Roles of ubiquitination in the crosstalk between tumors and the tumor microenvironment (Review)
- Authors:
- Xiuzhen Zhang
- Tong Meng
- Shuaishuai Cui
- Dongwu Liu
- Qiuxiang Pang
- Ping Wang
-
Affiliations: Anti‑aging and Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, P.R. China, Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, P.R. China, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, P.R. China - Published online on: May 25, 2022 https://doi.org/10.3892/ijo.2022.5374
- Article Number: 84
-
Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Casey SC, Amedei A, Aquilano K, Azmi AS, Benencia F, Bhakta D, Bilsland AE, Boosani CS, Chen S, Ciriolo MR, et al: Cancer prevention and therapy through the modulation of the tumor microenvironment. Semin Cancer Biol. 35(Suppl): S199–S223. 2015. View Article : Google Scholar | |
Ribas A and Wolchok JD: Cancer immunotherapy using checkpoint blockade. Science. 359:1350–1355. 2018. View Article : Google Scholar | |
Meng T, Huang R, Jin J, Gao J, Liu F, Wei Z, Xu X, Chang Z, Lin J, Ta N, et al: A comparative integrated multi-omics analysis identifies CA2 as a novel target for chordoma. Neuro Oncol. 23:1709–1722. 2021. View Article : Google Scholar | |
Suryadinata R, Roesley SN, Yang G and Sarcevic B: Mechanisms of generating polyubiquitin chains of different topology. Cells. 3:674–689. 2014. View Article : Google Scholar | |
Haglund K, Di Fiore PP and Dikic I: Distinct monoubiquitin signals in receptor endocytosis. Trends Biochem Sci. 28:598–603. 2003. View Article : Google Scholar | |
Erpapazoglou Z, Walker O and Haguenauer-Tsapis R: Versatile roles of k63-linked ubiquitin chains in trafficking. Cells. 3:1027–1088. 2014. View Article : Google Scholar | |
Gerlach B, Cordier SM, Schmukle AC, Emmerich CH, Rieser E, Haas TL, Webb AI, Rickard JA, Anderton H, Wong WW, et al: Linear ubiquitination prevents inflammation and regulates immune signalling. Nature. 471:591–596. 2011. View Article : Google Scholar | |
Jahan AS, Elbæk CR and Damgaard RB: Met1-linked ubiquitin signalling in health and disease: Inflammation, immunity, cancer, and beyond. Cell Death Differ. 28:473–492. 2021. View Article : Google Scholar | |
Bhattacharya S and Ghosh MK: Cell death and deubiquitinases: Perspectives in cancer. Biomed Res Int. 2014:4351972014. View Article : Google Scholar | |
Senft D, Qi J and Ronai ZA: Ubiquitin ligases in oncogenic transformation and cancer therapy. Nat Rev Cancer. 18:69–88. 2018. View Article : Google Scholar | |
Morrow JK, Lin HK, Sun SC and Zhang S: Targeting ubiquitination for cancer therapies. Future Med Chem. 7:2333–2350. 2015. View Article : Google Scholar | |
Wang D, Ma L, Wang B, Liu J and Wei W: E3 ubiquitin ligases in cancer and implications for therapies. Cancer Metastasis Rev. 36:683–702. 2017. View Article : Google Scholar | |
Wei R, Liu X, Yu W, Yang T, Cai W, Liu J, Huang X, Xu GT, Zhao S, Yang J and Liu S: Deubiquitinases in cancer. Oncotarget. 6:12872–12889. 2015. View Article : Google Scholar | |
Ishii G, Ochiai A and Neri S: Phenotypic and functional heterogeneity of cancer-associated fibroblast within the tumor microenvironment. Adv Drug Deliv Rev. 99(Pt B): 186–196. 2016. View Article : Google Scholar | |
Vosseler S, Lederle W, Airola K, Obermueller E, Fusenig NE and Mueller MM: Distinct progression-associated expression of tumor and stromal MMPs in HaCaT skin SCCs correlates with onset of invasion. Int J Cancer. 125:2296–2306. 2009. View Article : Google Scholar | |
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar | |
Griffioen AW, Damen CA, Blijham GH and Groenewegen G: Tumor angiogenesis is accompanied by a decreased inflammatory response of tumor-associated endothelium. Blood. 88:667–673. 1996. View Article : Google Scholar | |
Rodig N, Ryan T, Allen JA, Pang H, Grabie N, Chernova T, Greenfield EA, Liang SC, Sharpe AH, Lichtman AH and Freeman GJ: Endothelial expression of PD-L1 and PD-L2 down-regulates CD8+ T cell activation and cytolysis. Eur J Immunol. 33:3117–3126. 2003. View Article : Google Scholar | |
Mulligan JK, Day TA, Gillespie MB, Rosenzweig SA and Young MRI: Secretion of vascular endothelial growth factor by oral squamous cell carcinoma cells skews endothelial cells to suppress T-cell functions. Hum Immunol. 70:375–382. 2009. View Article : Google Scholar | |
Mulligan JK and Young MR: Tumors induce the formation of suppressor endothelial cells in vivo. Cancer Immunol Immunother. 59:267–277. 2010. View Article : Google Scholar | |
Talmadge JE and Gabrilovich DI: History of myeloid-derived suppressor cells. Nat Rev Cancer. 13:739–752. 2013. View Article : Google Scholar | |
Wang J, Li D, Cang H and Guo B: Crosstalk between cancer and immune cells: Role of tumor-associated macrophages in the tumor microenvironment. Cancer Med. 8:4709–4721. 2019. View Article : Google Scholar | |
