NcRNAs: Multi‑angle participation in the regulation of glioma chemotherapy resistance (Review)
- Authors:
- Zhaomu Zeng
- Yueyue Chen
- Xiuchao Geng
- Yuhao Zhang
- Xichao Wen
- Qingyu Yan
- Tingting Wang
- Chen Ling
- Yan Xu
- Junchao Duan
- Kebin Zheng
- Zhiwei Sun
-
Affiliations: Department of Surgery, School of Clinical Medicine, Hebei University, Baoding, Hebei 071000, P.R. China, Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, P.R. China, Department of Nursing, School of Medicine, Taizhou University, Jiaojiang, Zhejiang 318000, P.R. China, Department of Neurosurgery, Zhejiang Provincial People's Hospital, Affiliated to Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China, Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China, Office of Academic Research, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China, Department of Breast Surgery, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China, Central Laboratory, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China, Clinical Laboratory, Affiliated Hospital of Jinggangshan University, Ji'an, Jiangxi 343100, P.R. China - Published online on: May 4, 2022 https://doi.org/10.3892/ijo.2022.5366
- Article Number: 76
-
Copyright: © Zeng et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Francis SS, Ostrom QT, Cote DJ, Smith TR, Claus E and Barnholtz-Sloan JS: The epidemiology of central nervous system tumors. Hematol Oncol Clin North Am. 36:23–42. 2022. View Article : Google Scholar | |
Tomar MS, Kumar A, Srivastava C and Shrivastava A: Elucidating the mechanisms of Temozolomide resistance in gliomas and the strategies to overcome the resistance. Biochim Biophys Acta Rev Cancer. 1876:1886162021. View Article : Google Scholar : PubMed/NCBI | |
Li D, Zhang Z, Xia C, Niu C and Zhou W: Non-Coding RNAs in glioma microenvironment and angiogenesis. Front Mol Neurosci. 14:7636102021. View Article : Google Scholar | |
Shahzad U, Krumholtz S, Rutka JT and Das S: oncoding RNAs in Glioblastoma: Emerging biological concepts and potential therapeutic implications. Cancers (Basel). 13:15552021. View Article : Google Scholar | |
Alomari S, Zhang I, Hernandez A, Kraft CY, Raj D, Kedda J and Tyler B: Drug Repurposing for glioblastoma and current advances in drug Delivery-A comprehensive review of the literature. Biomolecules. 11:18702021. View Article : Google Scholar : PubMed/NCBI | |
Khunweeraphong N and Kuchler K: Multidrug resistance in mammals and fungi-from MDR to PDR: A rocky road from atomic structures to transport mechanisms. Int J Mol Sc. 22:48062021. View Article : Google Scholar | |
Bartolini D, Torquato P, Piroddi M and Galli F: Targeting glutathione S-transferase P and its interactome with selenium compounds in cancer therapy. Biophys Acta Gen Subj. 1863:130–143. 2019. View Article : Google Scholar | |
Wiese M and Stefan SM: The A-B-C of small-molecule ABC transport protein modulators: From inhibition to activation-a case study of multidrug resistance-associated protein 1 (ABCC1). Med Res Rev. 39:2031–2081. 2019. View Article : Google Scholar | |
Marinho MAG, da Silva Marques M, Lettnin AP, de Souza Votto AP, de Moraes Vaz Batista Filgueira D and Horn AP: Interaction between near-infrared radiation and temozolomide in a glioblastoma multiform cell line: A treatment strategy? Cell Mol Neurobiol. 41:91–104. 2021. View Article : Google Scholar | |
Chaves C, Declèves X, Taghi M, Menet MC, Lacombe J, Varlet P, Olaciregui NG, Carcaboso AM and Salvatore C: Characteri zation of the Blood-brain barrier integrity and the brain trans cisterninoport of SN-38 in an orthotopic xenograft rat model of diffuse intrinsic pontine glioma. Pharmaceutics. 12:3992020. View Article : Google Scholar | |
Zhang X, Katsakhyan L, LiVolsi VA, Roth JJ, Rassekh CH, Bagley SJ and Nasrallah MP: TP53 Mutation and extraneural metastasis of glioblastoma: Insights from an institutional experience and comprehensive literature review. Am J Surg Pathol. 45:1516–1526. 2021. View Article : Google Scholar | |
Se YB, Kim SH, Kim JY, Kim JE, Dho YS, Kim JW, Kim YH, Woo HG, Kim SH, Kang SH, et al: Underexpression of HOXA11 is associated with treatment resistance and poor prognosis in glioblastoma. Cancer Res Trea. 49:387–398. 2017. View Article : Google Scholar | |
Zampieri LX, Sboarina M, Cacace A, Grasso D, Thabault L, Hamelin L, Vazeille T, Dumon E, Rossignol R, Frédérick R, et al: Olaparib is a mitochondrial complex i inhibitor that kills temozolomide-resistant human glioblastoma cells. Int J Mol Sci. 22:119382021. View Article : Google Scholar | |
Cho YA, Kim D, Lee B, Shim JH and Suh YL: Incidence, clinicopathologic, and genetic characteristics of mismatch repair gene-mutated glioblastomas. J Neurooncol. 153:43–53. 2021. View Article : Google Scholar | |
Tomé M, Tchorz J, Gassmann M and Bettler BJ: Constitutive activation of Notch2 signalling confers chemoresistance to neural stem cells via transactivation of fibroblast growth factor receptor-1. Stem Cell Res. 35:1013902019. View Article : Google Scholar | |
Jia WQ, Zhu JW, Yang CY, Ma J, Pu TY, Han GQ, Zou MM and Xu RX: Verbascoside inhibits progression of glioblastoma cells by promoting Let-7g-5p and down-regulating HMGA2 via Wnt/beta-catenin signalling blockade. J Cell Mol Med. 24:2901–2916. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chuang HY, Hsu LY, Pan CM, Pikatan NW, Yadav VK, Fong I, Chen HC, Yeh CT and Chiu SC: The E3 Ubiquitin Ligase NEDD4-1 Mediates Temozolomide-resistant glioblastoma through PTEN attenuation and redox imbalance in Nrf2-HO-1 Axis. Int J Mol Sci. 22:102472021. View Article : Google Scholar : PubMed/NCBI | |
Uribe D, Torres Á, Rocha JD, Niechi I, Oyarzún C, Sobrevia L, Martín RS and Quezada C: Multidrug resistance in glioblastoma stem-like cells: Role of the hypoxic microenvironment and adenosine signaling. Mol Aspects Med. 55:140–151. 2017. View Article : Google Scholar | |
