Hepatocellular carcinoma: Novel understandings and therapeutic strategies based on bile acids (Review)
- Authors:
- Wenyu Luo
- Shiqi Guo
- Yang Zhou
- Junfeng Zhu
- Jingwen Zhao
- Mengyao Wang
- Lixuan Sang
- Bingyuan Wang
- Bing Chang
-
Affiliations: Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110122, P.R. China, 104K class 87, The Second Clinical College, China Medical University, Shenyang, Liaoning 110122, P.R. China, Department of Clinical Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China, Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China, Department of Geriatric Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110122, P.R. China - Published online on: August 5, 2022 https://doi.org/10.3892/ijo.2022.5407
- Article Number: 117
-
Copyright: © Luo et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer. J Clin. 71:209–249. 2021. | |
Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A and Roberts LR: A global view of hepatocellular carcinoma: Trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol. 16:589–604. 2019. View Article : Google Scholar : PubMed/NCBI | |
Foerster F, Gairing SJ, Müller L and Galle PR: NAFLD-driven HCC: Safety and efficacy of current and emerging treatment options. J Hepatol. 76:446–457. 2022. View Article : Google Scholar | |
Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S, Lencioni R, Koike K, Zucman-Rossi J and Finn RS: Hepatocellular carcinoma. Nat Rev Dis Primers. 7:62021. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Chen K, Li F, Gu Z, Liu Q, He L, Shao T, Song Q, Zhu F, Zhang L, et al: Probiotic Lactobacillus rhamnosus GG prevents liver fibrosis through inhibiting hepatic bile acid synthesis and enhancing bile acid excretion in mice. Hepatology. 71:2050–2066. 2020. View Article : Google Scholar | |
Li J and Dawson PA: Animal models to study bile acid metabolism. Biochim Biophys Acta Mol Basis Dis. 1865:895–911. 2019. View Article : Google Scholar | |
Di Ciaula A, Garruti G, Lunardi Baccetto R, Molina-Molina E, Bonfrate L, Wang DQ and Portincasa P: Bile acid physiology. Ann Hepatol. 16(Suppl 1): s4–s14. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shulpekova Y, Shirokova E, Zharkova M, Tkachenko P, Tikhonov I, Stepanov A, Sinitsyna A, Izotov A, Butkova T, Shulpekova N, et al: A recent ten-year perspective: Bile acid metabolism and signaling. Molecules. 27:19832022. View Article : Google Scholar : PubMed/NCBI | |
Chiang JYL and Ferrell JM: Bile acid metabolism in liver pathobiology. Gene Expr. 18:71–87. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wahlström A, Sayin SI, Marschall HU and Bäckhed F: Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 24:41–50. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang B, Kuipers F, de Boer JF and Kuivenhoven JA: Modulation of bile acid metabolism to improve plasma lipid and lipoprotein profiles. J Clin Med. 11:42021. View Article : Google Scholar | |
Perino A, Demagny H, Velazquez-Villegas L and Schoonjans K: Molecular physiology of bile acid signaling in health, disease, and aging. Physiol Rev. 101:683–731. 2021. View Article : Google Scholar | |
Sohail MI, Dönmez-Cakil Y, Szöllősi D, Stockner T and Chiba P: The bile salt export pump: Molecular structure, study models and small-molecule drugs for the treatment of inherited BSEP deficiencies. Int J Mol Sci. 22:7842021. View Article : Google Scholar : | |
Jetter A and Kullak-Ublick GA: Pharmacol Res. 154:1042342020. View Article : Google Scholar | |
Köck K, Ferslew BC, Netterberg I, Yang K, Urban TJ, Swaan PW, Stewart PW and Brouwer KL: Risk factors for development of cholestatic drug-induced liver injury: Inhibition of hepatic basolateral bile acid transporters multidrug resistance-associated proteins 3-4. Drug Metab Dispos. 42:665–674. 2014. View Article : Google Scholar | |
Xiao L and Pan G: An important intestinal transporter that regulates the enterohepatic circulation of bile acids and cholesterol homeostasis: The apical sodium-dependent bile acid transporter (SLC10A2/ASBT). Clin Res Hepatol Gastroenterol. 41:509–515. 2017. View Article : Google Scholar : PubMed/NCBI | |
Deng F and Bae YH: Bile acid transporter-mediated oral drug delivery. J Control Release. 327:100–116. 2020. View Article : Google Scholar : PubMed/NCBI | |