Jayasingam SD, Citartan M, Thang TH, Mat Zin AA, Ang KC and Ch'ng ES: Evaluating the polarization of tumor-associated macrophages into M1 and M2 phenotypes in human cancer tissue: Technicalities and challenges in routine clinical practice. Front Oncol. 9:15122020. View Article : Google Scholar | |
Laviron M and Boissonnas A: Ontogeny of tumor-associated macrophages. Front Immunol. 10:17992019. View Article : Google Scholar | |
Jiang S and Yan W: T-cell immunometabolism against cancer. Cancer Lett. 382:255–258. 2016. View Article : Google Scholar | |
Gabrilovich DI: Myeloid-derived suppressor cells. Cancer Immunol Res. 5:3–8. 2017. View Article : Google Scholar | |
Oya Y, Hayakawa Y and Koike K: Tumor microenvironment in gastric cancers. Cancer Sci. 111:2696–2707. 2020. View Article : Google Scholar | |
Tran Janco JM, Lamichhane P, Karyampudi L and Knutson KL: Tumor-infiltrating dendritic cells in cancer pathogenesis. J Immunol. 194:2985–2991. 2015. View Article : Google Scholar | |
Wu SY, Fu T, Jiang YZ and Shao ZM: Natural killer cells in cancer biology and therapy. Mol Cancer. 19:1202020. View Article : Google Scholar | |
Wu T and Dai Y: Tumor microenvironment and therapeutic response. Cancer Lett. 387:61–68. 2017. View Article : Google Scholar | |
Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, von Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ, et al: Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 292:468–472. 2001. View Article : Google Scholar | |
Mennerich D, Kubaichuk K and Kietzmann T: DUBs, hypoxia, and cancer. Trends Cancer. 5:632–653. 2019. View Article : Google Scholar | |
Li Z, Wang D, Messing EM and Wu G: VHL protein-interacting deubiquitinating enzyme 2 deubiquitinates and stabilizes HIF-1alpha. EMBO Rep. 6:373–378. 2005. View Article : Google Scholar | |
Goto Y, Zeng L, Yeom CJ, Zhu Y, Morinibu A, Shinomiya K, Kobayashi M, Hirota K, Itasaka S, Yoshimura M, et al: UCHL1 provides diagnostic and antimetastatic strategies due to its deubiquitinating effect on HIF-1α. Nat Commun. 6:61532015. View Article : Google Scholar | |
Choi BJ, Park SA, Lee SY, Cha YN and Surh YJ: Hypoxia induces epithelial-mesenchymal transition in colorectal cancer cells through ubiquitin-specific protease 47-mediated stabilization of Snail: A potential role of Sox9. Sci Rep. 7:159182017. View Article : Google Scholar | |
Ma B, Cheng H, Mu C, Geng G, Zhao T, Luo Q, Ma K, Chang R, Liu Q, Gao R, et al: The SIAH2-NRF1 axis spatially regulates tumor microenvironment remodeling for tumor progression. Nat Commun. 10:10342019. View Article : Google Scholar | |
Smith GA, Fearnley GW, Abdul-Zani I, Wheatcroft SB, Tomlinson DC, Harrison MA and Ponnambalam S: VEGFR2 trafficking, signaling and proteolysis is regulated by the ubiquitin isopeptidase USP8. Traffic. 17:53–65. 2016. View Article : Google Scholar | |
Lee JY, Park JH, Choi HJ, Won HY, Joo HS, Shin DH, Park MK, Han B, Kim KP, Lee TJ, et al: LSD1 demethylates HIF1α to inhibit hydroxylation and ubiquitin-mediated degradation in tumor angiogenesis. Oncogene. 36:5512–5521. 2017. View Article : Google Scholar | |
Amelio I, Inoue S, Markert EK, Levine AJ, Knight RA, Mak TW and Melino G: TAp73 opposes tumor angiogenesis by promoting hypoxia-inducible factor 1α degradation. Proc Natl Acad Sci USA. 112:226–231. 2015. View Article : Google Scholar | |
Pan T, Zhou D, Shi Z, Qiu Y, Zhou G, Liu J, Yang Q, Cao L and Zhang J: Centromere protein U (CENPU) enhances angiogenesis in triple-negative breast cancer by inhibiting ubiquitin-proteasomal degradation of COX-2. Cancer Lett. 482:102–111. 2020. View Article : Google Scholar | |
Sun Y and Li H: Functional characterization of SAG/RBX2/ROC2/RNF7, an antioxidant protein and an E3 ubiquitin ligase. Protein Cell. 4:103–116. 2013. View Article : Google Scholar | |
Tan M, Li H and Sun Y: Endothelial deletion of Sag/Rbx2/Roc2 E3 ubiquitin ligase causes embryonic lethality and blocks tumor angiogenesis. Oncogene. 33:5211–5220. 2014. View Article : Google Scholar | |
Hasan SS, Tsaryk R, Lange M, Wisniewski L, Moore JC, Lawson ND, Wojciechowska K, Schnittler H and Siekmann AF: Endothelial Notch signalling limits angiogenesis via control of artery formation. Nat Cell Biol. 19:928–940. 2017. View Article : Google Scholar | |
Rabellino A, Andreani C and Scaglioni PP: Roles of ubiquitination and SUMOylation in the regulation of angiogenesis. Curr Issues Mol Biol. 35:109–126. 2020. View Article : Google Scholar | |
Tsunematsu R, Nakayama K, Oike Y, Nishiyama M, Ishida N, Hatakeyama S, Bessho Y, Kageyama R, Suda T and Nakayama KI: Mouse Fbw7/Sel-10/Cdc4 is required for notch degradation during vascular development. J Biol Chem. 279:9417–9423. 2004. View Article : Google Scholar | |
Zerlin M, Julius MA and Kitajewski J: Wnt/Frizzled signaling in angiogenesis. Angiogenesis. 11:63–69. 2008. View Article : Google Scholar | |
MacDonald BT, Tamai K and He X: Wnt/beta-catenin signaling: Components, mechanisms, and diseases. Dev Cell. 17:9–26. 2009. View Article : Google Scholar | |
