regulates epithelial-mesenchymal transition and cancer stem cells, which promotes prostate cancer metastasis. Neoplasia. 18:553–566. 2016. View Article : Google Scholar | |
Jiang H, Cao HJ, Ma N, Bao WD, Wang JJ, Chen TW, Zhang EB, Yuan YM, Ni QZ, Zhang FK, et al: Chromatin remodeling factor ARID2 suppresses hepatocellular carcinoma metastasis via DNMT1-Snail axis. Proc Natl Acad Sci USA. 117:4770–4780. 2020. View Article : Google Scholar | |
Tang H, Liu P, Yang L and Xie X, Ye F, Wu M, Liu X, Chen B, Zhang L and Xie X: miR-185 suppresses tumor proliferation by directly targeting E2F6 and DNMT1 and indirectly upregulating BRCA1 in triple-negative breast cancer. Mol Cancer Ther. 13:3185–3197. 2014. View Article : Google Scholar | |
Zhu A, Hopkins KM, Friedman RA, Bernstock JD, Broustas CG and Lieberman HB: DNMT1 and DNMT3B regulate tumorigenicity of human prostate cancer cells by controlling RAD9 expression through targeted methylation. Carcinogenesis. 42:220–231. 2021. View Article : Google Scholar | |
Gao X, Sheng Y, Yang J, Wang C, Zhang R, Zhu Y, Zhang Z, Zhang K, Yan S, Sun H, et al: Osteopontin alters DNA methylation through up-regulating DNMT1 and sensitizes CD133+/CD44+ cancer stem cells to 5 azacytidine in hepatocellular carcinoma. J Exp Clin Cancer Res. 37:1792018. View Article : Google Scholar | |
Bai J, Zhang X, Hu K, Liu B, Wang H, Li A, Lin F, Zhang L, Sun X, Du Z and Song J: Silencing DNA methyltransferase 1 (DNMT1) inhibits proliferation, metastasis and invasion in ESCC by suppressing methylation of RASSF1A and DAPK. Oncotarget. 7:44129–44141. 2016. View Article : Google Scholar | |
Xie M, Nie FQ, Sun M, Xia R, Liu YW, Zhou P, De W and Liu XH: Decreased long noncoding RNA SPRY4-IT1 contributing to gastric cancer cell metastasis partly via affecting epithelial-mesenchymal transition. J Transl Med. 13:2502015. View Article : Google Scholar | |
Wu Y, Liu H, Shi X, Yao Y, Yang W and Song Y: The long non-coding RNA HNF1A-AS1 regulates proliferation and metastasis in lung adenocarcinoma. Oncotarget. 6:9160–9172. 2015. View Article : Google Scholar | |
Meng F, Liu X, Lin C, Xu L, Liu J, Zhang P, Zhang X, Song J, Yan Y, Ren Z and Zhang Y: SMYD2 suppresses APC2 expression to activate the Wnt/β-catenin pathway and promotes epithelial-mesenchymal transition in colorectal cancer. Am J Cancer Res. 10:997–1011. 2020. | |
Okano M, Bell DW, Haber DA and Li E: DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 99:247–257. 1999. View Article : Google Scholar | |
Chédin F: The DNMT3 family of mammalian de novo DNA methyltransferases. Prog Mol Biol Transl Sci. 101:255–285. 2011. View Article : Google Scholar | |
Zhang ZM, Lu R, Wang P, Yu Y, Chen D, Gao L, Liu S, Ji D, Rothbart SB, Wang Y, et al: Structural basis for DNMT3A-mediated de novo DNA methylation. Nature. 554:387–391. 2018. View Article : Google Scholar | |
Walton EL, Francastel C and Velasco G: Maintenance of DNA methylation: Dnmt3b joins the dance. Epigenetics. 6:1373–1377. 2011. View Article : Google Scholar | |
Walton EL, Francastel C and Velasco G: Dnmt3b prefers germ line genes and centromeric regions: Lessons from the ICF syndrome and cancer and implications for diseases. Biology. 3:578–605. 2014. View Article : Google Scholar | |
Xu J, Zhang W, Yan XJ, Lin XQ, Li W, Mi JQ, Li JM, Zhu J, Chen Z and Chen SJ: DNMT3A mutation leads to leukemic extramedullary infiltration mediated by TWIST1. J Hematol Oncol. 9:1062016. View Article : Google Scholar | |
Cui H, Hu Y, Guo D, Zhang A, Gu Y, Zhang S, Zhao C, Gong P, Shen X, Li Y, et al: DNA methyltransferase 3A isoform b contributes to repressing E-cadherin through cooperation of DNA methylation and H3K27/H3K9 methylation in EMT-related metastasis of gastric cancer. Oncogene. 37:4358–4371. 2018. View Article : Google Scholar | |
Deivendran S, Marzook H, Santhoshkumar TR, Kumar R and Pillai MR: Metastasis-associated protein 1 is an upstream regulator of DNMT3a and stimulator of insulin-growth factor binding protein-3 in breast cancer. Sci Rep. 7:442252017. View Article : Google Scholar | |
Zhang L, Niu H, Ma J, Yuan BY, Chen YH, Zhuang Y, Chen GW, Zeng ZC and Xiang ZL: The molecular mechanism of lncRNA34a-mediated regulation of bone metastasis in hepatocellular carcinoma. Mol Cancer. 18:1202019. View Article : Google Scholar | |
Shi W, Tang T, Li X, Deng S, Li R, Wang Y, Wang Y, Xia T, Zhang Y, Zen K, et al: Methylation-mediated silencing of miR-133a-3p promotes breast cancer cell migration and stemness via miR-133a-3p/MAML1/DNMT3A positive feedback loop. J Exp Clin Cancer Res. 38:4292019. View Article : Google Scholar | |
Xu K, Chen B, Li B, Li C, Zhang Y, Jiang N and Lang B: DNMT3B silencing suppresses migration and invasion by epigenetically promoting miR-34a in bladder cancer. Aging. 12:23668–23683. 2020. View Article : Google Scholar | |
Lv M, Zhong Z, Huang M, Tian Q, Jiang R and Chen J: lncRNA H19 regulates epithelial-mesenchymal transition and metastasis of bladder cancer by miR-29b-3p as competing endogenous RNA. Biochimica et biophysica acta. Biochim Biophys Acta Mol Cell Res. 1864:1887–1899. 2017. View Article : Google Scholar | |