Lah TT, Novak M and Breznik B: Brain malignancies: Glioblastoma and brain metastases. Semin Cancer Biol. 60:262–273. 2020. View Article : Google Scholar | |
Macieja A, Kopa P, Galita G, Pastwa E, Majsterek I and Poplawski T: Comparison of the effect of three different topoisomerase II inhibitors combined with cisplatin in human glioblastoma cells sensitized with double strand break repair inhibitors. Mol Biol Rep. 46:3625–3636. 2019. View Article : Google Scholar | |
Santangelo R, Rizzarelli E and Copani A: Role for Metallothionein-3 in the resistance of human U87 glioblastoma cells to temozolomide. ACS Omega. 5:17900–17907. 2020. View Article : Google Scholar : PubMed/NCBI | |
De Trizio I, Errede M, d'Amati A, Girolamo F and Virgintino D: Expression of P-gp in Glioblastoma: What we can learn from brain development. Curr Pharm Des. 26:1428–1437. 2020. View Article : Google Scholar | |
Mir H and Singh S: CCL25 Signaling in the Tumor Microenvironment. Adv Exp Med Biol. 1302:99–111. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jana A, Narula P, Chugh A and Kulshreshtha R: Efficient delivery of anti-miR-210 using Tachyplesin, a cell penetrating peptide, for glioblastoma treatment. Int J Pharm. 572:1187892019. View Article : Google Scholar | |
Lu H, Liu P and Pang Q: MiR-27a-3p/miR-27b-3p promotes neurofibromatosis type 1 via targeting of NF1. J Mol Neurosci. 71:2353–2363. 2021. View Article : Google Scholar | |
Chen KC, Chen PH, Ho KH, Shih CM, Chou CM, Cheng CH and Lee CC: IGF-1-enhanced miR-513a-5p signaling desensitizes glioma cells to temozolomide by targeting the NEDD4L-inhibited Wnt/β-catenin pathway. PLoS One. 14:e02259132019. View Article : Google Scholar | |
Ge X, Pan MH, Wang L, Li W, Jiang CF, He J, Abouzid K, Liu LZ, Shi ZM and Jiang BH: Hypoxia-mediated mitochondria apoptosis inhibition induces temozolomide treatment resistance through miR-26a/Bad/Bax axis. Cell Death Dis. 9:11282018. View Article : Google Scholar | |
Peng Y, He X, Chen H, Duan H, Shao B, Yang F, Li H, Yang P, Zeng Y, Zheng J, et al: Inhibition of microRNA-299-5p sensitizes glioblastoma cells to temozolomide via the MAPK/ERK signaling pathway. Biosci Rep. 38:BSR201810512018. View Article : Google Scholar | |
Zhu D, Tu M, Zeng B, Cai L, Zheng W, Su Z and Yu Z: Up-regulation of miR-497 confers resistance to temozolomide in human glioma cells by targeting mTOR/Bcl-2. Cancer Med. 6:452–462. 2017. View Article : Google Scholar | |
Yin J, Ge X, Shi Z, Yu C, Lu C, Wei Y, Zeng A, Wang X, Yan W, Zhang J and You Y: Extracellular vesicles derived from hypoxic glioma stem-like cells confer temozolomide resistance on glioblastoma by delivering miR-30b-3p. Theranostics. 11:1763–1779. 2021. View Article : Google Scholar | |
Huang W, Zhong Z, Luo C, Xiao Y, Li L, Zhang X, Yang L, Xiao K, Ning Y, Chen L, et al: The miR-26a/AP-2α/Nanog signaling axis mediates stem cell self-renewal and temozolomide resistance in glioma. Theranostics. 9:5497–5516. 2019. View Article : Google Scholar | |
Huang BS, Luo QZ, Han Y, Huang D, Tang QP and Wu LX: MiR-223/PAX6 axis regulates glioblastoma stem cell proliferation and the chemo resistance to TMZ via regulating PI3K/Akt pathway. J Cell Biochem. 118:3452–3461. 2017. View Article : Google Scholar | |
Sun J, Ma Q, Li B, Wang C, Mo L, Zhang X, Tang F, Wang Q, Yan X, Yao X, et al: RPN2 is targeted by miR-181c and mediates glioma progression and temozolomide sensitivity via the wnt/β-catenin signaling pathway. Cell Death Dis. 11:8902020. View Article : Google Scholar | |
Ho KH, Kuo TC, Lee YT, Chen PH, Shih CM, Cheng CH, Liu AJ, Lee CC and Chen KC: Xanthohumol regulates miR-4749-5p-inhibited RFC2 signaling in enhancing temozolomide cytotoxicity to glioblastoma. Life Sci. 254:1178072020. View Article : Google Scholar : PubMed/NCBI | |
Kong S, Fang Y, Wang B, Cao Y, He R and Zhao Z: miR-152-5p suppresses glioma progression and tumorigenesis and potentiates temozolomide sensitivity by targeting FBXL7. J Cell Mol Med. 24:4569–4579. 2020. View Article : Google Scholar | |
Liu ZQ, Ren JJ, Zhao JL, Zang J, Long QF, Du JJ, Jia XT, Gu NB, Di ZL, Qian YH and Li SZ: MicroRNA-144 represses gliomas progression and elevates susceptibility to Temozolomide by targeting CAV2 and FGF7. Sci Rep. 10:41552020. View Article : Google Scholar : | |
Wang H, Ren S, Xu Y, Miao W, Huang X, Qu Z, Li J, Liu X and Kong P: MicroRNA-195 reverses the resistance to temozolomide through targeting cyclin E1 in glioma cells. Anticancer Drugs. 30:81–88. 2019. View Article : Google Scholar | |
Luo W, Yan D, Song Z, Zhu X, Liu X, Li X and Zhao S: miR-126-3p sensitizes glioblastoma cells to temozolomide by inactivating Wnt/β-catenin signaling via targeting SOX2. Life Sci. 226:98–106. 2019. View Article : Google Scholar : PubMed/NCBI | |
Xu CH, Xiao LM, Zeng EM, Chen LK, Zheng SY, Li DH and Liu Y: MicroRNA-181 inhibits the proliferation, drug sensitivity and invasion of human glioma cells by targeting Selenoprotein K (SELK). Am J Transl Res. 11:6632–6640. 2019. | |
Jesionek-Kupnicka D, Braun M, Trąbska-Kluch B, Czech J, Szybka M, Szymańska B, Kulczycka-Wojdala D, Bieńkowski M, Kordek R and Zawlik I: MiR-21, miR-34a, miR-125b, miR-181d and miR-648 levels inversely correlate with MGMT and TP53 expression in primary glioblastoma patients. Arch Med Sci. 15:504–512. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen YY, Ho HL, Lin SC, Ho TD and Hsu CY: Upregulation of miR-125b, miR-181d, and miR-221 predicts poor prognosis in MGMT Promoter-unmethylated glioblastoma patients. Am J Clin Pathol. 149:412–417. 2018. View Article : Google Scholar | |