Shivanna S, Harrold I, Shashar M, Meyer R, Kiang C, Francis J, Zhao Q, Feng H, Edelman ER, Rahimi N and Chitalia VC: The c-Cbl ubiquitin ligase regulates nuclear β-catenin and angiogenesis by its tyrosine phosphorylation mediated through the Wnt signaling pathway. J Biol Chem. 290:12537–12546. 2015. View Article : Google Scholar | |
Rivkin E, Almeida SM, Ceccarelli DF, Juang YC, MacLean TA, Srikumar T, Huang H, Dunham WH, Fukumura R, Xie G, et al: The linear ubiquitin-specific deubiquitinase gumby regulates angiogenesis. Nature. 498:318–324. 2013. View Article : Google Scholar | |
Wang W, Li M, Ponnusamy S, Chi Y, Xue J, Fahmy B, Fan M, Miranda-Carboni GA, Narayanan R, Wu J and Wu ZH: ABL1-dependent OTULIN phosphorylation promotes genotoxic Wnt/β-catenin activation to enhance drug resistance in breast cancers. Nat Commun. 11:39652020. View Article : Google Scholar | |
Quintero-Fabián S, Arreola R, Becerril-Villanueva E, Torres-Romero JC, Arana-Argáez V, Lara-Riegos J, Ramírez-Camacho MA and Alvarez-Sánchez ME: Role of matrix metalloproteinases in angiogenesis and cancer. Front Oncol. 9:13702019. View Article : Google Scholar | |
Murray GI, Duncan ME, Arbuckle E, Melvin WT and Fothergill JE: Matrix metalloproteinases and their inhibitors in gastric cancer. Gut. 43:791–797. 1998. View Article : Google Scholar | |
Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S, Gutkovich-Pyest E, Urieli-Shoval S, Galun E and Ben-Neriah Y: NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature. 431:461–466. 2004. View Article : Google Scholar | |
Chang SC and Ding JL: Ubiquitination and SUMOylation in the chronic inflammatory tumor microenvironment. Biochim Biophys Acta Rev Cancer. 1870:165–175. 2018. View Article : Google Scholar | |
Peng SL: Forkhead transcription factors in chronic inflammation. Int J Biochem Cell Biol. 42:482–485. 2010. View Article : Google Scholar | |
Huang H and Tindall DJ: Dynamic FoxO transcription factors. J Cell Sci. 120(Pt 15): 2479–2487. 2007. View Article : Google Scholar | |
Ramezani A, Nikravesh H and Faghihloo E: The roles of FOX proteins in virus-associated cancers. J Cell Physiol. 234:3347–3361. 2019. View Article : Google Scholar | |
Huang H, Regan KM, Wang F, Wang D, Smith DI, van Deursen JM and Tindall DJ: Skp2 inhibits FOXO1 in tumor suppression through ubiquitin-mediated degradation. Proc Natl Acad Sci USA. 102:1649–1654. 2005. View Article : Google Scholar | |
Fu W, Ma Q, Chen L, Li P, Zhang M, Ramamoorthy S, Nawaz Z, Shimojima T, Wang H, Yang Y, et al: MDM2 acts downstream of p53 as an E3 ligase to promote FOXO ubiquitination and degradation. J Biol Chem. 284:13987–14000. 2009. View Article : Google Scholar | |
Chang SC and Ding JL: Ubiquitination by SAG regulates macrophage survival/death and immune response during infection. Cell Death Differ. 21:1388–1398. 2014. View Article : Google Scholar | |
Chang SC, Choo WQ, Toh HC and Ding JL: SAG-UPS attenuates proapoptotic SARM and Noxa to confer survival advantage to early hepatocellular carcinoma. Cell Death Discov. 1:150322015. View Article : Google Scholar | |
Chada S, Sutton RB, Ekmekcioglu S, Ellerhorst J, Mumm JB, Leitner WW, Yang HY, Sahin AA, Hunt KK, Fuson KL, et al: MDA-7/IL-24 is a unique cytokine-tumor suppressor in the IL-10 family. Int Immunopharmacol. 4:649–667. 2004. View Article : Google Scholar | |
Gopalan B, Shanker M, Scott A, Branch CD, Chada S and Ramesh R: MDA-7/IL-24, a novel tumor suppressor/cytokine is ubiquitinated and regulated by the ubiquitin-proteasome system, and inhibition of MDA-7/IL-24 degradation enhances the anti-tumor activity. Cancer Gene Ther. 15:1–8. 2008. View Article : Google Scholar | |
Liu P, Zhang X, Li Z, Wei L, Peng Q, Liu C, Wu Y, Yan Q and Ma J: A significant role of transcription factors E2F in inflammation and tumorigenesis of nasopharyngeal carcinoma. Biochem Biophys Res Commun. 524:816–824. 2020. View Article : Google Scholar | |
Swarnalatha M, Singh AK and Kumar V: Promoter occupancy of MLL1 histone methyltransferase seems to specify the proliferative and apoptotic functions of E2F1 in a tumour microenvironment. Cell Sci. 126(Pt 20): 4636–4646. 2013. | |
Murata M: Inflammation and cancer. Environ Health Prev Med. 23:502018. View Article : Google Scholar | |
Sun L, Wu J, Du F, Chen X and Chen ZJ: Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science. 339:786–791. 2013. View Article : Google Scholar | |
Bakhoum SF, Ngo B, Laughney AM, Cavallo JA, Murphy CJ, Ly P, Shah P, Sriram RK, Watkins TBK, Taunk NK, et al: Chromosomal instability drives metastasis through a cytosolic DNA response. Nature. 553:467–472. 2018. View Article : Google Scholar | |
Wu S, Zhang Q, Zhang F, Meng F, Liu S, Zhou R, Wu Q, Li X, Shen L, Huang J, et al: HER2 recruits AKT1 to disrupt STING signalling and suppress antiviral defence and antitumour immunity. Nat Cell Biol. 21:1027–1040. 2019. View Article : Google Scholar | |