Takeshima H, Niwa T, Yamashita S, Takamura-Enya T, Iida N, Wakabayashi M, Nanjo S, Abe M, Sugiyama T, Kim YJ and Ushijima T: TET repression and increased DNMT activity synergistically induce aberrant DNA methylation. J Clin Invest. 130:5370–5379. 2020. View Article : Google Scholar | |
Ning B, Liu G, Liu Y, Su X, Anderson GJ, Zheng X, Chang Y, Guo M, Liu Y, Zhao Y and Nie G: 5-aza-2'-deoxycytidine activates iron uptake and heme biosynthesis by increasing c-Myc nuclear localization and binding to the E-boxes of transferrin receptor 1 (TfR1) and ferrochelatase (Fech) genes. J Biol Chemistry. 286:37196–37206. 2011. View Article : Google Scholar | |
Schmelz K, Sattler N, Wagner M, Lübbert M, Dörken B and Tamm I: Induction of gene expression by 5-Aza-2'-deoxycytidine in acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) but not epithelial cells by DNA-methylation-dependent and -independent mechanisms. Leukemia. 19:103–111. 2005. View Article : Google Scholar | |
Tong HY and Lin MF: Effect of 5-aza-2'-deoxycytidine on cell of high-risk patients with myelodysplastic syndrome in vitro. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 12:467–471. 2004.In Chinese. | |
Gagnon J, Shaker S, Primeau M, Hurtubise A and Momparler RL: Interaction of 5-aza-2'-deoxycytidine and depsipeptide on anti-neoplastic activity and activation of 14-3-3sigma, E-cadherin and tissue inhibitor of metalloproteinase 3 expression in human breast carcinoma cells. Anticancer Drugs. 14:193–202. 2003. View Article : Google Scholar | |
Jambhekar A, Dhall A and Shi Y: Roles and regulation of histone methylation in animal development. Nat Rev Mol Cell Biol. 20:625–641. 2019. View Article : Google Scholar | |
Zhao E, Ding J, Xia Y, Liu M, Ye B, Choi JH, Yan C, Dong Z, Huang S, Zha Y, et al: KDM4C and ATF4 cooperate in transcriptional control of amino acid metabolism. Cell Rep. 14:506–519. 2016. View Article : Google Scholar | |
Hyun K, Jeon J, Park K and Kim J: Writing, erasing and reading histone lysine methylations. Exp Mol Med. 49:e3242017. View Article : Google Scholar | |
Tsukada Y, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, Tempst P and Zhang Y: Histone demethylation by a family of JmjC domain-containing proteins. Nature. 439:811–816. 2006. View Article : Google Scholar | |
Skucha A, Ebner J and Grebien F: Roles of SETD2 in Leukemia-Transcription, DNA-Damage, and Beyond. Int J Mol Sci. 20:10292019. View Article : Google Scholar | |
Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, Jones RS and Zhang Y: Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science. 298:1039–1043. 2002. View Article : Google Scholar | |
Montgomery ND, Yee D, Chen A, Kalantry S, Chamberlain SJ, Otte AP and Magnuson T: The murine polycomb group protein Eed is required for global histone H3 lysine-27 methylation. Curr Biol. 15:942–947. 2005. View Article : Google Scholar | |
Moore HM, Gonzalez ME, Toy KA, Cimino-Mathews A, Argani P and Kleer CG: EZH2 inhibition decreases p38 signaling and suppresses breast cancer motility and metastasis. Breast Cancer Res Treat. 138:741–752. 2013. View Article : Google Scholar | |
Yi X, Guo J, Guo J, Sun S, Yang P, Wang J, Li Y, Xie L, Cai J and Wang Z: EZH2-mediated epigenetic silencing of TIMP2 promotes ovarian cancer migration and invasion. Sci Rep. 7:35682017. View Article : Google Scholar | |
Mahmoud F, Shields B, Makhoul I, Hutchins LF, Shalin SC and Tackett AJ: Role of EZH2 histone methyltrasferase in melanoma progression and metastasis. Cancer Biol Ther. 17:579–591. 2016. View Article : Google Scholar | |
Lo Sardo F, Pulito C, Sacconi A, Korita E, Sudol M, Strano S and Blandino G: YAP/TAZ and EZH2 synergize to impair tumor suppressor activity of TGFBR2 in non-small cell lung cancer. Cancer Lett. 500:51–63. 2021. View Article : Google Scholar | |
Niu N, Lu P, Yang Y, He R, Zhang L, Shi J, Wu J, Yang M, Zhang ZG, Wang LW, et al: Loss of Setd2 promotes Kras-induced acinar-to-ductal metaplasia and epithelia-mesenchymal transition during pancreatic carcinogenesis. Gut. 69:715–726. 2020. View Article : Google Scholar | |
Yuan H, Han Y, Wang X, Li N, Liu Q, Yin Y, Wang H, Pan L, Li L, Song K, et al: SETD2 restricts prostate cancer metastasis by integrating EZH2 and AMPK signaling pathways. Cancer Cell. 38:350–365.e7. 2020. View Article : Google Scholar | |
Wu PC, Lu JW, Yang JY, Lin IH, Ou DL, Lin YH, Chou KH, Huang WF, Wang WP, Huang YL, et al: H3K9 histone methyl-transferase, KMT1E/SETDB1, cooperates with the SMAD2/3 pathway to suppress lung cancer metastasis. Cancer Res. 74:7333–7343. 2014. View Article : Google Scholar | |
Luan X and Wang Y: Long non-coding RNA XLOC_006390 promotes cervical cancer proliferation and metastasis through the regulation of SET domain containing 8. Oncol Rep. 38:159–166. 2017. View Article : Google Scholar | |
Kang J, Shin SH, Yoon H, Huh J, Shin HW, Chun YS and Park JW: FIH Is an oxygen sensor in ovarian cancer for G9a/GLP-Driven epigenetic regulation of metastasis-related genes. Cancer Res. 78:1184–1199. 2018. View Article : Google Scholar | |
Qiang R, Cai N, Wang X, Wang L, Cui K, Wang X and Li X: MLL1 promotes cervical carcinoma cell tumorigenesis and metastasis through interaction with β-catenin. OncoTargets Ther. 9:6631–6640. 2016. View Article : Google Scholar | |
