1
|
Dagher R and Helman L: Rhabdomyosarcoma:
An overview. Oncologist. 4:34–44. 1999. View Article : Google Scholar : PubMed/NCBI
|
2
|
Skapek SX, Ferrari A, Gupta AA, Lupo PJ,
Butler E, Shipley J, Barr FG and Hawkins DS: Rhabdomyosarcoma. Nat
Rev Dis Primers. 5:12019. View Article : Google Scholar : PubMed/NCBI
|
3
|
Williamson D, Missiaglia E, de Reyniès A,
Pierron G, Thuille B, Palenzuela G, Thway K, Orbach D, Laé M,
Fréneaux P, et al: Fusion gene-negative alveolar rhabdomyosarcoma
is clinically and molecularly indistinguishable from embryonal
rhabdomyosarcoma. J Clin Oncol. 28:2151–2158. 2010. View Article : Google Scholar : PubMed/NCBI
|
4
|
Hettmer S and Wagers AJ: Muscling in:
Uncovering the origins of rhabdomyosarcoma. Nat Med. 16:171–173.
2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Girardi F and Le Grand F: Wnt signaling in
skeletal muscle development and regeneration. Prog Mol Biol Transl
Sci. 153:157–179. 2018. View Article : Google Scholar : PubMed/NCBI
|
6
|
Martinez-Font E, Pérez-Capó M, Vögler O,
Martin-Broto J, Alemany R and Obrador-Hevia A: WNT/β-catenin
pathway in soft tissue sarcomas: New therapeutic opportunities?
Cancers (Basel). 13:55212021. View Article : Google Scholar
|
7
|
Nusse R and Clevers H: Wnt/β-catenin
signaling, disease, and emerging therapeutic modalities. Cell.
169:985–999. 2017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Clevers H and Nusse R: Wnt/beta-catenin
signaling and disease. Cell. 149:1192–1205. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
De A: Wnt/Ca2+ signaling pathway: A brief
overview. Acta Biochim Biophys Sin (Shanghai). 43:745–756. 2011.
View Article : Google Scholar
|
10
|
Thiele S, Rachner TD, Rauner M and
Hofbauer LC: WNT5A and its receptors in the bone-cancer dialogue. J
Bone Miner Res. 31:1488–1496. 2016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Sato A, Yamamoto H, Sakane H, Koyama H and
Kikuchi A: Wnt5a regulates distinct signalling pathways by binding
to frizzled2. EMBO J. 29:41–54. 2010. View Article : Google Scholar :
|
12
|
Bouron-Dal Soglio D, Rougemont AL, Absi R,
Giroux LM, Sanchez R, Barrette S and Fournet JC: Beta-catenin
mutation does not seem to have an effect on the tumorigenesis of
pediatric rhabdomyosarcomas. Pediatr Dev Pathol. 12:371–373. 2009.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Singh S, Vinson C, Gurley CM, Nolen GT,
Beggs ML, Nagarajan R, Wagner EF, Parham DM and Peterson CA:
Impaired Wnt signaling in embryonal rhabdomyosarcoma cells from
p53/c-fos double mutant mice. Am J Pathol. 177:2055–2066. 2010.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Annavarapu SR, Cialfi S, Dominici C, Kokai
GK, Uccini S, Ceccarelli S, McDowell HP and Helliwell TR:
Characterization of Wnt/β-catenin signaling in rhabdomyosarcoma.
Lab Invest. 93:1090–1099. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Giralt I, Gallo-Oller G, Navarro N,
Zarzosa P, Pons G, Magdaleno A, Segura MF, Sábado C, Hladun R,
Arango D, et al: Dickkopf-1 inhibition reactivates Wnt/β-catenin
signaling in rhabdomyosarcoma, induces myogenic markers in vitro
and impairs tumor cell survival in vivo. Int J Mol Sci.
22:129212021. View Article : Google Scholar
|
16
|
Nitzki F, Cuvelier N, Dräger J, Schneider
A, Braun T and Hahn H: Hedgehog/patched-associated rhabdomyosarcoma
formation from delta1-expressing mesodermal cells. Oncogene.