Nie E, Jin X, Wu W, Yu T, Zhou X, Shi Z, Zhang J, Liu N and You Y: MiR-198 enhances temozolomide sensitivity in glioblastoma by targeting MGMT. J Neurooncol. 133:59–68. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Su J, Zhao Z, Hou Y, Yin X, Zheng N, Zhou X, Yan J, Xia J and Wang Z: MiR-26b reverses temozolomide resistance via targeting Wee1 in glioma cells. Cell Cycle. 16:1954–1964. 2017. View Article : Google Scholar : | |
Ho KH, Cheng CH, Chou CM, Chen PH, Liu AJ, Lin CW, Shih CM and Chen KC: miR-140 targeting CTSB signaling suppresses the mesenchymal transition and enhances temozolomide cytotoxicity in glioblastoma multiforme. Pharmacol Res. 147:1043902019. View Article : Google Scholar | |
Zhao C, Guo R, Guan F, Ma S, Li M, Wu J, Liu X, Li H and Yang B: MicroRNA-128-3p enhances the chemosensitivity of temozolomide in glioblastoma by targeting c-Met and EMT. Sci Rep. 10:94712020. View Article : Google Scholar | |
Xu JX, Yang Y, Zhang X and Luan XP: Micro-RNA29b enhances the sensitivity of glioblastoma multiforme cells to temozolomide by promoting autophagy. Anat Rec (Hoboken). 304:342–352. 2021. View Article : Google Scholar | |
Huang S, Qi P, Zhang T, Li F and He X: The HIF/1α/miR-224-3p/ATG5 axis affects cell mobility sand chemoensitivity by regulating hypoxia-induced protective autophagy in glioblastoma and astrocytoma. Oncol Rep. 41:1759–1768. 2019. | |
Li H, Chen L, Li JJ, Zhou Q, Huang A, Liu WW, Wang K, Gao L, Qi ST and Lu YT: miR-519a enhances chemosensitivity and promotes autophagy in glioblastoma by targeting STAT3/Bcl2 signaling pathway. J Hematol Oncol. 11:702018. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Yao Y, Yun Y, Wang M and Zhu R: MicroRNA-302c enhances the chemosensitivity of human glioma cells to temozolomide by suppressing P-gp expression. Biosci Rep. 39:BSR201904212019. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Liu Y, Ren J, Deng S, Yi G, Guo M, Shu S, Zhao L, Peng Y and Qi S: miR-1268a regulates ABCC1 expression to mediate temozolomide resistance in glioblastoma. J Neurooncol. 138:499–508. 2018. View Article : Google Scholar | |
Zeng A, Yin J, Li Y, Li R, Wang Z, Zhou X, Jin X, Shen F, Yan W and You Y: miR-129-5p targets Wnt5a to block PKC/ERK/NF-κB and JNK pathways in glioblastoma. Cell Death Dis. 9:3942018. View Article : Google Scholar | |
Lin XJ, Liu H, Li P, Wang HF, Yang AK, Di JM, Jiang QW, Yang Y, Huang JR, Yuan ML, et al: miR-936 suppresses cell proliferation, invasion, and drug resistance of laryngeal squamous cell carcinoma and targets GPR78. Front Oncol. 10:602020. View Article : Google Scholar | |
Li FF, Xing C, Wu LL and Xue F: MiR-205 enhances cisplatin sensitivity of glioma cells by targeting E2F1. Eur Rev Med Pharmacol Sci. 22:299–306. 2018. | |
Alural B, Ayyildiz ZO, Tufekci KU, Genc S and Genc K: Erythropoietin promotes glioblastoma via miR-451 suppression. Vitam Horm. 105:249–271. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li J, Song J and Guo F: miR-186 reverses cisplatin resistance and inhibits the formation of the glioblastoma-initiating cell phenotype by degrading Yin Yang 1 in glioblastoma. Int J Mol Med. 43:517–524. 2019. | |
Yang L, Li N, Yan Z, Li C and Zhao Z: MiR-29a-Mediated CD133 expression contributes to cisplatin resistance in CD133+ glioblastoma stem cells. J Mol Neurosci. 66:369–377. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Tu L, Zhou X and Li B: MicroRNA-22 regulates the proliferation, drug sensitivity and metastasis of human glioma cells by targeting SNAIL1. J BUON. 25:491–496. 2020. | |
Su PF and Song SQ: Regulation of mTOR by miR-107 to facilitate glioma cell apoptosis and to enhance cisplatin sensitivity. Eur Rev Med Pharmacol Sci. 24:114612020. | |
Zhang CG, Yang F, Li YH, Sun Y, Liu XJ and Wu X: miR-501-3p sensitizes glioma cells to cisplatin by targeting MYCN. Mol Med Rep. 18:4747–4752. 2018.PubMed/NCBI | |
Yi DY, Su Q, Zhang FC, Fu P, Zhang Q, Cen YC, Zhao HY and Xiang W: Effect of microRNA-128 on cisplatin resistance of glioma SHG-44 cells by targeting JAG1. J Cell Biochem. 119:3162–3173. 2018. View Article : Google Scholar | |
Ducray F and Idbaih A: Neuro-oncology: Anaplastic oligodendrogliomas-value of early chemotherapy. Nat Rev Neurol. 9:7–8. 2013. View Article : Google Scholar | |
Yamamuro S, Takahashi M, Satomi K, Sasaki N, Kobayashi T, Uchida E, Kawauchi D, Nakano T, Fujii T, Narita Y, et al: Lomustine and nimustine exert efficient antitumor effects against glioblastoma models with acquired temozolomide resistance. Cancer Sci. 112:4736–4747. 2021. View Article : Google Scholar | |
Wang GB, Liu JH, Hu J and Xue K: MiR-21 enhanced glioma cells resistance to carmustine via decreasing Spry2 expression. Eur Rev Med Pharmacol Sci. 21:5065–5071. 2017. | |
Xie Q, Yan Y, Huang Z, Zhong X and Huang L: MicroRNA-221 targeting PI3-K/Akt signaling axis induces cell proliferation and BCNU resistance in human glioblastoma. Neuropathology. 34:455–464. 2014. View Article : Google Scholar | |
Rezaei T, Hejazi M, Mansoori B, Mohammadi A, Amini M, Mosafer J, Rezaei S, Mokhtarzadeh A and Baradaran B: MicroRNA-181a mediates the chemo-sensitivity of glioblastoma to carmustine and regulates cell proliferation, migration, and apoptosis. Eur J Pharmacol. 888:1734832020. View Article : Google Scholar | |
Zhang Y, Yang Y, Yan C, Li J, Zhang P, Liu R, He J and Chang Y: A review of the ethnopharmacology, phytochemistry and pharmacology of Cynanchumatratum. J Ethnopharmacol. 284:1147482022. View Article : Google Scholar | |
Khan I, Mahfooz S and Hatiboglu MA: Herbal medicine for glioblastoma: Current and future prospects. Med Chem. 16:1022–1043. 2020. View Article : Google Scholar | |
Ni W, Luo L, Zuo P, Li R, Xu X, Wen F and Hu D: miR-374a inhibitor enhances etoposide-induced cytotoxicity against glioma cells through upregulation of FOXO1. Oncol Res. 27:703–712. 2019. View Article : Google Scholar | |