Li L, Zhang Z, Ma T and Huo R: PRMT1 regulates tumor growth and metastasis of human melanoma via targeting ALCAM. Mol Med Rep. 14:521–528. 2016. View Article : Google Scholar | |
Chuang CY, Chang CP, Lee YJ, Lin WL, Chang WW, Wu JS, Cheng YW, Lee H and Li C: PRMT1 expression is elevated in head and neck cancer and inhibition of protein arginine methylation by adenosine dialdehyde or PRMT1 knockdown downregulates proliferation and migration of oral cancer cells. Oncol Rep. 38:1115–1123. 2017. View Article : Google Scholar | |
Yin XK, Wang YL, Wang F, Feng WX, Bai SM, Zhao WW, Feng LL, Wei MB, Qin CL, Wang F, et al: PRMT1 enhances oncogenic arginine methylation of NONO in colorectal cancer. Oncogene. 40:1375–1389. 2021. View Article : Google Scholar | |
Yao R, Jiang H, Ma Y, Wang L, Wang L, Du J, Hou P, Gao Y, Zhao L, Wang G, et al: PRMT7 induces epithelial-to-mesenchymal transition and promotes metastasis in breast cancer. Cancer Res. 74:5656–5667. 2014. View Article : Google Scholar | |
Bao X, Zhao S, Liu T, Liu Y, Liu Y and Yang X: Overexpression of PRMT5 promotes tumor cell growth and is associated with poor disease prognosis in epithelial ovarian cancer. J Histochem Cytochem. 61:206–217. 2013. View Article : Google Scholar | |
Tang J, Meng Q, Shi R and Xu Y: PRMT6 serves an oncogenic role in lung adenocarcinoma via regulating p18. Mol Med Rep. 22:3161–3172. 2020. | |
Allis CD, Berger SL, Cote J, Dent S, Jenuwien T, Kouzarides T, Pillus L, Reinberg D, Shi Y, Shiekhattar R, et al: New nomenclature for chromatin-modifying enzymes. Cell. 131:633–636. 2007. View Article : Google Scholar | |
Schneider J and Shilatifard A: Histone demethylation by hydroxylation: Chemistry in action. ACS Chem Biol. 1:75–81. 2006. View Article : Google Scholar | |
Varier RA and Timmers HT: Histone lysine methylation and demethylation pathways in cancer. Biochim Biophys Acta. 1815:75–89. 2011. | |
Hong Y, Li X and Zhu J: LSD1-mediated stabilization of SEPT6 protein activates the TGF-β1 pathway and regulates non-small-cell lung cancer metastasis. Cancer Gene Ther. 29:189–201. 2022. View Article : Google Scholar | |
Liu J, Feng J, Li L, Lin L, Ji J, Lin C, Liu L, Zhang N, Duan D, Li Z, et al: Arginine methylation-dependent LSD1 stability promotes invasion and metastasis of breast cancer. EMBO Rep. 21:e485972020. View Article : Google Scholar | |
Pan HM, Lang WY, Yao LJ, Wang Y and Li XL: shRNA-interfering LSD1 inhibits proliferation and invasion of gastric cancer cells via VEGF-C/PI3K/AKT signaling pathway. World J Gastrointest Oncol. 11:622–633. 2019. View Article : Google Scholar | |
Huang Y, Liu Y, Yu L, Chen J, Hou J, Cui L, Ma D and Lu W: Histone demethylase KDM2A promotes tumor cell growth and migration in gastric cancer. Tumour Biol. 36:271–278. 2015. View Article : Google Scholar | |
Wanna-Udom S, Terashima M, Suphakhong K, Ishimura A, Takino T and Suzuki T: KDM2B is involved in the epigenetic regulation of TGF-β-induced epithelial-mesenchymal transition in lung and pancreatic cancer cell lines. J Biol Chem. 296:1002132021. View Article : Google Scholar | |
Lu DH, Yang J, Gao LK, Min J, Tang JM, Hu M, Li Y, Li ST, Chen J and Hong L: Lysine demethylase 2A promotes the progression of ovarian cancer by regulating the PI3K pathway and reversing epithelial-mesenchymal transition. Oncol Rep. 41:917–927. 2019. | |
Tee AE, Ling D, Nelson C, Atmadibrata B, Dinger ME, Xu N, Mizukami T, Liu PY, Liu B, Cheung B, et al: The histone demethylase JMJD1A induces cell migration and invasion by up-regulating the expression of the long noncoding RNA MALAT1. Oncotarget. 5:1793–1804. 2014. View Article : Google Scholar | |
Sechler M, Parrish JK, Birks DK and Jedlicka P: The histone demethylase KDM3A, and its downstream target MCAM, promote Ewing Sarcoma cell migration and metastasis. Oncogene. 36:4150–4160. 2017. View Article : Google Scholar | |
Sun S, Yang F, Zhu Y and Zhang S: KDM4A promotes the growth of non-small cell lung cancer by mediating the expression of Myc via DLX5 through the Wnt/β-catenin signaling pathway. Life Sci. 262:1185082020. View Article : Google Scholar | |
Li S, Wu L, Wang Q, Li Y and Wang X: KDM4B promotes epithelial-mesenchymal transition through up-regulation of ZEB1 in pancreatic cancer. Acta Biochim Biophys Sin (Shanghai). 47:997–1004. 2015. | |
Shen Y, Wei W and Zhou DX: Histone acetylation enzymes coordinate metabolism and gene expression. Trends Plant Sci. 20:614–621. 2015. View Article : Google Scholar | |
Wang Y, Miao X, Liu Y, Li F, Liu Q, Sun J and Cai L: Dysregulation of histone acetyltransferases and deacetylases in cardiovascular diseases. Oxid Med Cell Longev. 2014:6419792014. View Article : Google Scholar | |
Gujral P, Mahajan V, Lissaman AC and Ponnampalam AP: Histone acetylation and the role of histone deacetylases in normal cyclic endometrium. Reprod Biol Endocrinol. 18:842020. View Article : Google Scholar | |
Liu W, Zhan Z, Zhang M, Sun B, Shi Q, Luo F, Zhang M, Zhang W, Hou Y, Xiao X, et al: KAT6A, a novel regulator of β-catenin, promotes tumorigenicity and chemoresistance in ovarian cancer by acetylating COP1. Theranostics. 11:6278–6292. 2021. View Article : Google Scholar | |