Suga T, Yamaguchi H, Ogura J and Mano N: Characterization of conjugated and unconjugated bile acid transport via human organic solute transporter α/β. Biochim Biophys Acta Biomembr. 1861:1023–1029. 2019. View Article : Google Scholar : PubMed/NCBI | |
Vaz FM and Ferdinandusse S: Bile acid analysis in human disorders of bile acid biosynthesis. Mol Aspects Med. 56:10–24. 2017. View Article : Google Scholar : PubMed/NCBI | |
Trauner M, Fuchs CD, Halilbasic E and Paumgartner G: New therapeutic concepts in bile acid transport and signaling for management of cholestasis. Hepatology. 65:1393–1404. 2017. View Article : Google Scholar | |
Li T and Chiang JY: Bile acid signaling in metabolic disease and drug therapy. Pharmacol Rev. 66:948–983. 2014. View Article : Google Scholar : PubMed/NCBI | |
Daruich A, Picard E, Boatright JH and Behar-Cohen F: Review: The bile acids ursoand tauroursodeoxycholic acid as neuroprotective therapies in retinal disease. Mol Vis. 25:610–624. 2019. | |
Sato R: Recent advances in regulating cholesterol and bile acid metabolism. Biosci Biotechnol Biochem. 84:2185–2192. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ko CW, Qu J, Black DD and Tso P: Regulation of intestinal lipid metabolism: Current concepts and relevance to disease. Nat Rev Gastroenterol Hepatol. 17:169–183. 2020. View Article : Google Scholar : PubMed/NCBI | |
Blanchet M and Brunel JM: Bile acid derivatives: From old molecules to a new potent therapeutic use: An overview. Curr Med Chem. 25:3613–3636. 2018. View Article : Google Scholar : PubMed/NCBI | |
Forman BM, Goode E, Chen J, Oro AE, Bradley DJ, Perlmann T, Noonan DJ, Burka LT, McMorris T, Lamph WW, et al: Identification of a nuclear receptor that is activated by farnesol metabolites. Cell. 81:687–693. 1995. View Article : Google Scholar : PubMed/NCBI | |
Massafra V, Pellicciari R, Gioiello A and van Mil SWC: Progress and challenges of selective farnesoid X receptor modulation. Pharmacol Ther. 191:162–177. 2018. View Article : Google Scholar : PubMed/NCBI | |
Schubert K, Olde Damink SWM, von Bergen M and Schaap FG: Interactions between bile salts, gut microbiota, and hepatic innate immunity. Immunol Rev. 279:23–35. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sun L, Cai J and Gonzalez FJ: The role of farnesoid X receptor in metabolic diseases, and gastrointestinal and liver cancer. Nat Rev Gastroenterol Hepatol. 18:335–347. 2021. View Article : Google Scholar : PubMed/NCBI | |
Duboc H, Taché Y and Hofmann AF: The bile acid TGR5 membrane receptor: From basic research to clinical application. Dig Liver Dis. 46:302–312. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ticho AL, Malhotra P, Dudeja PK, Gill RK and Alrefai WA: Bile acid receptors and gastrointestinal functions. Liver Res. 3:31–39. 2019. View Article : Google Scholar : PubMed/NCBI | |
Portincasa P, Di Ciaula A, Garruti G, Vacca M, De Angelis M and Wang DQ: Bile acids and GPBAR-1: Dynamic interaction involving genes, environment and gut microbiome. Nutrients. 12:37092020. View Article : Google Scholar : | |
Wang R, Sheps JA and Ling V: ABC transporters, bile acids, and inflammatory stress in liver cancer. Curr Pharm Biotechnol. 12:636–646. 2011. View Article : Google Scholar | |
Wang C, Yang M, Zhao J, Li X, Xiao X, Zhang Y, Jin X and Liao M: Bile salt (glycochenodeoxycholate acid) induces cell survival and chemoresistance in hepatocellular carcinoma. J Cell Physiol. 234:10899–10906. 2019. View Article : Google Scholar | |
Wang H, Shang X, Wan X, Xiang X, Mao Q, Deng G and Wu Y: Increased hepatocellular carcinoma risk in chronic hepatitis B patients with persistently elevated serum total bile acid: A retrospective cohort study. Sci Rep. 6:381802016. View Article : Google Scholar : PubMed/NCBI | |
Thomas CE, Luu HN, Wang R, Xie G, Adams-Haduch J, Jin A, Koh WP, Jia W, Behari J and Yuan JM: Association between pre-diagnostic serum bile acids and hepatocellular carcinoma: The singapore Chinese health study. Cancers (Basel). 13:26482021. View Article : Google Scholar | |