Feng Z, Zhang L, Zhou J, Zhou S, Li L, Guo X, Feng G, Ma Z, Huang W and Huang F: mir-218-2 promotes glioblastomas growth, invasion and drug resistance by targeting CDC27. Oncotarget. 8:6304–6318. 2017. View Article : Google Scholar : | |
Li Y, Li W, Yang Y, Lu Y, He C, Hu G, Liu H, Chen J, He J and Yu H: MicroRNA-21 targets LRRFIP1 and contributes to VM-26 resistance in glioblastoma multiforme. Brain Res. 1286:13–18. 2009. View Article : Google Scholar | |
Yin S, Du W, Wang F, Han B, Cui Y, Yang D, Chen H, Liu D, Liu X, Zhai X and Jiang C: MicroRNA-326 sensitizes human glioblastoma cells to curcumin via the SHH/GLI1 signaling pathway. Cancer Biol Ther. 19:260–270. 2018. View Article : Google Scholar | |
Wang Y and Wang L: miR-34a attenuates glioma cells progression and chemoresistance via targeting PD-L1. Biotechnol Lett. 39:1485–1492. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen PH, Chang CK, Shih CM, Cheng CH, Lin CW, Lee CC, Liu AJ, Ho KH and Chen KC: The miR-204-3p-targeted IGFBP2 pathway is involved in xanthohumol-induced glioma cell apoptotic death. Neuropharmacology. 110:362–375. 2016. View Article : Google Scholar | |
Chakrabarti M and Ray SK: Anti-tumor activities of luteolin and silibinin in glioblastoma cells: Overexpression of miR-7-1-3p augmented luteolin and silibinin to inhibit autophagy and induce apoptosis in glioblastoma in vivo. Apoptosis. 21:312–328. 2016. View Article : Google Scholar | |
Xiao J, Liu L, Zhong Z, Xiao C and Zhang J: Mangiferin regulates proliferation and apoptosis in glioma cells by induction of microRNA-15b and inhibition of MMP-9 expression. Oncol Rep. 33:2815–2820. 2015. View Article : Google Scholar | |
Bartoušková M and Melichar B: Precision medicine in medical oncology: Hope, disappointment and reality. Clin Chem Lab Med. 58:1427–1431. 2020. View Article : Google Scholar | |
Sousa F, Costa-Pereira AI, Cruz A, Ferreira FJ, Gouveia M, Bessa J, Sarmento B, Travasso RDM and Pinto IM: Intratumoral VEGF nanotrapper reduces gliobastoma vascularization and tumor cell mass. J Control Release. 339:381–390. 2021. View Article : Google Scholar | |
Siegal T, Charbit H, Paldor I, Zelikovitch B, Canello T, Benis A, Wong ML, Morokoff AP, Kaye AH and Lavon I: Dynamics of circulating hypoxia-mediated miRNAs and tumor response in patients with high-grade glioma treated with bevacizumab. J Neurosurg. 125:1008–1015. 2016. View Article : Google Scholar | |
Liu H, Liu Z, Jiang B, Huo L, Liu J and Lu J: Synthetic miR-145 Mimic enhances the cytotoxic effect of the antiangiogenic drug sunitinib in glioblastoma. Cell Biochem Biophys. 72:551–557. 2015. View Article : Google Scholar | |
Cunha PP, Costa PM, Morais CM, Lopes IR, Cardoso AM, Cardoso AL, Mano M, Jurado AS and Lima MCPD: High-throughput screening uncovers miRNAs enhancing glioblastoma cell susceptibility to tyrosine kinase inhibitors. Hum Mol Genet. 26:4375–4387. 2017. View Article : Google Scholar | |
Wang Q, Wang Z, Chu L, Li X, Kan P, Xin X, Zhu Y and Yang P: The effects and molecular mechanisms of MiR-106a in multidrug resistance reversal in human glioma U87/DDP and U251/G Cell Lines. PLoS One. 10:e01254732015. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Yang L, Liao F, Wang W and Wang ZF: MiR-450a-5p strengthens the drug sensitivity of gefitinib in glioma chemotherapy via regulating autophagy by targeting EGFR. Oncogene. 39:6190–6202. 2020. View Article : Google Scholar : | |
Zhang KL, Zhou X, Han L, Chen LY, Chen LC, Shi ZD, Yang M, Ren Y, Yang JX, Frank TS, et al: MicroRNA-566 activates EGFR signaling and its inhibition sensitizes glioblastoma cells to nimotuzumab. Mol Cancer. 13:632014. View Article : Google Scholar | |
Zhang KL, Han L, Chen LY, Shi ZD, Yang M, Ren Y, Chen LC, Zhang JX, Pu PY and Kang CS: Blockage of a miR-21/EGFR regulatory feedback loop augments anti-EGFR therapy in glioblastomas. Cancer Lett. 342:139–149. 2014. View Article : Google Scholar | |
Liao H, Bai Y, Qiu S, Zheng L, Huang L, Liu T, Wang X, Liu Y, Xu N, Yan X and Guo H: MiR-203 downregulation is responsible for chemoresistance in human glioblastoma by promoting epithelial-mesenchymal transition via SNAI2. Oncotarget. 6:8914–8928. 2015. View Article : Google Scholar : | |
Bai Y, Liao H, Liu T, Zeng X, Xiao F, Luo L, Guo H and Guo L: MiR-296-3p regulates cell growth and multi-drug resistance of human glioblastoma by targeting ether-à-go-go (EAG1). Eur J Cancer. 49:710–724. 2013. View Article : Google Scholar | |
Petrelli F, Consoli F, Ghidini A, Perego G, Luciani A, Mercurio P, Berruti A and Grisanti S: Efficacy of immune checkpoint inhibitors in rare tumours: A systematic review. Front Immunol. 12:7207482021. View Article : Google Scholar | |
Yang J, Liu R, Deng Y, Qian J, Lu Z, Wang Y, Zhang D, Luo F and Chu Y: MiR-15a/16 deficiency enhances anti-tumor immunity of glioma-infiltrating CD8+ T cells through targeting mTOR. Int J Cancer. 141:2082–2092. 2017. View Article : Google Scholar | |
Wei J, Nduom EK, Kong LY, Hashimoto Y, Xu S, Gabrusiewicz K, Ling X, Huang N, Qiao W, Zhou S, et al: MiR-138 exerts anti-glioma efficacy by targeting immune checkpoints. Neuro Oncol. 18:639–648. 2016. View Article : Google Scholar | |
Li J, Wang F, Wang G, Sun Y, Cai J, Liu X, Zhang J, Lu X, Li Y, Chen M, et al: Combination epidermal growth factor receptor variant III peptide-pulsed dendritic cell vaccine with miR-326 results in enhanced killing on EGFRvIII-positive cells. Oncotarget. 8:26256–26268. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yao W, Guo G, Zhang Q, Fan L, Wu N and Bo Y: The application of multiple miRNA response elements enables oncolytic adenoviruses to possess specificity to glioma cells. Virology. 458-459:69–82. 2014. View Article : Google Scholar | |
Liu J, Liu L, Chao S, Liu Y, Liu X, Zheng J, Chen J, Gong W, Teng H, Li Z, et al: The role of miR-330-3p/PKC-α signaling pathway in low-dose endothelial-monocyte activating polypeptide-ii increasing the permeability of blood-tumor barrier. Front Cell Neurosci. 11:3582017. View Article : Google Scholar | |