Santos GC Jr, da Silva AP, Feldman L, Ventura GM, Vassetzky Y and de Moura Gallo CV: Epigenetic modifications, chromatin distribution and TP53 transcription in a model of breast cancer progression. J Cell Biochem. 116:533–541. 2015. View Article : Google Scholar | |
Legube G and Trouche D: Regulating histone acetyltransferases and deacetylases. EMBO Rep. 4:944–947. 2003. View Article : Google Scholar | |
Parra M and Verdin E: Regulatory signal transduction pathways for class IIa histone deacetylases. Curr Opin Pharmacol. 10:454–460. 2010. View Article : Google Scholar | |
Liu J, Gu J, Feng Z, Yang Y, Zhu N, Lu W and Qi F: Both HDAC5 and HDAC6 are required for the proliferation and metastasis of melanoma cells. J Transl Med. 14:72016. View Article : Google Scholar | |
Dong L, Dong Q, Chen Y, Li Y, Zhang B, Zhou F, Lyu X, Chen GG, Lai P, Kung HF and He ML: Novel HDAC5-interacting motifs of Tbx3 are essential for the suppression of E-cadherin expression and for the promotion of metastasis in hepatocellular carcinoma. Signal Transduct Target Ther. 3:222018. View Article : Google Scholar | |
von Burstin J, Eser S, Paul MC, Seidler B, Brandl M, Messer M, von Werder A, Schmidt A, Mages J, Pagel P, et al: E-cadherin regulates metastasis of pancreatic cancer in vivo and is suppressed by a SNAIL/HDAC1/HDAC2 repressor complex. Gastroenterology. 137:361–371. e1–e5. 2009. View Article : Google Scholar | |
Cheng C, Yang J, Li SW, Huang G, Li C, Min WP and Sang Y: HDAC4 promotes nasopharyngeal carcinoma progression and serves as a therapeutic target. Cell Death Dis. 12:1372021. View Article : Google Scholar | |
Tang X, Li G, Su F, Cai Y, Shi L, Meng Y, Liu Z, Sun J, Wang M, Qian M, et al: HDAC8 cooperates with SMAD3/4 complex to suppress SIRT7 and promote cell survival and migration. Nucleic Acids Res. 48:2912–2923. 2020. View Article : Google Scholar | |
Yu XJ, Guo XZ, Li C, Chong Y, Song TN, Pang JF and Shao M: SIRT1-ZEB1-positive feedback promotes epithelial-mesenchymal transition process and metastasis of osteosarcoma. J Cell Biochem. 120:3727–3735. 2019. View Article : Google Scholar | |
Bai L, Lin G, Sun L, Liu Y, Huang X, Cao C, Guo Y and Xie C: Upregulation of SIRT6 predicts poor prognosis and promotes metastasis of non-small cell lung cancer via the ERK1/2/MMP9 pathway. Oncotarget. 7:40377–40386. 2016. View Article : Google Scholar | |
Kugel S, Sebastián C, Fitamant J, Ross KN, Saha SK, Jain E, Gladden A, Arora KS, Kato Y, Rivera MN, et al: SIRT6 suppresses pancreatic cancer through control of Lin28b. Cell. 165:1401–1415. 2016. View Article : Google Scholar | |
Li R, Quan Y and Xia W: SIRT3 inhibits prostate cancer metastasis through regulation of FOXO3A by suppressing Wnt/β-catenin pathway. Exp Cell Res. 364:143–151. 2018. View Article : Google Scholar | |
Fu L, Dong Q, He J, Wang X, Xing J, Wang E, Qiu X and Li Q: SIRT4 inhibits malignancy progression of NSCLCs, through mitochondrial dynamics mediated by the ERK-Drp1 pathway. Oncogene. 36:2724–2736. 2017. View Article : Google Scholar | |
Tang X, Shi L, Xie N, Liu Z, Qian M, Meng F, Xu Q, Zhou M, Cao X, Zhu WG and Liu B: SIRT7 antagonizes TGF-β signaling and inhibits breast cancer metastasis. Nat Commun. 8:3182017. View Article : Google Scholar | |
Sun Y, Sun Y, Yue S, Wang Y and Lu F: Histone deacetylase inhibitors in cancer therapy. Curr Top Med Chem. 18:2420–2428. 2018. View Article : Google Scholar | |
Kelly WK and Marks PA: Drug insight: Histone deacetylase inhibitors-development of the new targeted anticancer agent suberoylanilide hydroxamic acid. Nat Clin Pract Oncol. 2:150–157. 2005. View Article : Google Scholar | |
Greenberg VL, Williams JM, Cogswell JP, Mendenhall M and Zimmer SG: Histone deacetylase inhibitors promote apoptosis and differential cell cycle arrest in anaplastic thyroid cancer cells. Thyroid. 11:315–325. 2001. View Article : Google Scholar | |
Nishida K, Komiyama T, Miyazawa S, Shen ZN, Furumatsu T, Doi H, Yoshida A, Yamana J, Yamamura M, Ninomiya Y, et al: Histone deacetylase inhibitor suppression of autoanti-body-mediated arthritis in mice via regulation of p16INK4a and p21(WAF1/Cip1) expression. Arthritis Rheum. 50:3365–3376. 2004. View Article : Google Scholar | |
Deroanne CF, Bonjean K, Servotte S, Devy L, Colige A, Clausse N, Blacher S, Verdin E, Foidart JM, Nusgens BV and Castronovo V: Histone deacetylases inhibitors as anti-angiogenic agents altering vascular endothelial growth factor signaling. Oncogene. 21:427–436. 2002. View Article : Google Scholar | |
Dikic I: Proteasomal and autophagic degradation systems. Ann Rev Biochem. 86:193–224. 2017. View Article : Google Scholar | |
Nandi D, Tahiliani P, Kumar A and Chandu D: The ubiq-uitin-proteasome system. J Biosci. 31:137–155. 2006. View Article : Google Scholar | |
Ikeda F and Dikic I: Atypical ubiquitin chains: New molecular signals. 'Protein Modifications: Beyond the Usual Suspects' review series. EMBO Rep. 9:536–542. 2008. View Article : Google Scholar | |
Mevissen TET and Komander D: Mechanisms of deubiquitinase specificity and regulation. Ann Rev Biochem. 86:159–192. 2017. View Article : Google Scholar | |
Snyder NA and Silva GM: Deubiquitinating enzymes (DUBs): Regulation, homeostasis, and oxidative stress response. J Biol Chem. 297:1010772021. View Article : Google Scholar | |