35:2923–2931. 2016. View Article : Google Scholar
|
17
|
Ragab N, Viehweger F, Bauer J, Geyer N,
Yang M, Seils A, Belharazem D, Brembeck FH, Schildhaus HU, Marx A,
et al: Canonical WNT/β-catenin signaling plays a subordinate role
in rhabdomyosarcomas. Front Pediatr. 6:3782018. View Article : Google Scholar
|
18
|
Surmann-Schmitt C, Widmann N, Dietz U,
Saeger B, Eitzinger N, Nakamura Y, Rattel M, Latham R, Hartmann C,
von der Mark H, et al: Wif-1 is expressed at cartilage-mesenchyme
interfaces and impedes Wnt3a-mediated inhibition of chondrogenesis.
J Cell Sci. 122:3627–3637. 2009. View Article : Google Scholar : PubMed/NCBI
|
19
|
von Maltzahn J, Chang NC, Bentzinger CF
and Rudnicki MA: Wnt signaling in myogenesis. Trends Cell Biol.
22:602–609. 2012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Kephart JJ, Tiller RG, Crose LE, Slemmons
KK, Chen PH, Hinson AR, Bentley RC, Chi JT and Linardic CM:
Secreted frizzled-related protein 3 (SFRP3) is required for
tumorigenesis of PAX3-FOXO1-positive alveolar rhabdomyosarcoma.
Clin Cancer Res. 21:4868–4880. 2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Chen X, Stewart E, Shelat AA, Qu C,
Bahrami A, Hatley M, Wu G, Bradley C, McEvoy J, Pappo A, et al:
Targeting oxidative stress in embryonal rhabdomyosarcoma. Cancer
cell. 24:710–724. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Davicioni E, Anderson MJ, Finckenstein FG,
Lynch JC, Qualman SJ, Shimada H, Schofield DE, Buckley JD, Meyer
WH, Sorensen PH and Triche TJ: Molecular classification of
rhabdomyosarcoma-genotypic and phenotypic determinants of
diagnosis: A report from the Children's oncology group. Am J
Pathol. 174:550–564. 2009. View Article : Google Scholar : PubMed/NCBI
|
23
|
Dräger J, Simon-Keller K, Pukrop T, Klemm
F, Wilting J, Sticht C, Dittmann K, Schulz M, Leuschner I, Marx A
and Hahn H: LEF1 reduces tumor progression and induces
myodifferentiation in a subset of rhabdomyosarcoma. Oncotarget.
8:3259–3273. 2017. View Article : Google Scholar :
|
24
|
Najdi R, Proffitt K, Sprowl S, Kaur S, Yu
J, Covey TM, Virshup DM and Waterman ML: A uniform human Wnt
expression library reveals a shared secretory pathway and unique
signaling activities. Differentiation. 84:203–213. 2012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Morgenstern JP and Land H: Advanced
mammalian gene transfer: High titre retroviral vectors with
multiple drug selection markers and a complementary helper-free
packaging cell line. Nucleic Acids Res. 18:3587–3596. 1990.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Stewart SA, Dykxhoorn DM, Palliser D,
Mizuno H, Yu EY, An DS, Sabatini DM, Chen IS, Hahn WC, Sharp PA, et
al: Lentivirus-delivered stable gene silencing by RNAi in primary
cells. RNA. 9:493–501. 2003. View Article : Google Scholar : PubMed/NCBI
|
27
|
Czarnek M, Sarad K, Karaś A, Kochan J and
Bereta J: Non-targeting control for MISSION shRNA library silences
SNRPD3 leading to cell death or permanent growth arrest. Mol Ther
Nucleic Acids. 26:711–731. 2021. View Article : Google Scholar : PubMed/NCBI
|
28
|
Weng Y, Shi Y, Xia X, Zhou W, Wang H and
Wang C: A multi-shRNA vector enhances the silencing efficiency of
exogenous and endogenous genes in human cells. Oncol Lett.
13:1553–1562. 2017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Walter D, Satheesha S, Albrecht P,
Bornhauser BC, D'Alessandro V, Oesch SM, Rehrauer H, Leuschner I,
Koscielniak E, Gengler C, et al: CD133 positive embryonal
rhabdomyosarcoma stem-like cell population is enriched in
rhabdospheres. PLoS One. 6:e195062011. View Article : Google Scholar : PubMed/NCBI
|
30
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
31
|
Link AJ and LaBaer J: Trichloroacetic acid
(TCA) precipitation of proteins. Cold Spring Harb Protoc.