Giunti L, da Ros M, Vinci S, Gelmini S, Iorio AL, Buccoliero AM, Cardellicchio S, Castiglione F, Genitori L, de Martino M, et al: Anti-miR21 oligonucleotide enhances chemosensitivity of T98G cell line to doxorubicin by inducing apoptosis. Am J Cancer Res. 5:231–242. 2015. | |
Zhang S, Han L, Wei J, Shi Z, Pu P, Zhang J, Yuan X and Kang C: Combination treatment with doxorubicin and microRNA-21 inhibitor synergistically augments anticancer activity through upregulation of tumor suppressing genes. Int J Oncol. 46:1589–1600. 2015. View Article : Google Scholar | |
Harmalkar M, Upraity S, Kazi S and Shirsat NV: Tamoxifen-induced cell death of malignant glioma cells is brought about by oxidative-stress-mediated alterations in the expression of BCL2 family members and is enhanced on miR-21 inhibition. J Mol Neurosci. 57:197–202. 2015. View Article : Google Scholar | |
Ren Y, Kang CS, Yuan XB, Zhou X, Xu P, Han L, Wang G, Jia Z, Zhong Y, Yu S, et al: Co-delivery of as-miR-21 and 5-FU by poly(amidoamine) dendrimer attenuates human glioma cell growth in vitro. J Biomater Sci Polym Ed. 21:303–314. 2010. View Article : Google Scholar | |
Chen PH, Shih CM, Chang WC, Cheng CH, Lin CW, Ho KH, Su PC and Chen KC: MicroRNA-302b-inhibited E2F3 transcription factor is related to all trans retinoic acid-induced glioma cell apoptosis. J Neurochem. 131:731–742. 2014. View Article : Google Scholar | |
Momtazmanesh S and Rezaei N: Long Non-Coding RNAs in diagnosis, treatment, prognosis, and progression of glioma: A state-of-the-art review. Front Oncol. 11:7127862021. View Article : Google Scholar : PubMed/NCBI | |
Li X, Luo Y, Liu L, Cui S, Chen W, Zeng A, Shi Y and Luo L: The long noncoding RNA ZFAS1 promotes the progression of glioma by regulating the miR-150-5p/PLP2 axis. J Cell Physiol. 235:2937–2946. 2020. View Article : Google Scholar | |
Zhang S, Guo S, Liang C and Lian M: Long intergenic noncoding RNA 00021 promotes glioblastoma temozolomide resistance by epigenetically silencing p21 through Notch pathway. IUBMB Life. 72:1747–1756. 2020. View Article : Google Scholar | |
Chen M, Cheng Y, Yuan Z, Wang F, Yang L and Zhao H: NCK1-AS1 increases drug resistance of glioma cells to temozolomide by modulating miR-137/TRIM24. Cancer Biother Radiopharm. 35:101–108. 2020. View Article : Google Scholar | |
Wang Y, Shan A, Zhou Z, Li W, Xie L, Du B and Lei B: LncRNA TCONS_00004099-derived microRNA regulates oncogenesis through PTPRF in gliomas. Ann Transl Med. 9:10232021. View Article : Google Scholar | |
Zhang L, He A, Chen B, Bi J, Chen J, Guo D, Qian Y, Wang W, Shi T, Zhao Z, et al: A HOTAIR regulatory element modulates glioma cell sensitivity to temozolomide through long-range regulation of multiple target genes. Genome Res. 30:155–163. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Chen G, Gao Y and Liang H: HOTAIR/miR-125 axis-mediated Hexokinase 2 expression promotes chemoresistance in human glioblastoma. J Cell Mol Med. 24:5707–5717. 2020. View Article : Google Scholar | |
Su YK, Lin JW, Shih JW, Chuang HY, Fong IH, Yeh CT and Lin CM: Targeting BC200/miR218-5p signaling axis for overcoming temozolomide resistance and suppressing glioma stemness. Cells. 9:18592020. View Article : Google Scholar | |
He X, Sheng J, Yu W, Wang K, Zhu S and Liu Q: LncRNA MIR155HG promotes temozolomide resistance by activating the Wnt/β-catenin pathway via binding to PTBP1 in glioma. Cell Mol Neurobiol. 41:1271–1284. 2021. View Article : Google Scholar | |
Ding J, Zhang L, Chen S, Cao H, Xu C and Wang X: lncRNA CCAT2 enhanced resistance of glioma cells against chemodrugs by disturbing the normal function of miR-424. Onco Targets Ther. 13:1431–1445. 2020. View Article : Google Scholar | |
Li C, Feng S and Chen L: MSC-AS1 knockdown inhibits cell growth and temozolomide resistance by regulating miR-373-3p/CPEB4 axis in glioma through PI3K/Akt pathway. Mol Cell Biochem. 476:699–713. 2021. View Article : Google Scholar | |
Liu B, Zhou J, Wang C, Chi Y, Wei Q, Fu Z, Lian C, Huang Q, Liao C, Yang Z, et al: LncRNA SOX2OT promotes temozolomide resistance by elevating SOX2 expression via ALKBH5-mediated epigenetic regulation in glioblastoma. Cell Death Dis. 11:3842020. View Article : Google Scholar : PubMed/NCBI | |
Peng Y, Wu W, Shang Z, Li W and Chen S: Inhibition of lncRNA LINC00461/miR-216a/aquaporin 4 pathway suppresses cell proliferation, migration, invasion, and chemoresistance in glioma. Open Life Sci. 15:532–543. 2020. View Article : Google Scholar | |
Li B, Zhao H, Song J, Wang F and Chen M: LINC00174 down-regulation decreases chemoresistance to temozolomide in human glioma cells by regulating miR-138-5p/SOX9 axis. Hum Cell. 33:159–174. 2020. View Article : Google Scholar | |
Shangguan W, Lv X and Tian N: FoxD2-AS1 is a prognostic factor in glioma and promotes temozolomide resistance in a O6-methylguanine-DNA methyltransferase-dependent manner. Korean J Physiol Pharmacol. 23:475–482. 2019. View Article : Google Scholar | |
Nie E, Jin X, Miao F, Yu T, Zhi T, Shi Z, Wang Y, Zhang J, Xie M and You Y: TGF-β1 modulates temozolomide resistance in glioblastoma via altered microRNA processing and elevated MGMT. Neuro Oncol. 23:435–446. 2021. View Article : Google Scholar | |
Mazor G, Levin L, Picard D, Ahmadov U, Carén H, Borkhardt A, Reifenberger G, Leprivier G, Remke M and Rotblat B: The lncRNA TP73-AS1 is linked to aggressiveness in glioblastoma and promotes temozolomide resistance in glioblastoma cancer stem cells. Cell Death Dis. 10:2462019. View Article : Google Scholar : PubMed/NCBI | |
Bi CL, Liu JF, Zhang MY, Lan S, Yang ZY and Fang JS: LncRNA NEAT1 promotes malignant phenotypes and TMZ resistance in glioblastoma stem cells by regulating let-7g-5p/MAP3K1 axis. Biosci Rep. 40:BSR202011112020. View Article : Google Scholar | |