van Wijk SJ, Fulda S, Dikic I and Heilemann M: Visualizing ubiquitination in mammalian cells. EMBO Rep. 20:e465202019. View Article : Google Scholar | |
Xu H, Ju L, Xiong Y, Yu M, Zhou F, Qian K, Wang G, Xiao Y and Wang X: E3 ubiquitin ligase RNF126 affects bladder cancer progression through regulation of PTEN stability. Cell Death Dis. 12:2392021. View Article : Google Scholar | |
Xu H, Yang X, Xuan X, Wu D, Zhang J, Xu X, Zhao Y, Ma C and Li D: STAMBP promotes lung adenocarcinoma metastasis by regulating the EGFR/MAPK signaling pathway. Neoplasia. 23:607–623. 2021. View Article : Google Scholar | |
Xiao C, Wu G, Zhou Z, Zhang X, Wang Y, Song G, Ding E, Sun X, Zhong L, Li S, et al: RBBP6, a RING finger-domain E3 ubiquitin ligase, induces epithelial-mesenchymal transition and promotes metastasis of colorectal cancer. Cell Death Dis. 10:8332019. View Article : Google Scholar | |
Xue S, Wu W, Wang Z, Lu G, Sun J, Jin X, Xie L, Wang X, Tan C, Wang Z, et al: USP5 Promotes metastasis in non-small cell lung cancer by inducing epithelial-mesenchymal transition via Wnt/β-catenin pathway. Front Pharmacol. 11:6682020. View Article : Google Scholar | |
Yuan T, Chen Z, Yan F, Qian M, Luo H, Ye S, Cao J, Ying M, Dai X, Gai R, et al: Deubiquitinating enzyme USP10 promotes hepatocellular carcinoma metastasis through deubiquitinating and stabilizing Smad4 protein. Mol Oncol. 14:197–210. 2020. View Article : Google Scholar | |
Chen Y, Zhou B and Chen D: USP21 promotes cell proliferation and metastasis through suppressing EZH2 ubiquitination in bladder carcinoma. Onco Targets Ther. 10:681–689. 2017. View Article : Google Scholar | |
Sun H, Ou B, Zhao S, Liu X, Song L, Liu X, Wang R and Peng Z: USP11 promotes growth and metastasis of colorectal cancer via PPP1CA-mediated activation of ERK/MAPK signaling pathway. EBioMedicine. 48:236–247. 2019. View Article : Google Scholar | |
Zhang C, Xie C, Wang X, Huang Y, Gao S, Lu J, Lu Y and Zhang S: Aberrant USP11 expression regulates NF90 to promote proliferation and metastasis in hepatocellular carcinoma. Am J Cancer Res. 10:1416–1428. 2020. | |
Xie P, Chen Y, Zhang H, Zhou G, Chao Q, Wang J, Liu Y, Fang J, Xie J, Zhen J, et al: The deubiquitinase OTUD3 stabilizes ACTN4 to drive growth and metastasis of hepatocellular carcinoma. Aging. 13:19317–19338. 2021. View Article : Google Scholar | |
Zhu R, Liu Y, Zhou H, Li L, Li Y, Ding F, Cao X and Liu Z: Deubiquitinating enzyme PSMD14 promotes tumor metastasis through stabilizing SNAIL in human esophageal squamous cell carcinoma. Cancer Lett. 418:125–134. 2018. View Article : Google Scholar | |
Chen D, Wang Y, Lu R, Jiang X, Chen X, Meng N, Chen M, Xie S and Yan GR: E3 ligase ZFP91 inhibits Hepatocellular Carcinoma Metabolism Reprogramming by regulating PKM splicing. Theranostics. 10:8558–8572. 2020. View Article : Google Scholar | |
Yu L, Dong L, Li H, Liu Z, Luo Z, Duan G, Dai X and Lin Z: Ubiquitination-mediated degradation of SIRT1 by SMURF2 suppresses CRC cell proliferation and tumorigenesis. Oncogene. 39:4450–4464. 2020. View Article : Google Scholar | |
Shen T, Cai LD, Liu YH, Li S, Gan WJ, Li XM, Wang JR, Guo PD, Zhou Q, Lu XX, et al: Ube2v1-mediated ubiquitination and degradation of Sirt1 promotes metastasis of colorectal cancer by epigenetically suppressing autophagy. J Hematol Oncol. 11:952018. View Article : Google Scholar | |
Guo W, You X, Xu D, Zhang Y, Wang Z, Man K, Wang Z and Chen Y: PAQR3 enhances Twist1 degradation to suppress epithelial-mesenchymal transition and metastasis of gastric cancer cells. Carcinogenesis. 37:397–407. 2016. View Article : Google Scholar | |
Ye P, Chi X, Cha JH, Luo S, Yang G, Yan X and Yang WH: Potential of E3 ubiquitin ligases in cancer immunity: Opportunities and challenges. Cells. 10:33092021. View Article : Google Scholar | |
Wei R, Liu X, Yu W, Yang T, Cai W, Liu J, Huang X, Xu GT, Zhao S, Yang J and Liu S: Deubiquitinases in cancer. Oncotarget. 6:12872–12889. 2015. View Article : Google Scholar | |
Lee BH, Lee MJ, Park S, Oh DC, Elsasser S, Chen PC, Gartner C, Dimova N, Hanna J, Gygi SP, et al: Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature. 467:179–184. 2010. View Article : Google Scholar | |
Chauhan D, Tian Z, Nicholson B, Kumar KG, Zhou B, Carrasco R, McDermott JL, Leach CA, Fulcinniti M, Kodrasov MP, et al: A small molecule inhibitor of ubiquitin-specific protease-7 induces apoptosis in multiple myeloma cells and overcomes bortezomib resistance. Cancer Cell. 22:345–358. 2012. View Article : Google Scholar | |
Reiner T, Parrondo R, de Las Pozas A, Palenzuela D and Perez-Stable C: Betulinic acid selectively increases protein degradation and enhances prostate cancer-specific apoptosis: Possible role for inhibition of deubiquitinase activity. PLoS One. 8:e562342013. View Article : Google Scholar | |
Stowell SR, Ju T and Cummings RD: Protein glycosylation in cancer. Ann Rev Pathol. 10:473–510. 2015. View Article : Google Scholar | |
Eichler J: Protein glycosylation. Curr Bio. 29:R229–R231. 2019. View Article : Google Scholar | |
Mammadova-Bach E, Jaeken J, Gudermann T and Braun A: Platelets and defective N-glycosylation. Int J Mol Sci. 21:56302020. View Article : Google Scholar | |