2011:993–994. 2011. View Article : Google Scholar : PubMed/NCBI
|
32
|
Simon-Keller K, Paschen A, Hombach AA,
Ströbel P, Coindre JM, Eichmüller SB, Vincent A, Gattenlöhner S,
Hoppe F, Leuschner I, et al: Survivin blockade sensitizes
rhabdomyosarcoma cells for lysis by fetal acetylcholine
receptor-redirected T cells. Am J Pathol. 182:2121–2131. 2013.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Tenente IM, Hayes MN, Ignatius MS,
McCarthy K, Yohe M, Sindiri S, Gryder B, Oliveira ML, Ramakrishnan
A, Tang Q, et al: Myogenic regulatory transcription factors
regulate growth in rhabdomyosarcoma. Elife. 6:e192142017.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Deel MD, Slemmons KK, Hinson AR, Genadry
KC, Burgess BA, Crose LES, Kuprasertkul N, Oristian KM, Bentley RC
and Linardic CM: The transcriptional coactivator TAZ is a potent
mediator of alveolar rhabdomyosarcoma tumorigenesis. Clin Cancer
Res. 24:2616–2630. 2018. View Article : Google Scholar : PubMed/NCBI
|
35
|
Slemmons KK, Crose LES, Riedel S,
Sushnitha M, Belyea B and Linardic CM: A novel notch-YAP circuit
drives stemness and tumorigenesis in embryonal rhabdomyosarcoma.
Mol Cancer Res. 15:1777–1791. 2017. View Article : Google Scholar : PubMed/NCBI
|
36
|
Yamamoto H, Yoo SK, Nishita M, Kikuchi A
and Minami Y: Wnt5a modulates glycogen synthase kinase 3 to induce
phosphorylation of receptor tyrosine kinase Ror2. Genes Cells.
12:1215–1223. 2007. View Article : Google Scholar : PubMed/NCBI
|
37
|
Mikels A, Minami Y and Nusse R: Ror2
receptor requires tyrosine kinase activity to mediate Wnt5A
signaling. J Biol Chem. 284:30167–30176. 2009. View Article : Google Scholar : PubMed/NCBI
|
38
|
Pedersen EA, Menon R, Bailey KM, Thomas
DG, Van Noord RA, Tran J, Wang H, Qu PP, Hoering A, Fearon ER, et
al: Activation of Wnt/β-catenin in ewing sarcoma cells antagonizes
EWS/ETS function and promotes phenotypic transition to more
metastatic cell states. Cancer Res. 76:5040–5053. 2016. View Article : Google Scholar : PubMed/NCBI
|
39
|
Wu T, Wang LN, Tang DR and Sun FY: SOST
silencing promotes proliferation and invasion and reduces apoptosis
of retinoblastoma cells by activating Wnt/β-catenin signaling
pathway. Gene Ther. 24:399–407. 2017. View Article : Google Scholar : PubMed/NCBI
|
40
|
Mavila N: Thundimadathil J. The emerging
roles of cancer stem cells and Wnt/beta-catenin signaling in
hepatoblastoma. Cancers (Basel). 11:14062019. View Article : Google Scholar
|
41
|
Qin L, Yin YT, Zheng FJ, Peng LX, Yang CF,
Bao YN, Liang YY, Li XJ, Xiang YQ, Sun R, et al: WNT5A promotes
stemness characteristics in nasopharyngeal carcinoma cells leading
to metastasis and tumorigenesis. Oncotarget. 6:10239–10252. 2015.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Liu JJ, Zhang YJ, Xu R, Du J, Hu Z, Yang
L, Chen Y, Zhu Y and Gu L: PI3K/Akt-dependent phosphorylation of
GSK3β and activation of RhoA regulate Wnt5a-induced gastric cancer
cell migration. Cell Signal. 25:447–456. 2013. View Article : Google Scholar
|
43
|
Prgomet Z, Axelsson L, Lindberg P and
Andersson T: Migration and invasion of oral squamous carcinoma
cells is promoted by WNT5A, a regulator of cancer progression. J
Oral Pathol Med. 44:776–784. 2015. View Article : Google Scholar
|
44
|
Sinnberg T, Levesque MP, Krochmann J,
Cheng PF, Ikenberg K, Meraz-Torres F, Niessner H, Garbe C and Busch
C: Wnt-signaling enhances neural crest migration of melanoma cells
and induces an invasive phenotype. Mol Cancer. 17:592018.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Weeraratna AT, Jiang Y, Hostetter G,
Rosenblatt K, Duray P, Bittner M and Trent JM: Wnt5a signaling
directly affects cell motility and invasion of metastatic melanoma.