Gong R, Li ZQ, Fu K, Ma C, Wang W and Chen JC: Long noncoding RNA PVT1 promotes stemness and temozolomide resistance through miR-365/ELF4/SOX2 axis in glioma. Exp Neurobiol. 30:244–255. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ghafouri-Fard S, Shoorei H, Bahroudi Z, Abak A and Taheri M: The role of H19 lncRNA in conferring chemoresistance in cancer cells. Biomed Pharmacother. 138:1114472021. View Article : Google Scholar | |
Lv QL, Wang LC, Li DC, Lin QX, Shen XL, Liu HY, Li M, Ji YL, Qin CZ and Chen SH: Knockdown lncRNA DLEU1 Inhibits gliomas progression and promotes temozolomide chemosensitivity by regulating autophagy. Front Pharmacol. 11:5605432020. View Article : Google Scholar | |
Baspinar Y, Elmaci I, Ozpinar A and Altinoz MA: Long non-coding RNA MALAT1 as a key target in pathogenesis of glioblastoma. Janus faces or Achilles' heal? Gene. 739:1445182020. View Article : Google Scholar : PubMed/NCBI | |
Zhao Z, Liu M, Long W, Yuan J, Li H, Zhang C, Tang G, Jiang W, Yuan X, Wu M, et al: Knockdown lncRNA CRNDE enhances temozolomide chemosensitivity by regulating autophagy in glioblastoma. Cancer Cell Int. 21:4562021. View Article : Google Scholar : PubMed/NCBI | |
Wu C, Su J, Long W, Qin C, Wang X, Xiao K, Li Y, Xiao Q, Wang J, Pan Y and Liu Q: LINC00470 promotes tumour proliferation and invasion, and attenuates chemosensitivity through the LINC00470/miR-134/Myc/ABCC1 axis in glioma. J Cell Mol Med. 24:12094–12106. 2020. View Article : Google Scholar | |
Wang W, Han S, Gao W, Feng Y, Li K and Wu D: Long Noncoding RNA KCNQ1OT1 confers gliomas resistance to temozolomide and enhances cell growth by retrieving PIM1 from miR-761. Cell Mol Neurobiol. 42:695–708. 2022. View Article : Google Scholar | |
Ding H, Cui L and Wang C: Long noncoding RNA LIFR-AS1 suppresses proliferation, migration and invasion and promotes apoptosis through modulating miR-4262/NF-κB pathway in glioma. Neurol Res. 43:210–219. 2021. View Article : Google Scholar | |
Qiu G, Tong W, Jiang C, Xie Q, Zou J, Luo C and Zhao J, Zhang L and Zhao J: Long noncoding RNA WT1-AS inhibit cell malignancy via miR-494-3p in Glioma. Technol Cancer Res Treat. 19:15330338209197592020. View Article : Google Scholar | |
Jiang C, Shen F, Du J, Fang X, Li X, Su J, Wang X, Huang X and Liu Z: Upregulation of CASC2 sensitized glioma to temozolomide cytotoxicity through autophagy inhibition by sponging miR-193a-5p and regulating mTOR expression. Biomed Pharmacother. 97:844–850. 2018. View Article : Google Scholar | |
Cao Y, Chai W, Wang Y, Tang D, Shao D, Song H and Long J: lncRNA TUG1 inhibits the cancer stem cell-like properties of temozolomide-resistant glioma cells by interacting with EZH2. Mol Med Rep. 24:5332021. View Article : Google Scholar : | |
Shang C, Tang W, Pan C, Hu X and Hong Y: Long non-coding RNA TUSC7 inhibits temozolomide resistance by targeting miR-10a in glioblastoma. Cancer Chemother Pharmaco. 81:671–678. 2018. View Article : Google Scholar | |
Ma Y, Zhou G, Li M, Hu D, Zhang L, Liu P and Lin K: Long noncoding RNA DANCR mediates cisplatin resistance in glioma cells via activating AXL/PI3K/Akt/NF-κB signaling pathway. Neurochem Int. 118:233–241. 2018. View Article : Google Scholar | |
Yang G, Han B and Feng T: ZFAS1 knockdown inhibits viability and enhances cisplatin cytotoxicity by up-regulating miR-432-5p in glioma cells. Basic Clin Pharmacol Toxicol. 125:518–526. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhou H, Ma Y, Zhong D and Yang L: Knockdown of lncRNA HOXD-AS1 suppresses proliferation, migration and invasion and enhances cisplatin sensitivity of glioma cells by sponging miR-204. Biomed Pharmacother. 112:1086332019. View Article : Google Scholar | |
Zhang B, Fang S, Cheng Y, Zhou C and Deng F: The long non-coding RNA, urothelial carcinoma associated 1, promotes cell growth, invasion, migration, and chemo-resistance in glioma through Wnt/β-catenin signaling pathway. Aging (Albany NY). 11:8239–8253. 2019. View Article : Google Scholar | |
Sun XH, Fan WJ, An ZJ and Sun Y: Inhibition of long noncoding RNA CRNDE increases chemosensitivity of medulloblastoma cells by targeting miR-29c-3p. Oncol Res. 28:95–102. 2020. View Article : Google Scholar | |
Huo JF and Chen XB: Long noncoding RNA growth arrest-specific 5 facilitates glioma cell sensitivity to cisplatin by suppressing excessive autophagy in an mTOR-dependent manner. J Cell Biochem. 120:6127–6136. 2019. View Article : Google Scholar | |
Ma B, Gao Z, Lou J, Zhang H, Yuan Z, Wu Q, Li X and Zhang B: Long non coding RNA MEG3 contributes to cisplatin induced apoptosis via inhibition of autophagy in human glioma cells. Mol Med Rep. 16:2946–2952. 2017. View Article : Google Scholar | |
Ma B, Yuan Z, Zhang L, Lv P, Yang T, Gao J, Pan N, Wu Q, Lou J, Han C and Zhang B: Long non-coding RNA AC023115.3 suppresses chemoresistance of glioblastoma by reducing autophagy. Biochim Biophys Acta Mol Cell Res. 1864:1393–1404. 2017. View Article : Google Scholar | |
Pan JX, Chen TN, Ma K, Wang S, Yang CY and Cui GY: A negative feedback loop of H19/miR-675/VDR mediates therapeutic effect of cucurmin in the treatment of glioma. J Cell Physiol. 235:2171–2182. 2020. View Article : Google Scholar | |
Lv X, Sun J, Hu L, Qian Y, Fan C and Tian N: Curcumol inhibits malignant biological behaviors and TMZ-resistance in glioma cells by inhibiting long noncoding RNA FOXD2-As1-promoted EZH2 activation. Aging (Albany NY). 13:24101–24116. 2021. View Article : Google Scholar | |
Wang C, Chen Y, Wang Y, Liu X, Liu Y, Li Y, Chen H, Fan C, Wu D and Yang J: Inhibition of COX-2, mPGES-1 and CYP4A by isoliquiritigenin blocks the angiogenic Akt signaling in glioma through ceRNA effect of miR-194-5p and lncRNA NEAT1. J Exp Clin Cancer Res. 38:3712019. View Article : Google Scholar : PubMed/NCBI | |