Clerc F, Reiding KR, Jansen BC, Kammeijer GS, Bondt A and Wuhrer M: Human plasma protein N-glycosylation. Glycoconj J. 33:309–343. 2016. View Article : Google Scholar | |
Shajahan A, Supekar NT, Gleinich AS and Azadi P: Deducing the N-and O-glycosylation profile of the spike protein of novel coronavirus SARS-CoV-2. Glycobiology. 30:981–988. 2020. View Article : Google Scholar | |
Magalhães A, Duarte HO and Reis CA: The role of O-glycosylation in human disease. Mol Aspects Med. 79:10096420210. View Article : Google Scholar | |
Van den Steen P, Rudd PM, Dwek RA and Opdenakker G: Concepts and principles of O-linked glycosylation. Crit Rev Biochem Mol Biol. 33:151–208. 1998. View Article : Google Scholar | |
Chiang AC and Massagué J: Molecular basis of metastasis. N Engl J Med. 359:2814–2823. 2008. View Article : Google Scholar | |
Läubli H and Borsig L: Altered cell adhesion and glycosylation promote cancer immune suppression and metastasis. Front Immunol. 10:21202019. View Article : Google Scholar | |
Oliveira-Ferrer L, Legler K and Milde-Langosch K: Role of protein glycosylation in cancer metastasis. Semin Cancer Biol. 44:141–152. 2017. View Article : Google Scholar | |
Sengupta PK, Bouchie MP, Nita-Lazar M, Yang HY and Kukuruzinska MA: Coordinate regulation of N-glycosylation gene DPAGT1, canonical Wnt signaling and E-cadherin adhesion. J Cell Sci. 126:484–496. 2013. View Article : Google Scholar | |
Zhao H, Liang Y, Xu Z, Wang L, Zhou F, Li Z, Jin J, Yang Y, Fang Z, Hu Y, et al: N-glycosylation affects the adhesive function of E-Cadherin through modifying the composition of adherens junctions (AJs) in human breast carcinoma cell line MDA-MB-435. J Cell Biochem. 104:162–175. 2008. View Article : Google Scholar | |
Pinho SS, Reis CA, Paredes J, Magalhães AM, Ferreira AC, Figueiredo J, Xiaogang W, Carneiro F, Gärtner F and Seruca R: The role of N-acetylglucosaminyltransferase III and V in the post-transcriptional modifications of E-cadherin. Hum Mol Genet. 18:2599–2608. 2009. View Article : Google Scholar | |
Xu Y, Chang R, Xu F, Gao Y, Yang F, Wang C, Xiao J, Su Z, Bi Y, Wang L and Zha X: N-Glycosylation at Asn 402 Stabilizes N-cadherin and promotes cell-cell adhesion of glioma cells. J Cell Biochem. 118:1423–1431. 2017. View Article : Google Scholar | |
Binder MJ, McCoombe S, Williams ED, McCulloch DR and Ward AC: The extracellular matrix in cancer progression: Role of hyalectan proteoglycans and ADAMTS enzymes. Cancer Lett. 385:55–64. 2017. View Article : Google Scholar | |
Lagana A, Goetz JG, Cheung P, Raz A, Dennis JW and Nabi IR: Galectin binding to Mgat5-modified N-glycans regulates fibronectin matrix remodeling in tumor cells. Mol Cell Biol. 26:3181–3193. 2006. View Article : Google Scholar | |
Park JJ and Lee M: Increasing the α 2,6 sialylation of glyco-proteins may contribute to metastatic spread and therapeutic resistance in colorectal cancer. Gut Liver. 7:629–641. 2013. View Article : Google Scholar | |
Suzuki O, Abe M and Hashimoto Y: Sialylation by β-galactoside α-2,6-sialyltransferase and N-glycans regulate cell adhesion and invasion in human anaplastic large cell lymphoma. Int J Oncol. 46:973–980. 2015. View Article : Google Scholar | |
Cui J, Huang W, Wu B, Jin J, Jing L, Shi WP, Liu ZY, Yuan L, Luo D, Li L, et al: N-glycosylation by N-acetylglucosaminyltra nsferase V enhances the interaction of CD147/basigin with integrin β1 and promotes HCC metastasis. J Pathol. 245:41–52. 2018. View Article : Google Scholar | |
Li JH, Huang W, Lin P, Wu B, Fu ZG, Shen HM, Jing L, Liu ZY, Zhou Y, Meng Y, et al: N-linked glycosylation at Asn152 on CD147 affects protein folding and stability: Promoting tumour metastasis in hepatocellular carcinoma. Sci Rep. 6:352102016. View Article : Google Scholar | |
Jiang K, Li W, Zhang Q, Yan G, Guo K, Zhang S and Liu Y: GP73 N-glycosylation at Asn144 reduces hepatocellular carcinoma cell motility and invasiveness. Oncotarget. 7:23530–23541. 2016. View Article : Google Scholar | |
Lin TC, Chen ST, Huang MC, Huang J, Hsu CL, Juan HF, Lin HH and Chen CH: GALNT6 expression enhances aggressive phenotypes of ovarian cancer cells by regulating EGFR activity. Oncotarget. 8:42588–42601. 2017. View Article : Google Scholar | |
Liu C, Li Z, Xu L, Shi Y, Zhang X, Shi S, Hou K, Fan Y, Li C, Wang X, et al: GALNT6 promotes breast cancer metastasis by increasing mucin-type O-glycosylation of α2M. Aging. 12:11794–11811. 2020. View Article : Google Scholar | |
Hu WT, Yeh CC, Liu SY, Huang MC and Lai IR: The O-glycosylating enzyme GALNT2 suppresses the malignancy of gastric adenocarcinoma by reducing EGFR activities. Am J Cancer Res. 8:1739–1751. 2018. | |
Kariya Y, Kanno M, Matsumoto-Morita K, Konno M, Yamaguchi Y and Hashimoto Y: Osteopontin O-glycosylation contributes to its phosphorylation and cell-adhesion properties. Biochem J. 463:93–102. 2014. View Article : Google Scholar | |
Ponath P, Menezes D, Pan C, Chen B, Oyasu M, Strachan D, LeBlanc H, Sun H, Wang XT, Rangan VS, et al: A novel, fully human Anti-fucosyl-GM1 antibody demonstrates potent in vitro and in vivo antitumor activity in preclinical models of small cell lung cancer. Clin Cancer Res. 24:5178–5189. 2018. View Article : Google Scholar | |