Kensche T, Tokunaga F, Ikeda F, Goto E, Iwai K and Dikic I: Analysis of nuclear factor-κB (NF-κB) essential modulator (NEMO) binding to linear and lysine-linked ubiquitin chains and its role in the activation of NF-κB. J Biol Chem. 287:23626–23634. 2012. View Article : Google Scholar | |
Jo T, Nishikori M, Kogure Y, Arima H, Sasaki K, Sasaki Y, Nakagawa T, Iwai F, Momose S, Shiraishi A, et al: LUBAC accelerates B-cell lymphomagenesis by conferring resistance to genotoxic stress on B cells. Blood. 136:684–697. 2020. View Article : Google Scholar | |
Song K, Cai X, Dong Y, Wu H, Wei Y, Shankavaram UT, Cui K, Lee Y, Zhu B, Bhattacharjee S, et al: Epsins 1 and 2 promote NEMO linear ubiquitination via LUBAC to drive breast cancer development. J Clin Invest. 131:e1293742021. View Article : Google Scholar | |
Damgaard RB, Jolin HE, Allison MED, Davies SE, Titheradge HL, McKenzie ANJ and Komander D: OTULIN protects the liver against cell death, inflammation, fibrosis, and cancer. Cell Death Differ. 27:1457–1474. 2020. View Article : Google Scholar | |
Lamouille S, Xu J and Derynck R: Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 15:178–196. 2014. View Article : Google Scholar | |
Lambies G, Miceli M, Martínez-Guillamon C, Olivera-Salguero R, Peña R, Frías CP, Calderó I, Atanassov BS, Dent SYR, Arribas J, et al: TGFβ-Activated USP27X deubiquitinase regulates cell migration and chemoresistance via stabilization of snail1. Cancer Res. 79:33–46. 2019. View Article : Google Scholar | |
Wu X, Liu M, Zhu H, Wang J, Dai W, Li J, Zhu D, Tang W, Xiao Y, Lin J, et al: Ubiquitin-specific protease 3 promotes cell migration and invasion by interacting with and deubiquitinating SUZ12 in gastric cancer. J Exp Clin Cancer Res. 38:2772019. View Article : Google Scholar | |
Wang W, Wang J, Yan H, Zhang K and Liu Y: Upregulation of USP11 promotes epithelial-to-mesenchymal transition by deubiquitinating Snail in ovarian cancer. Oncol Rep. 41:1739–1748. 2019. | |
Garcia DA, Baek C, Estrada MV, Tysl T, Bennett EJ, Yang J and Chang JT: USP11 enhances TGFβ-Induced epithelial-mesenchymal plasticity and human breast cancer metastasis. Mol Cancer Res. 16:1172–1184. 2018. View Article : Google Scholar | |
Kit Leng Lui S, Iyengar PV, Jaynes P, Isa ZFBA, Pang B, Tan TZ and Eichhorn PJA: USP26 regulates TGF-β signaling by deubiquitinating and stabilizing SMAD7. EMBO Rep. 18:797–808. 2017. View Article : Google Scholar | |
Eichhorn PJ, Rodó L, Gonzàlez-Juncà A, Dirac A, Gili M, Martínez-Sáez E, Aura C, Barba I, Peg V, Prat A, et al: USP15 stabilizes TGF-β receptor I and promotes oncogenesis through the activation of TGF-β signaling in glioblastoma. Nat Med. 18:429–435. 2012. View Article : Google Scholar | |
Zhang L, Zhou F, Drabsch Y, Gao R, Snaar-Jagalska BE, Mickanin C, Huang H, Sheppard KA, Porter JA, Lu CX and ten Dijke P: USP4 is regulated by AKT phosphorylation and directly deubiquitylates TGF-β type I receptor. Nat Cell Biol. 14:717–726. 2012. View Article : Google Scholar | |
Jang MJ, Baek SH and Kim JH: UCH-L1 promotes cancer metastasis in prostate cancer cells through EMT induction. Cancer Lett. 302:128–135. 2011. View Article : Google Scholar | |
Lee JH, Jung SM, Yang KM, Bae E, Ahn SG, Park JS, Seo D, Kim M, Ha J, Lee J, et al: A20 promotes metastasis of aggressive basal-like breast cancers through multi-monoubiquitylation of Snail1. Nat Cell Biol. 19:1260–1273. 2017. View Article : Google Scholar | |
Pitarresi JR, Liu X, Avendano A, Thies KA, Sizemore GM, Hammer AM, Hildreth BE III, Wang DJ, Steck SA, Donohue S, et al: Disruption of stromal hedgehog signaling initiates RNF5-mediated proteasomal degradation of PTEN and accelerates pancreatic tumor growth. Life Sci Alliance. 1:e2018001902018. View Article : Google Scholar | |
Karakasheva TA, Lin EW, Tang Q, Qiao E, Waldron TJ, Soni M, Klein-Szanto AJ, Sahu V, Basu D, Ohashi S, et al: IL-6 mediates cross-talk between tumor cells and activated fibroblasts in the tumor microenvironment. Cancer Res. 78:4957–4970. 2018. View Article : Google Scholar | |
Wu X, Tao P, Zhou Q, Li J, Yu Z, Wang X, Li J, Li C, Yan M, Zhu Z, et al: IL-6 secreted by cancer-associated fibroblasts promotes epithelial-mesenchymal transition and metastasis of gastric cancer via JAK2/STAT3 signaling pathway. Oncotarget. 8:20741–20750. 2017. View Article : Google Scholar | |
Wu Y, Wang Y, Lin Y, Liu Y, Wang Y, Jia J, Singh P, Chi YI, Wang C, Dong C, et al: Dub3 inhibition suppresses breast cancer invasion and metastasis by promoting Snail1 degradation. Nat Commun. 8:142282017. View Article : Google Scholar | |
Borsig L, Wolf MJ, Roblek M, Lorentzen A and Heikenwalder M: Inflammatory chemokines and metastasis-tracing the accessory. Oncogene. 33:3217–3224. 2014. View Article : Google Scholar | |