Song T, Yan L, Cai K, Zhao T and Xu M: Downregulation of long noncoding RNA PVT1 attenuates paclitaxel resistance in glioma cells. Cancer Biomark. 23:447–453. 2018. View Article : Google Scholar | |
Cardoso AM, Morais CM, Rebelo O, Tão H, Barbosa M, Pedroso de Lima MC and Jurado AS: Downregulation of long non-protein coding RNA MVIH impairs glioblastoma cell proliferation and invasion through an miR-302a-dependent mechanism. Hum Mol Genet. 30:46–64. 2021. View Article : Google Scholar | |
Sun W, Zhou H, Han X, Hou L and Xue X: Circular RNA: A novel type of biomarker for glioma (Review). Mol Med Rep. 24:6022021. View Article : Google Scholar : PubMed/NCBI | |
Zheng K, Xie H, Wu W, Wen X, Zeng Z and Shi Y: CircRNA PIP5K1A promotes the progression of glioma through upregulation of the TCF12/PI3K/AKT pathway by sponging miR-515-5p. Cancer Cell Int. 21:272021. View Article : Google Scholar | |
Liu R, Dai W, Wu A and Li Y: CircCDC45 promotes the malignant progression of glioblastoma by modulating the miR-485-5p/CSF-1 axis. BMC Cancer. 21:10902021. View Article : Google Scholar : PubMed/NCBI | |
Wei Y, Lu C, Zhou P, Zhao L, Lyu X, Yin J, Shi Z and You Y: EIF4A3-induced circular RNA ASAP1 promotes tumorigenesis and temozolomide resistance of glioblastoma via NRAS/MEK1/ERK12-signaling. Neuro Oncol. 23:611–624. 2021. View Article : Google Scholar | |
Hua L, Huang L, Zhang X and Feng H: Downregulation of hsa_circ_0000936 sensitizes resistant glioma cells to temozolomide by sponging miR-1294. J Biosci. 45:1012020. View Article : Google Scholar | |
Lei B, Huang Y, Zhou Z, Zhao Y, Thapa AJ, Li W, Cai W and Deng Y: Circular RNA hsa_circ_0076248 promotes oncogenesis of glioma by sponging miR-181a to modulate SIRT1 expression. J Cell Biochem. 120:6698–6708. 2019. View Article : Google Scholar | |
Si J, Li W, Li X, Cao L, Chen Z and Jiang Z: Heparanase confers temozolomide resistance by regulation of exosome secretion and circular RNA composition in glioma. Cancer Sci. 112:3491–3506. 2021. View Article : Google Scholar | |
Han C, Wang S, Wang H and Zhang J: Exosomal circ-HIPK3 facilitates tumor progression and temozolomide resistance by regulating miR-421/ZIC5 axis in glioma. Cancer Biother Radiopharm. 36:537–548. 2021. View Article : Google Scholar | |
Ding C, Yi X, Chen X, Wu Z, You H, Chen X, Zhang G, Sun Y, Bu X, Wu X, et al: Warburg effect-promoted exosomal circ_0072083 releasing up-regulates NANGO expression through multiple pathways and enhances temozolomide resistance in glioma. J Exp Clin Cancer Res. 40:1642021. View Article : Google Scholar | |
Ding C, Yi X, Wu X, Bu X, Wang D, Wu Z, Zhang G, Gu J and Kang D: Exosome-mediated transfer of circRNA CircNFIX enhances temozolomide resistance in glioma. Cancer Lett. 479:1–12. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li H, Liu Q, Chen Z, Wu M and Zhang C, Su J, Li Y and Zhang C: Hsa_circ_0110757 upregulates ITGA1 to facilitate temozolomide resistance in glioma by suppressing hsa-miR-1298-5p. Cell Death Dis. 12:2522021. View Article : Google Scholar | |
Yin H and Cui X: Knockdown of circHIPK3 facilitates temozolomide sensitivity in glioma by regulating cellular behaviors through miR-524-5p/KIF2A-mediated PI3K/AKT pathway. Cancer Biother Radiopharm. 36:556–567. 2021. View Article : Google Scholar | |
Deng Y, Zhu H, Xiao L, Liu C and Meng X: Circ_0005198 enhances temozolomide resistance of glioma cells through miR-198/TRIM14 axis. Aging (Albany NY). 13:2198–2211. 2020. View Article : Google Scholar | |
Hua L, Huang L, Zhang X, Feng H and Shen B: Knockdown of circular RNA CEP128 suppresses proliferation and improves cytotoxic efficacy of temozolomide in glioma cells by regulating miR-145-5p. Neuroreport. 30:1231–1238. 2019. View Article : Google Scholar | |
Gao Y, Wu P, Ma Y, Xue Y, Liu Y, Zheng J, Liu X, He Q, Ma J, Liu L and Wang P: Circular RNA USP1 regulates the permeability of blood-tumour barrier via miR-194-5p/FLI1 axis. J Cell Mol Med. 24:342–355. 2020. View Article : Google Scholar | |
Wu P, Gao Y, Shen S, Xue Y, Liu X, Ruan X, Shao L, Liu Y and Wang P: KHDRBS3 regulates the permeability of blood-tumor barrier via cDENND4C/miR-577 axis. Cell Death Dis. 10:5362019. View Article : Google Scholar : PubMed/NCBI | |
Li H, Shen S, Ruan X, Liu X, Zheng J, Liu Y, Yang C, Wang D, Liu L, Ma J, et al: Biosynthetic CircRNA_001160 induced by PTBP1 regulates the permeability of BTB via the CircRNA_001160/miR-195-5p/ETV1 axis. Cell Death Dis. 10:9602019. View Article : Google Scholar : | |
Chi G, Xu D, Zhang B and Yang F: Matrine induces apoptosis and autophagy of glioma cell line U251 by regulation of circRNA-104075/BCL-9. Chem Biol Interact. 308:198–205. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Liu Y, Li Q, Xu A, Hu Y and Sun C: Ferroptosis in hematological malignancies and its potential network with abnormal tumor metabolism. Biomed Pharmacother. 148:1127472022. View Article : Google Scholar | |
Wu F, Du Y, Yang J, Shao B, Mi Z, Yao Y, Cui Y, He F, Zhang Y and Yang P: Peroxidase-like Active Nanomedicine with dual glutathione depletion property to restore oxaliplatin chemosensitivity and promote programmed cell death. ACS Nano. 16:3647–3663. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Wang Y, Li Q, Li X and Feng X: A novel circular RNA confers trastuzumab resistance in human epidermal growth factor receptor 2-positive breast cancer through regulating ferroptosis. Environ Toxicol. Mar 2–2022. View Article : Google Scholar : Epub ahead of print. | |
Wang Y, Shi G, Shi S, Jie Y, Rui Y and Yu R: Everolimus accelerates Erastin and RSL3-induced ferroptosis in renal cell carcinoma. Gene. 809:1459922022. View Article : Google Scholar | |