Festuccia C, Mancini A, Gravina GL, Colapietro A, Vetuschi A, Pompili S, Ventura L, Delle Monache S, Iorio R, Del Fattore A, et al: Dual CXCR4 and E-selectin inhibitor, GMI-1359, shows Anti-bone metastatic effects and synergizes with docetaxel in prostate cancer cell intraosseous growth. Cells. 9:322019. View Article : Google Scholar | |
Taracha A, Kotarba G and Wilanowski T: Methods of analysis of protein phosphorylation. Postepy Biochem. 63:137–142. 2017.In Polish. | |
Tokuda M and Hatase O: Regulation of neuronal plasticity in the central nervous system by phosphorylation and dephosphorylation. Mol Neurobiol. 17:137–156. 1998. View Article : Google Scholar | |
Csolle MP, Ooms LM, Papa A and Mitchell CA: PTEN and other PtdIns(3,4,5)P3 lipid phosphatases in breast cancer. Int J Mol Sci. 21:91892020. View Article : Google Scholar | |
Zeng J, Li X, Liang L, Duan H, Xie S and Wang C: Phosphorylation of CAP1 regulates lung cancer proliferation, migration, and invasion. J Cancer Res Clin Oncol. 148:137–153. 2022. View Article : Google Scholar | |
Zhang K, Wu R, Mei F, Zhou Y, He L, Liu Y, Zhao X, You J, Liu B, Meng Q and Pei F: Phosphorylated LASS2 inhibits prostate carcinogenesis via negative regulation of Wnt/β-catenin signaling. J Cell Biochem. Apr 14–2021.Epub ahead of print. View Article : Google Scholar | |
Li J, Enomoto A, Weng L, Sun L and Takahashi M: Dephosphorylation of Girdin by PP2A inhibits breast cancer metastasis. Biochem Biophys Res Commun. 513:28–34. 2019. View Article : Google Scholar | |
Hainaut P and Plymoth A: Targeting the hallmarks of cancer: Towards a rational approach to next-generation cancer therapy. Curr Opin Oncol. 25:50–51. 2013. View Article : Google Scholar | |
Elkabets M, Vora S, Juric D, Morse N, Mino-Kenudson M, Muranen T, Tao J, Campos AB, Rodon J, Ibrahim YH, et al: mTORC1 inhibition is required for sensitivity to PI3K p110α inhibitors in PIK3CA-mutant breast cancer. Sci Transl Med. 5:196ra992013. View Article : Google Scholar | |
Druker BJ: Imatinib mesylate in the treatment of chronic myeloid leukaemia. Expert Opin Pharmacother. 4:963–971. 2003. View Article : Google Scholar | |
Ulivi P, Chiadini E, Dazzi C, Dubini A, Costantini M, Medri L, Puccetti M, Capelli L, Calistri D, Verlicchi A, et al: Nonsquamous, non-small-cell lung cancer patients who carry a double mutation of EGFR, EML4-ALK or KRAS: Frequency, clinical-pathological characteristics, and response to therapy. Clin Lung Cancer. 17:384–390. 2016. View Article : Google Scholar | |
Larkin J, Ascierto PA, Dréno B, Atkinson V, Liszkay G, Maio M, Mandalà M, Demidov L, Stroyakovskiy D, Thomas L, et al: Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N Engl J Med. 371:1867–1876. 2014. View Article : Google Scholar | |
Murray BW and Miller N: Durability of Kinase-directed therapies-A Network perspective on response and resistance. Mol Cancer Ther. 14:1975–1984. 2015. View Article : Google Scholar | |
Bagert JD, Mitchener MM, Patriotis AL, Dul BE, Wojcik F, Nacev BA, Feng L, Allis CD and Muir TW: Oncohistone mutations enhance chromatin remodeling and alter cell fates. Nat Chem Biol. 17:403–411. 2021. View Article : Google Scholar | |
Dawson MA and Kouzarides T: Cancer epigenetics: From mechanism to therapy. Cell. 150:12–27. 2012. View Article : Google Scholar | |
Clapier CR and Cairns BR: The biology of chromatin remodeling complexes. Ann Rev Biochem. 78:273–304. 2009. View Article : Google Scholar | |
Becker PB and Workman JL: Nucleosome remodeling and epigenetics. Cold Spring Harbor Perspect Biol. 5:a0179052013. View Article : Google Scholar | |
Wang W, Côté J, Xue Y, Zhou S, Khavari PA, Biggar SR, Muchardt C, Kalpana GV, Goff SP, Yaniv M, et al: Purification and biochemical heterogeneity of the mammalian SWI-SNF complex. EMBO J. 15:5370–5382. 1996. View Article : Google Scholar | |
Morrison AJ and Shen X: Chromatin remodelling beyond transcription: The INO80 and SWR1 complexes. Nat Rev Mol Cell Biol. 10:373–384. 2009. View Article : Google Scholar | |
Gévry N, Chan HM, Laflamme L, Livingston DM and Gaudreau L: p21 transcription is regulated by differential localization of histone H2A.Z. Genes Dev. 21:1869–1881. 2007. View Article : Google Scholar | |
Wong MM, Cox LK and Chrivia JC: The chromatin remodeling protein, SRCAP, is critical for deposition of the histone variant H2A.Z at promoters. J Biol Chem. 282:26132–26139. 2007. View Article : Google Scholar | |
Tong JK, Hassig CA, Schnitzler GR, Kingston RE and Schreiber SL: Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex. Nature. 395:917–921. 1998. View Article : Google Scholar | |
Hendrich B and Bird A: Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cell Biol. 18:6538–6547. 1998. View Article : Google Scholar | |
Günther K, Rust M, Leers J, Boettger T, Scharfe M, Jarek M, Bartkuhn M and Renkawitz R: Differential roles for MBD2 and MBD3 at methylated CpG islands, active promoters and binding to exon sequences. Nucleic Acids Res. 41:3010–3021. 2013. View Article : Google Scholar | |
Poot RA, Bozhenok L, van den Berg DL, Steffensen S, Ferreira F, Grimaldi M, Gilbert N, Ferreira J and Varga-Weisz PD: The Williams syndrome transcription factor interacts with PCNA to target chromatin remodelling by ISWI to replication foci. Nat Cell Biol. 6:1236–1244. 2004. View Article : Google Scholar | |