Liu J, Chen S, Wang W, Ning BF, Chen F, Shen W, Ding J, Chen W, Xie WF and Zhang X: Cancer-associated fibroblasts promote hepatocellular carcinoma metastasis through chemokine-activated hedgehog and TGF-β pathways. Cancer Lett. 379:49–59. 2016. View Article : Google Scholar | |
Yumimoto K and Nakayama KI: Fbxw7 suppresses cancer metastasis by inhibiting niche formation. Oncoimmunology. 4:e10223082015. View Article : Google Scholar | |
Mehić M, de Sa VK, Hebestreit S, Heldin CH and Heldin P: The deubiquitinating enzymes USP4 and USP17 target hyaluronan synthase 2 and differentially affect its function. Oncogenesis. 6:e3482017. View Article : Google Scholar | |
Stetler-Stevenson WG and Yu AE: Proteases in invasion: Matrix metalloproteinases. Semin Cancer Biol. 11:143–152. 2001. View Article : Google Scholar | |
Stefanidakis M and Koivunen E: Cell-surface association between matrix metalloproteinases and integrins: Role of the complexes in leukocyte migration and cancer progression. Blood. 108:1441–1450. 2006. View Article : Google Scholar | |
Gontero P, Banisadr S, Frea B and Brausi M: Metastasis markers in bladder cancer: A review of the literature and clinical considerations. Eur Urol. 46:296–311. 2004. View Article : Google Scholar | |
Li S and Luo W: Matrix metalloproteinase 2 contributes to aggressive phenotype, epithelial-mesenchymal transition and poor outcome in nasopharyngeal carcinoma. Onco Targets Ther. 12:5701–5711. 2019. View Article : Google Scholar | |
Yamada S, Yanamoto S, Naruse T, Matsushita Y, Takahashi H, Umeda M, Nemoto TK and Kurita H: Skp2 regulates the expression of MMP-2 and MMP-9, and enhances the invasion potential of oral squamous cell carcinoma. Pathol Oncol Res. 22:625–632. 2016. View Article : Google Scholar | |
Hung WC, Tseng WL, Shiea J and Chang HC: Skp2 overexpression increases the expression of MMP-2 and MMP-9 and invasion of lung cancer cells. Cancer Lett. 288:156–161. 2010. View Article : Google Scholar | |
Chernov AV, Sounni NE, Remacle AG and Strongin AY: Epigenetic control of the invasion-promoting MT1-MMP/MMP-2/TIMP-2 axis in cancer cells. J Biol Chem. 284:12727–12734. 2009. View Article : Google Scholar | |
Sakai K, Nishiuchi T, Tange S, Suzuki Y, Yano S, Terashima M, Suzuki T and Matsumoto K: Proteasomal degradation of polycomb-group protein CBX6 confers MMP-2 expression essential for mesothelioma invasion. Sci Rep. 10:166782020. View Article : Google Scholar | |
Priolo C, Tang D, Brahamandan M, Benassi B, Sicinska E, Ogino S, Farsetti A, Porrello A, Finn S, Zimmermann J, et al: The isopeptidase USP2a protects human prostate cancer from apoptosis. Cancer Res. 66:8625–8632. 2006. View Article : Google Scholar | |
Qu Q, Mao Y, Xiao G, Fei X, Wang J, Zhang Y, Liu J, Cheng G, Chen X, Wang J and Shen K: USP2 promotes cell migration and invasion in triple negative breast cancer cell lines. Tumour Biol. 36:5415–5423. 2015. View Article : Google Scholar | |
Nguyen HL, Kadam P, Helkin A, Cao K, Wu S, Samara GJ, Zhang Q, Zucker S and Cao J: MT1-MMP Activation of TGF-β signaling enables intercellular activation of an epithelial-mesenchymal transition program in cancer. Curr Cancer Drug Targets. 16:618–630. 2016. View Article : Google Scholar | |
Eisenach PA, de Sampaio PC, Murphy G and Roghi C: Membrane type 1 matrix metalloproteinase (MT1-MMP) ubiquitination at Lys581 increases cellular invasion through type I collagen. J Biol Chem. 287:11533–11545. 2012. View Article : Google Scholar | |
Noy R and Pollard JW: Tumor-associated macrophages: From mechanisms to therapy. Immunity. 41:49–61. 2014. View Article : Google Scholar | |
Yu T, Gan S, Zhu Q, Dai D, Li N, Wang H, Chen X, Hou D, Wang Y, Pan Q, et al: Modulation of M2 macrophage polarization by the crosstalk between Stat6 and Trim24. Nat Commun. 10:43532019. View Article : Google Scholar | |
Rőszer T: Understanding the Mysterious M2 Macrophage through activation markers and effector mechanisms. Mediators Inflamm. 2015:8164602015. View Article : Google Scholar | |
Wang YC, Wu YS, Hung CY, Wang SA, Young MJ, Hsu TI and Hung JJ: USP24 induces IL-6 in tumor-associated microenvironment by stabilizing p300 and β-TrCP and promotes cancer malignancy. Nat Commun. 9:39962018. View Article : Google Scholar | |
Ning C, Xie B, Zhang L, Li C, Shan W, Yang B, Luo X, Gu C, He Q, Jin H, et al: Infiltrating Macrophages Induce ERα Expression through an IL17A-mediated epigenetic mechanism to sensitize endometrial cancer cells to estrogen. Cancer Res. 76:1354–1366. 2016. View Article : Google Scholar | |
Lv Q, Xie L, Cheng Y, Shi Y, Shan W, Ning C, Xie B, Yang B, Luo X, He Q, et al: A20-mediated deubiquitination of ERα in the microenvironment of CD163+ macrophages sensitizes endometrial cancer cells to estrogen. Cancer Lett. 442:137–147. 2019. View Article : Google Scholar | |
Clancy JL, Henderson MJ, Russell AJ, Anderson DW, Bova RJ, Campbell IG, Choong DY, Macdonald GA, Mann GJ, Nolan T, et al: EDD, the human orthologue of the hyperplastic discs tumour suppressor gene, is amplified and overexpressed in cancer. Oncogene. 22:5070–5081. 2003. View Article : Google Scholar | |