Zhang W, Liu C, Li J, Lu Y, Li H, Zhuang J, Ren X, Wang M and Sun C: Tanshinone IIA: New perspective on the anti-tumor mechanism of A traditional natural medicine. Am J Chin Med. 50:209–239. 2022. View Article : Google Scholar | |
Tang Q, Cao H, Tong N, Liu Y, Wang W, Zou Y, Xu L, Zeng Z, Xu W, Yin Z, et al: Tubeimoside-I sensitizes temozolomide-resistant glioblastoma cells to chemotherapy by reducing MGMT expression and suppressing EGFR induced PI3K/Akt/mTOR/NF-κB-mediated signaling pathway. Phytomedicine. 99:1540162022. View Article : Google Scholar | |
Liu JH, Yang HL, Deng ST, Hu Z, Chen WF, Yan WW, Hou RT, Li YH, Xian RT, Xie YY, et al: The small molecule chemical compound cinobufotalin attenuates resistance to DDP by inducing ENKUR expression to suppress MYH9-mediated c-Myc deubiquitination in lung adenocarcinoma. Acta Pharmacol Sin. Mar 16–2022. View Article : Google Scholar : Epub ahead of print. | |
Chen Y, Ho L and Tergaonkar V: sORF-Encoded MicroPeptides: New players in inflammation, metabolism, and precision medicine. Cancer Lett. 500:263–270. 2021. View Article : Google Scholar | |
Wang X, Zhang H, Yin S, Yang Y, Yang H, Yang J, Zhou Z, Li S, Ying G and Yi Ba: lncRNA-encoded pep-AP attenuates the pentose phosphate pathway and sensitizes colorectal cancer cells to Oxaliplatin. EMBO Rep. 23:e531402022. View Article : Google Scholar | |
Wu X, Xiao S, Zhang M, Yang L, Zhong J, Li B, Li F, Xia X, Li X, Zhou H, et al: A novel protein encoded by circular SMO RNA is essential for Hedgehog signaling activation and glioblastoma tumorigenicity. Genome Biol. 22:332021. View Article : Google Scholar | |
Wang L, Zhou J, Zhang C, Chen R, Sun Q, Yang P, Peng C, Tan Y, Jin C, Wang T, et al: A novel tumour suppressor protein encoded by circMAPK14 inhibits progression and metastasis of colorectal cancer by competitively binding to MKK6. Clin Transl Med. 11:e6132021. View Article : Google Scholar | |
Yao L, Man CF, He R, He L, Huang JB, Xiang SY, Dai Z, Wang XY and Fan Y: The interaction Between N6-methyladenosine modification and non-coding RNAs in gastrointestinal tract cancers. Front Oncol. 11:7841272021. View Article : Google Scholar | |
Pan S, Deng Y, Fu J, Zhang Y, Zhang Z and Qin X: N6-methyladenosine upregulates miR-181d-5p in exosomes derived from cancer-associated fibroblasts to inhibit 5-FU sensitivity by targeting NCALD in colorectal cancer. Int J Oncol. 60:142022. View Article : Google Scholar : | |
Xue L, Li J, Lin Y, Liu D, Yang Q, Jian J and Peng J: m6 A transferase METTL3-induced lncRNA ABHD11-AS1 promotes the Warburg effect of non-small-cell lung cancer. J Cell Physiol. 236:2649–2658. 2021. View Article : Google Scholar | |
Xie F, Huang C, Liu F, Zhang H, Xiao X, Sun J, Zhang X and Jiang G: CircPTPRA blocks the recognition of RNA N6-methyladenosine through interacting with IGF2BP1 to suppress bladder cancer progression. Mol Cancer. 20:682021. View Article : Google Scholar | |
Qi N, Zhang S, Zhou X, Duan W, Gao D, Feng J and Li A: Combined integrin α v β 3 and lactoferrin receptor targeted docetaxel liposomes enhance the brain targeting effect and anti-glioma effect. J Nanobiotechnology. 19:4462021. View Article : Google Scholar | |
Jiang T, Qiao Y, Ruan W, Zhang D, Yang Q, Wang G, Chen Q, Zhu F, Yin J, Zou Y, et al: Cation-Free siRNA micelles as effective drug delivery platform and potent RNAi nanomedicines for glioblastoma therapy. Adv Mater. 33:e21047792021. View Article : Google Scholar | |
Mahmoudi R, Ashraf Mirahmadi-Babaheidri S, Delaviz H, Hassan Fouani M, Alipour M, Barmak M, Christiansen G and Bardania H: RGD peptide-mediated liposomal curcumin targeted delivery to breast cancer cells. J Biomater Appl. 35:743–753. 2021. View Article : Google Scholar | |
Lin JF, Liu YS, Huang YC, Chi CW, Tsai CC, Tsai TH and Chen YJ: Borneol and tetrandrine modulate the blood-brain barrier and blood-tumor barrier to improve the therapeutic efficacy of 5-fluorouracil in brain metastasis. Integr Cancer Ther. 21:153473542210776822022. View Article : Google Scholar : PubMed/NCBI | |
Gao C, Liang J, Zhu Y, Ling C, Cheng Z, Li R, Qin J, Lu W and Wang J: Menthol-modified casein nanoparticles loading 10-hydroxycamptothecin for glioma targeting therapy. Acta Pharm Sin B. 9:843–857. 2019. View Article : Google Scholar | |
Huang CK, Kafert-Kasting S and Thum T: Preclinical and clinical development of noncoding RNA therapeutics for cardiovascular disease. Circ Res. 126:663–678. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hong DS, Kang YK, Borad M, Sachdev J, Ejadi S, Lim HY, Brenner AJ, Park K, Lee JL, Kim TY, et al: Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br J Cancer. 122:1630–1637. 2020. View Article : Google Scholar | |
Anastasiadou E, Seto AG, Beatty X, Hermreck M, Gilles ME, Stroopinsky D, Pinter-Brown LC, Pestano L, Marchese C, Avigan D, et al: Cobomarsen, an oligonucleotide inhibitor of miR-155, Slows DLBCL tumor cell growth in vitro and in vivo. Clin Cancer Res. 27:1139–1149. 2021. View Article : Google Scholar | |
Teplyuk NM, Uhlmann EJ, Gabriely G, Volfovsky N, Wang Y, Teng J, Karmali P, Marcusson E, Peter M, Mohan A, et al: Therapeutic potential of targeting microRNA-10b in established intracranial glioblastoma: First steps toward the clinic. EMBO Mol Med. 8:268–287. 2016. View Article : Google Scholar : | |
Lôbo GCNB, Paiva KLR, Silva ALG, Simões MM, Radicchi MA and Báo SN: Nanocarriers used in drug delivery to enhance immune system in cancer therapy. Pharmaceutics. 13:11672021. View Article : Google Scholar | |
Binzel DW, Li X, Burns N, Khan E, Lee WJ, Chen LC, Ellipilli S, Miles W, Ho YS and Guo P: Thermostability, tunability, and tenacity of RNA as rubbery anionic polymeric materials in nanotechnology and nanomedicine-specific cancer targeting with undetectable toxicity. Chem Rev. 121:7398–7467. 2021. View Article : Google Scholar : PubMed/NCBI |