Cancer Cell. 1:279–288. 2002. View Article : Google Scholar : PubMed/NCBI
|
46
|
Kremenevskaja N, von Wasielewski R, Rao
AS, Schöfl C, Andersson T and Brabant G: Wnt-5a has tumor
suppressor activity in thyroid carcinoma. Oncogene. 24:2144–2154.
2005. View Article : Google Scholar : PubMed/NCBI
|
47
|
Thiele S, Göbel A, Rachner TD, Fuessel S,
Froehner M, Muders MH, Baretton GB, Bernhardt R, Jakob F, Glüer CC,
et al: WNT5A has anti-prostate cancer effects in vitro and reduces
tumor growth in the skeleton in vivo. J Bone Miner Res. 30:471–480.
2015. View Article : Google Scholar
|
48
|
Castell A and Larsson LG: Targeting MYC
translation in colorectal cancer. Cancer Discov. 5:701–703. 2015.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Säfholm A, Tuomela J, Rosenkvist J, Dejmek
J, Härkönen P and Andersson T: The Wnt-5a-derived hexapeptide
Foxy-5 inhibits breast cancer metastasis in vivo by targeting cell
motility. Clin Cancer Res. 14:6556–6563. 2008. View Article : Google Scholar : PubMed/NCBI
|
50
|
Blanc E, Roux GL, Bénard J and Raguénez G:
Low expression of Wnt-5a gene is associated with high-risk
neuroblastoma. Oncogene. 24:1277–1283. 2005. View Article : Google Scholar
|
51
|
Cheng R, Sun B, Liu Z, Zhao X, Qi L, Li Y
and Gu Q: Wnt5a suppresses colon cancer by inhibiting cell
proliferation and epithelial-mesenchymal transition. J Cell
Physiol. 229:1908–1917. 2014. View Article : Google Scholar : PubMed/NCBI
|
52
|
Wang T, Liu X and Wang J: Up-regulation of
Wnt5a inhibits proliferation and migration of hepatocellular
carcinoma cells. J Cancer Res Ther. 15:904–908. 2019. View Article : Google Scholar : PubMed/NCBI
|
53
|
Topol L, Jiang X, Choi H, Garrett-Beal L,
Carolan PJ and Yang Y: Wnt-5a inhibits the canonical Wnt pathway by
promoting GSK-3-independent beta-catenin degradation. J Cell Biol.
162:899–908. 2003. View Article : Google Scholar : PubMed/NCBI
|
54
|
Mikels AJ and Nusse R: Purified Wnt5a
protein activates or inhibits beta-catenin-TCF signaling depending
on receptor context. PLoS Biol. 4:e1152006. View Article : Google Scholar : PubMed/NCBI
|
55
|
Oishi I, Suzuki H, Onishi N, Takada R,
Kani S, Ohkawara B, Koshida I, Suzuki K, Yamada G, Schwabe GC, et
al: The receptor tyrosine kinase Ror2 is involved in non-canonical
Wnt5a/JNK signalling pathway. Genes Cells. 8:645–654. 2003.
View Article : Google Scholar : PubMed/NCBI
|
56
|
Osman J, Bellamkonda K, Liu Q, Andersson T
and Sjölander A: The WNT5A agonist foxy5 reduces the number of
colonic cancer stem cells in a xenograft mouse model of human
colonic cancer. Anticancer Res. 39:1719–1728. 2019. View Article : Google Scholar : PubMed/NCBI
|
57
|
Ying J, Li H, Yu J, Ng KM, Poon FF, Wong
SC, Chan AT, Sung JJ and Tao Q: WNT5A exhibits tumor-suppressive
activity through antagonizing the Wnt/beta-catenin signaling, and
is frequently methylated in colorectal cancer. Clin Cancer Res.
14:55–61. 2008. View Article : Google Scholar : PubMed/NCBI
|
58
|
Nirdé P, Derocq D, Maynadier M, Chambon M,
Basile I, Gary-Bobo M and Garcia M: Heat shock cognate 70 protein
secretion as a new growth arrest signal for cancer cells. Oncogene.
29:117–127. 2010. View Article : Google Scholar :
|