Song M, Yeku OO, Rafiq S, Purdon T, Dong X, Zhu L, Zhang T, Wang H, Yu Z, Mai J, et al: Tumor derived UBR5 promotes ovarian cancer growth and metastasis through inducing immunosuppressive macrophages. Nat Commun. 11:62982020. View Article : Google Scholar | |
Surh CD and Sprent J: Homeostasis of naive and memory T cells. Immunity. 29:848–862. 2008. View Article : Google Scholar | |
Zhou X, Yu J, Cheng X, Zhao B, Manyam GC, Zhang L, Schluns K, Li P, Wang J and Sun SC: The deubiquitinase Otub1 controls the activation of CD8+ T cells and NK cells by regulating IL-15-mediated priming. Nat Immunol. 20:879–889. 2019. View Article : Google Scholar | |
Zhang W, Sloan-Lancaster J, Kitchen J, Trible RP and Samelson LE: LAT: The ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell. 92:83–92. 1998. View Article : Google Scholar | |
Kunii N, Zhao Y, Jiang S, Liu X, Scholler J, Balagopalan L, Samelson LE, Milone MC and June CH: Enhanced function of redirected human T cells expressing linker for activation of T cells that is resistant to ubiquitylation. Hum Gene Ther. 24:27–37. 2013. View Article : Google Scholar | |
Chen RH, Lee YR and Yuan WC: The role of PML ubiquitination in human malignancies. J Biomed Sci. 19:812012. View Article : Google Scholar | |
Wang YT, Chen J, Chang CW, Jen J, Huang TY, Chen CM, Shen R, Liang SY, Cheng IC, Yang SC, et al: Ubiquitination of tumor suppressor PML regulates prometastatic and immunosuppressive tumor microenvironment. J Clin Invest. 127:2982–2997. 2017. View Article : Google Scholar | |
Meng X, Liu X, Guo X, Jiang S, Chen T, Hu Z, Liu H, Bai Y, Xue M, Hu R, et al: FBXO38 mediates PD-1 ubiquitination and regulates anti-tumour immunity of T cells. Nature. 564:130–135. 2018. View Article : Google Scholar | |
Li CW, Lim SO, Xia W, Lee HH, Chan LC, Kuo CW, Khoo KH, Chang SS, Cha JH, Kim T, et al: Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat Commun. 7:126322016. View Article : Google Scholar | |
Zhang J, Bu X, Wang H, Zhu Y, Geng Y, Nihira NT, Tan Y, Ci Y, Wu F, Dai X, et al: Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature. 553:91–95. 2018. View Article : Google Scholar | |
Song Y, Xu Y, Pan C, Yan L, Wang ZW and Zhu X: The emerging role of SPOP protein in tumorigenesis and cancer therapy. Mol Cancer. 19:22020. View Article : Google Scholar | |
Lim SO, Li CW, Xia W, Cha JH, Chan LC, Wu Y, Chang SS, Lin WC, Hsu JM, Hsu YH, et al: Deubiquitination and Stabilization of PD-L1 by CSN5. Cancer Cell. 30:925–939. 2016. View Article : Google Scholar | |
Wang Y, Sun Q, Mu N, Sun X, Wang Y, Fan S, Su L and Liu X: The deubiquitinase USP22 regulates PD-L1 degradation in human cancer cells. Cell Commun Signal. 18:1122020. View Article : Google Scholar | |
Huang X, Zhang Q, Lou Y, Wang J, Zhao X, Wang L, Zhang X, Li S, Zhao Y, Chen Q, et al: USP22 Deubiquitinates CD274 to Suppress Anticancer Immunity. Cancer Immunol Res. 7:1580–1590. 2019. View Article : Google Scholar | |
Li J, Yuan S, Norgard RJ, Yan F, Yamazoe T, Blanco A and Stanger BZ: Tumor Cell-Intrinsic USP22 suppresses antitumor immunity in pancreatic cancer. Cancer Immunol Res. 8:282–291. 2020. View Article : Google Scholar | |
Jingjing W, Wenzheng G, Donghua W, Guangyu H, Aiping Z and Wenjuan W: Deubiquitination and stabilization of programmed cell death ligand 1 by ubiquitin-specific peptidase 9, X-linked in oral squamous cell carcinoma. Cancer Med. 7:4004–4011. 2018. View Article : Google Scholar | |
Naik E, Webster JD, DeVoss J, Liu J, Suriben R and Dixit VM: Regulation of proximal T cell receptor signaling and tolerance induction by deubiquitinase Usp9X. J Exp Med. 211:1947–1955. 2014. View Article : Google Scholar | |
Sakaguchi S, Yamaguchi T, Nomura T and Ono M: Regulatory T cells and immune tolerance. Cell. 133:775–787. 2008. View Article : Google Scholar | |
Wang F, Wang L, Wu J, Sokirniy I, Nguyen P, Bregnard T, Weinstock J, Mattern M, Bezsonova I, Hancock WW and Kumar S: Active site-targeted covalent irreversible inhibitors of USP7 impair the functions of Foxp3+ T-regulatory cells by promoting ubiquitination of Tip60. PLoS One. 12:e01897442017. View Article : Google Scholar | |
McHugh RS, Whitters MJ, Piccirillo CA, Young DA, Shevach EM, Collins M and Byrne MC: CD4(+)CD25(+) immunoregulatory T cells: Gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity. 16:311–323. 2002. View Article : Google Scholar | |
Knee DA, Hewes B and Brogdon JL: Rationale for anti-GITR cancer immunotherapy. Eur J Cancer. 67:1–10. 2016. View Article : Google Scholar | |
Guo Y, Yang L, Lei S, Tan W and Long J: NEDD4 Negatively Regulates GITR via ubiquitination in immune microenvironment of melanoma. Onco Targets Ther. 12:10629–10637. 2019. View Article : Google Scholar | |