Cavellán E, Asp P, Percipalle P and Farrants AK: The WSTF-SNF2h chromatin remodeling complex interacts with several nuclear proteins in transcription. J Biol Chem. 281:16264–16271. 2006. View Article : Google Scholar | |
Centore RC, Sandoval GJ, Soares LMM, Kadoch C and Chan HM: Mammalian SWI/SNF chromatin remodeling complexes: Emerging mechanisms and therapeutic strategies. Trends Genet. 36:936–950. 2020. View Article : Google Scholar | |
Yang Y, Liu L, Li M, Cheng X, Fang M, Zeng Q and Xu Y: The chromatin remodeling protein BRG1 links ELOVL3 transactivation to prostate cancer metastasis. Biochim Biophys Acta Gene Regul Mech. 1862:834–845. 2019. View Article : Google Scholar | |
Liao XH, Zhang Y, Dong WJ, Shao ZM and Li DQ: Chromatin remodeling protein MORC2 promotes breast cancer invasion and metastasis through a PRD domain-mediated interaction with CTNND1. Oncotarget. 8:97941–97954. 2017. View Article : Google Scholar | |
Wang J, Yan HB, Zhang Q, Liu WY, Jiang YH, Peng G, Wu FZ, Liu X, Yang PY and Liu F: Enhancement of E-cadherin expression and processing and driving of cancer cell metastasis by ARID1A deficiency. Oncogene. 40:5468–5481. 2021. View Article : Google Scholar | |
Hombach S and Kretz M: Non-coding RNAs: Classification, biology and functioning. Adv Exp Med Biol. 937:3–17. 2016. View Article : Google Scholar | |
Zhang P, Wu W, Chen Q and Chen M: Non-coding RNAs and their integrated networks. J Integr Bioinform. 16:201900272019. View Article : Google Scholar | |
Lu TX and Rothenberg ME: MicroRNA. J Allergy Clin Immunol. 141:1202–1207. 2018. View Article : Google Scholar | |
Ro-Choi TS: Nuclear snRNA and nuclear function (discovery of 5'cap structures in RNA). Crit Rev Eukaryot Gene Expr. 9:107–158. 1999. View Article : Google Scholar | |
Deryusheva S, Talross GJS and Gall JG: SnoRNA guide activities: Real and ambiguous. RNA. 27:1363–1373. 2021. View Article : Google Scholar | |
Ali T and Grote P: Beyond the RNA-dependent function of lncRNA genes. Elife. 9:e605832020. View Article : Google Scholar | |
Bridges MC, Daulagala AC and Kourtidis A: LNCcation: lncRNA localization and function. J Cell Biol. 220:e2020090452021. View Article : Google Scholar | |
Yang Q, Li F, He AT and Yang BB: Circular RNAs: Expression, localization, and therapeutic potentials. Mol Ther. 29:1683–1702. 2021. View Article : Google Scholar | |
Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB and Kjems J: The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 20:675–691. 2019. View Article : Google Scholar | |
Chen B, Li Q, Zhou Y, Wang X, Zhang Q, Wang Y, Zhuang H, Jiang X and Xiong W: The long coding RNA AFAP1-AS1 promotes tumor cell growth and invasion in pancreatic cancer through upregulating the IGF1R oncogene via sequestration of miR-133a. Cell Cycle. 17:1949–1966. 2018. View Article : Google Scholar | |
Petri BJ and Klinge CM: Regulation of breast cancer metastasis signaling by miRNAs. Cancer Metastasis Rev. 39:837–886. 2020. View Article : Google Scholar | |
Aigner A: MicroRNAs (miRNAs) in cancer invasion and metastasis: Therapeutic approaches based on metastasis-related miRNAs. J Mol Med. 89:445–457. 2011. View Article : Google Scholar | |
Feng X, Wang Z, Fillmore R and Xi Y: MiR-200, a new star miRNA in human cancer. Cancer Lett. 344:166–173. 2014. View Article : Google Scholar | |
Krupa A, Jenkins R, Luo DD, Lewis A, Phillips A and Fraser D: Loss of MicroRNA-192 promotes fibrogenesis in diabetic nephropathy. J Am So Nephrol. 21:438–447. 2010. View Article : Google Scholar | |
Li J, Meng H, Bai Y and Wang K: Regulation of lncRNA and its role in cancer metastasis. Oncol Res. 23:205–217. 2016. View Article : Google Scholar | |
Hao Y, Baker D and Ten Dijke P: TGF-β-mediated epithelial-mesenchymal transition and cancer metastasis. Int J Mol Sci. 20:27672019. View Article : Google Scholar | |
Bray SJ: Notch signalling in context. Nat Rev Mol Cell Biol. 17:722–735. 2016. View Article : Google Scholar | |
Browning L, Patel MR, Horvath EB, Tawara K and Jorcyk CL: IL-6 and ovarian cancer: Inflammatory cytokines in promotion of metastasis. Cancer Manage Res. 10:6685–6693. 2018. View Article : Google Scholar | |
Yang S, Liu Y, Li MY, Ng CSH, Yang SL, Wang S, Zou C, Dong Y, Du J, Long X, et al: FOXP3 promotes tumor growth and metastasis by activating Wnt/β-catenin signaling pathway and EMT in non-small cell lung cancer. Mol Cancer. 16:1242017. View Article : Google Scholar | |
Li Y, Egranov SD, Yang L and Lin C: Molecular mechanisms of long noncoding RNAs-mediated cancer metastasis. Genes Chromosomes Cancer. 58:200–207. 2019. View Article : Google Scholar | |
Fang C, Wang L, Gong C, Wu W, Yao C and Zhu S: Long non-coding RNAs: How to regulate the metastasis of non-small-cell lung cancer. J Cell Mol Med. 24:3282–3291. 2020. View Article : Google Scholar | |
Roe JS, Hwang CI, Somerville TDD, Milazzo JP, Lee EJ, Da Silva B, Maiorino L, Tiriac H, Young CM, Miyabayashi K, et al: Enhancer reprogramming promotes pancreatic cancer metastasis. Cell. 170:875–888.e20. 2017. View Article : Google Scholar |