Trovato R, Fiore A, Sartori S, Canè S, Giugno R, Cascione L, Paiella S, Salvia R, De Sanctis F, Poffe O, et al: Immunosuppression by monocytic myeloid-derived suppressor cells in patients with pancreatic ductal carcinoma is orchestrated by STAT3. J Immunother Cancer. 7:2552019. View Article : Google Scholar | |
Song G, Zhang Y, Tian J, Ma J, Yin K, Xu H and Wang S: TRAF6 regulates the immunosuppressive effects of myeloid-derived suppressor cells in tumor-bearing host. Front Immunol. 12:6490202021. View Article : Google Scholar | |
Zhang CX, Ye SB, Ni JJ, Cai TT, Liu YN, Huang DJ, Mai HQ, Chen QY, He J, Zhang XS, et al: STING signaling remodels the tumor microenvironment by antagonizing myeloid-derived suppressor cell expansion. Cell Death Differ. 26:2314–2328. 2019. View Article : Google Scholar | |
Chou FC, Chen HY, Kuo CC and Sytwu HK: Role of galectins in tumors and in clinical immunotherapy. Int J Mol Sci. 19:4302018. View Article : Google Scholar | |
Zhang CX, Huang DJ, Baloche V, Zhang L, Xu JX, Li BW, Zhao XR, He J, Mai HQ, Chen QY, et al: Galectin-9 promotes a suppressive microenvironment in human cancer by enhancing STING degradation. Oncogenesis. 9:652020. View Article : Google Scholar | |
Fang P, Li X, Dai J, Cole L, Camacho JA, Zhang Y, Ji Y, Wang J, Yang XF and Wang H: Immune cell subset differentiation and tissue inflammation. J Hematol Oncol. 11:972018. View Article : Google Scholar | |
Wang Y, Xiang Y, Xin VW, Wang XW, Peng XC, Liu XQ, Wang D, Li N, Cheng JT, Lyv YN, et al: Dendritic cell biology and its role in tumor immunotherapy. J Hematol Oncol. 13:1072020. View Article : Google Scholar | |
Bi E, Li R, Bover LC, Li H, Su P, Ma X, Huang C, Wang Q, Liu L, Yang M, et al: E-cadherin expression on multiple myeloma cells activates tumor-promoting properties in plasmacytoid DCs. J Clin Invest. 128:4821–4831. 2018. View Article : Google Scholar | |
Hu Q, Ye Y, Chan LC, Li Y, Liang K, Lin A, Egranov SD, Zhang Y, Xia W, Gong J, et al: Oncogenic lncRNA down-regulates cancer cell antigen presentation and intrinsic tumor suppression. Nat Immunol. 20:835–851. 2019. View Article : Google Scholar | |
Caraux A, Lu Q, Fernandez N, Riou S, Di Santo JP, Raulet DH, Lemke G and Roth C: Natural killer cell differentiation driven by Tyro3 receptor tyrosine kinases. Nat Immunol. 7:747–754. 2006. View Article : Google Scholar | |
Paolino M, Choidas A, Wallner S, Pranjic B, Uribesalgo I, Loeser S, Jamieson AM, Langdon WY, Ikeda F, Fededa JP, et al: The E3 ligase Cbl-b and TAM receptors regulate cancer metastasis via natural killer cells. Nature. 507:508–512. 2014. View Article : Google Scholar | |
Haglund K and Dikic I: The role of ubiquitylation in receptor endocytosis and endosomal sorting. J Cell Sci. 125(Pt 2): 265–275. 2012. View Article : Google Scholar | |
Wang Y, Zhang Y, Yi P, Dong W, Nalin AP, Zhang J, Zhu Z, Chen L, Benson DM, Mundy-Bosse BL, et al: The IL-15-AKT-XBP1s signaling pathway contributes to effector functions and survival in human NK cells. Nat Immunol. 20:10–17. 2019. View Article : Google Scholar | |
Dou Y, Xing J, Kong G, Wang G, Lou X, Xiao X, Vivier E, Li XC and Zhang Z: Identification of the E3 Ligase TRIM29 as a critical checkpoint regulator of NK cell functions. J Immunol. 203:873–880. 2019. View Article : Google Scholar | |
Deng L, Meng T, Chen L, Wei W and Wang P: The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct Target Ther. 5:112020. View Article : Google Scholar | |
Richardson PG, Hideshima T and Anderson KC: Bortezomib (PS-341): A novel, first-in-class proteasome inhibitor for the treatment of multiple myeloma and other cancers. Cancer Control. 10:361–369. 2003. View Article : Google Scholar | |
Piva R, Ruggeri B, Williams M, Costa G, Tamagno I, Ferrero D, Giai V, Coscia M, Peola S, Massaia M, et al: CEP-18770: A novel, orally active proteasome inhibitor with a tumor-selective pharmacologic profile competitive with bortezomib. Blood. 111:2765–2775. 2008. View Article : Google Scholar | |
Anchoori RK, Karanam B, Peng S, Wang JW, Jiang R, Tanno T, Orlowski RZ, Matsui W, Zhao M, Rudek MA, et al: A bis-benzylidine piperidone targeting proteasome ubiquitin receptor RPN13/ADRM1 as a therapy for cancer. Cancer Cell. 24:791–805. 2013. View Article : Google Scholar | |
Song Y, Ray A, Li S, Das DS, Tai YT, Carrasco RD, Chauhan D and Anderson KC: Targeting proteasome ubiquitin receptor Rpn13 in multiple myeloma. Leukemia. 30:1877–1886. 2016. View Article : Google Scholar | |
Kimura K, Yamada T, Matsumoto M, Kido Y, Hosooka T, Asahara S, Matsuda T, Ota T, Watanabe H, Sai Y, et al: Endoplasmic reticulum stress inhibits STAT3-dependent suppression of hepatic gluconeogenesis via dephosphorylation and deacetylation. Diabetes. 61:61–73. 2012. View Article : Google Scholar | |
Soong RS, Anchoori RK, Yang B, Yang A, Tseng SH, He L, Tsai YC, Roden RB and Hung CF: RPN13/ADRM1 inhibitor reverses immunosuppression by myeloid-derived suppressor cells. Oncotarget. 7:68489–68502. 2016. View Article : Google Scholar | |
Yu GY, Wang X, Zheng SS, Gao XM, Jia QA, Zhu WW, Lu L, Jia HL, Chen JH, Dong QZ, et al: RA190, a proteasome subunit ADRM1 inhibitor, suppresses intrahepatic cholangiocarcinoma by inducing NF-KB-Mediated cell apoptosis. Cell Physiol Biochem. 47:1152–1166. 2018. View Article : Google Scholar | |
Soong RS, Anchoori RK, Roden RBS, Cho RL, Chen YC, Tseng SC, Huang YL, Liao PC and Shyu YC: Bis-benzylidine Piperidone RA190 treatment of hepatocellular carcinoma via binding RPN13 and inhibiting NF-κB signaling. BMC Cancer. 20:3862020. View Article : Google Scholar | |
Powis G and Kirkpatrick L: Hypoxia inducible factor-1alpha as a cancer drug target. Mol Cancer Ther. 3:647–654. 2004. | |
Lee YM, Kim GH, Park EJ, Oh TI, Lee S, Kan SY, Kang H, Kim BM, Kim JH and Lim JH: Thymoquinone selectively kills hypoxic renal cancer cells by suppressing HIF-1α-mediated glycolysis. Int J Mol Sci. 20:10922019. View Article : Google Scholar | |
Ge Y, Yoon SH, Jang H, Jeong JH and Lee YM: Decursin promotes HIF-1α proteasomal degradation and immune responses in hypoxic tumour microenvironment. Phytomedicine. 78:1533182020. View Article : Google Scholar | |
Chen JJ, Ren YL, Shu CJ, Zhang Y, Chen MJ, Xu J, Li J, Li AP, Chen DY, He JD, et al: JP3, an antiangiogenic peptide, inhibits growth and metastasis of gastric cancer through TRIM25/SP1/MMP2 axis. J Exp Clin Cancer Res. 39:1182020. View Article : Google Scholar | |
Chen Y, Huang Y, Huang Y, Xia X, Zhang J, Zhou Y, Tan Y, He S, Qiang F, Li A, et al: JWA suppresses tumor angiogenesis via Sp1-activated matrix metalloproteinase-2 and its prognostic significance in human gastric cancer. Carcinogenesis. 35:442–451. 2014. View Article : Google Scholar | |
Godbersen JC, Humphries LA, Danilova OV, Kebbekus PE, Brown JR, Eastman A and Danilov AV: The Nedd8-activating enzyme inhibitor MLN4924 thwarts microenvironment-driven NF-κB activation and induces apoptosis in chronic lymphocytic leukemia B cells. Clin Cancer Res. 20:1576–1589. 2014. View Article : Google Scholar | |
Katsuya K, Hori Y, Oikawa D, Yamamoto T, Umetani K, Urashima T, Kinoshita T, Ayukawa K, Tokunaga F and Tamaru M: High-Throughput screening for linear ubiquitin chain assembly complex (LUBAC) selective inhibitors using homogenous time-resolved fluorescence (HTRF)-based assay system. SLAS Discov. 23:1018–1029. 2018. View Article : Google Scholar | |
Katsuya K, Oikawa D, Iio K, Obika S, Hori Y, Urashima T, Ayukawa K and Tokunaga F: Small-molecule inhibitors of linear ubiquitin chain assembly complex (LUBAC), HOIPINs, suppress NF-κB signaling. Biochem Biophys Res Commun. 509:700–706. 2019. View Article : Google Scholar | |
Liu C, Billadeau DD, Abdelhakim H, Leof E, Kaibuchi K, Bernabeu C, Bloom GS, Yang L, Boardman L, Shah VH and Kang N: IQGAP1 suppresses TβRII-mediated myofibroblastic activation and metastatic growth in liver. J Clin Invest. 123:1138–1156. 2013. View Article : Google Scholar | |
Liu JL, Wang XY, Huang BX, Zhu F, Zhang RG and Wu G: Expression of CDK5/p35 in resected patients with non-small cell lung cancer: Relation to prognosis. Med Oncol. 28:673–678. 2011. View Article : Google Scholar | |
Gao L, Xia L, Ji W, Zhang Y, Xia W and Lu S: Knockdown of CDK5 down-regulates PD-L1 via the ubiquitination-proteasome pathway and improves antitumor immunity in lung adenocarcinoma. Transl Oncol. 14:1011482021. View Article : Google Scholar | |
Liu Y, Liu X, Zhang N, Yin M, Dong J, Zeng Q, Mao G, Song D, Liu L and Deng H: Berberine diminishes cancer cell PD-L1 expression and facilitates antitumor immunity inhibiting the deubiquitination activity of CSN5. Acta Pharm Sin B. 10:2299–2312. 2020. View Article : Google Scholar | |
Chauhan D, Tian Z, Nicholson B, Kumar KG, Zhou B, Carrasco R, McDermott JL, Leach CA, Fulcinniti M, Kodrasov MP, et al: A small molecule inhibitor of ubiquitin-specific protease-7 induces apoptosis in multiple myeloma cells and overcomes bortezomib resistance. Cancer Cell. 22:345–358. 2012. View Article : Google Scholar | |
Nicholson B and Suresh Kumar KG: The multifaceted roles of USP7: New therapeutic opportunities. Cell Biochem Biophys. 60:61–68. 2011. View Article : Google Scholar | |
Shi L, Lin H, Li G, Sun Y, Shen J, Xu J, Lin C, Yeh S, Cai X and Chang C: Cisplatin enhances NK cells immunotherapy efficacy to suppress HCC progression via altering the androgen receptor (AR)-ULBP2 signals. Cancer Lett. 373:45–56. 2016. View Article : Google Scholar | |
Zhang X, Meng T, Cui S, Feng L, Liu D, Pang Q and Wang P: Ubiquitination of nonhistone proteins in cancer development and treatment. Front Oncol. 10:6212942021. View Article : Google Scholar | |
Ning B, Zhao W, Qian C, Liu P, Li Q, Li W and Wang RF: USP26 functions as a negative regulator of cellular reprogramming by stabilising PRC1 complex components. Nat Commun. 8:3492017. View Article : Google Scholar |