Zhang W, Zhou L, Yin P, Wang J, Lu X, Wang X, Chen J, Lin X and Xu G: A weighted relative difference accumulation algorithm for dynamic metabolomics data: Long-term elevated bile acids are risk factors for hepatocellular carcinoma. Sci Rep. 5:89842015. View Article : Google Scholar : PubMed/NCBI | |
Sun L, Beggs K, Borude P, Edwards G, Bhushan B, Walesky C, Roy N, Manley MW Jr, Gunewardena S, O'Neil M, et al: Bile acids promote diethylnitrosamine-induced hepatocellular carcinoma via increased inflammatory signaling. Am J Physiol Gastrointest Liver Physiol. 311:G91–G104. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xie G, Wang X, Huang F, Zhao A, Chen W, Yan J, Zhang Y, Lei S, Ge K, Zheng X, et al: Dysregulated hepatic bile acids collaboratively promote liver carcinogenesis. Int J Cancer. 139:1764–1775. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ressom HW, Xiao JF, Tuli L, Varghese RS, Zhou B, Tsai TH, Ranjbar MR, Zhao Y, Wang J, Di Poto C, et al: Utilization of metabolomics to identify serum biomarkers for hepatocellular carcinoma in patients with liver cirrhosis. Anal Chim Acta. 743:90–100. 2012. View Article : Google Scholar : PubMed/NCBI | |
Rizzolo D, Buckley K, Kong B, Zhan L, Shen J, Stofan M, Brinker A, Goedken M, Buckley B and Guo GL: Bile acid homeostasis in a cholesterol 7α-hydroxylase and sterol 27-hydroxylase double knockout mouse model. Hepatology. 70:389–402. 2019.PubMed/NCBI | |
Huang XF, Zhao WY and Huang WD: FXR and liver carcinogenesis. Acta Pharmacol Sin. 36:37–43. 2015. View Article : Google Scholar : | |
Takahashi S, Tanaka N, Fukami T, Xie C, Yagai T, Kim D, Velenosi TJ, Yan T, Krausz KW, Levi M and Gonzalez FJ: Role of farnesoid X receptor and bile acids in hepatic tumor development. Hepatol Commun. 2:1567–1582. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhao Q, Liu F, Cheng Y, Xiao XR, Hu DD, Tang YM, Bao WM, Yang JH, Jiang T, Hu JP, et al: Celastrol protects from cholestatic liver injury through modulation of SIRT1-FXR signaling. Mol Cell Proteomics. 18:520–533. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jia W, Xie G and Jia W: Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastroenterol Hepatol. 15:111–128. 2018. View Article : Google Scholar | |
Liu X, Zhang X, Ji L, Gu J, Zhou M and Chen S: Farnesoid X receptor associates with β-catenin and inhibits its activity in hepatocellular carcinoma. Oncotarget. 6:4226–4238. 2015. View Article : Google Scholar : PubMed/NCBI | |
Qu A, Jiang C, Cai Y, Kim JH, Tanaka N, Ward JM, Shah YM and Gonzalez FJ: Role of Myc in hepatocellular proliferation and hepatocarcinogenesis. J Hepatol. 60:331–338. 2014. View Article : Google Scholar : | |
Chen J, Du F, Dang Y, Li X, Qian M, Feng W, Qiao C, Fan D, Nie Y, Wu K and Xia L: Fibroblast growth factor 19-mediated up-regulation of SYR-related high-mobility group box 18 promotes hepatocellular carcinoma metastasis by transactivating fibroblast growth factor receptor 4 and fms-related tyrosine kinase 4. Hepatology. 71:1712–1731. 2020. View Article : Google Scholar | |
Režen T, Rozman D, Kovács T, Kovács P, Sipos A, Bai P and Mikó E: The role of bile acids in carcinogenesis. Cell Mol Life Sci. 79:2432022. View Article : Google Scholar | |
van Nierop FS, Scheltema MJ, Eggink HM, Pols TW, Sonne DP, Knop FK and Soeters MR: Clinical relevance of the bile acid receptor TGR5 in metabolism. Lancet Diabetes Endocrinol. 5:224–233. 2017. View Article : Google Scholar | |
Pathak P, Xie C, Nichols RG, Ferrell JM, Boehme S, Krausz KW, Patterson AD, Gonzalez FJ and Chiang JYL: Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signaling to improve metabolism. Hepatology. 68:1574–1588. 2018. View Article : Google Scholar : PubMed/NCBI | |
Fuchs CD and Trauner M: Role of bile acids and their receptors in gastrointestinal and hepatic pathophysiology. Nat Rev Gastroenterol Hepatol. 19:432–450. 2022. View Article : Google Scholar : PubMed/NCBI | |
Pols TW, Noriega LG, Nomura M, Auwerx J and Schoonjans K: The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation. J Hepatol. 54:1263–1272. 2011. View Article : Google Scholar | |
Li CL, Lin YK, Chen HA, Huang CY, Huang MT and Chang YJ: Smoking as an independent risk factor for hepatocellular carcinoma due to the α7-nachr modulating the JAK2/STAT3 signaling axis. J Clin Med. 8:13912019. View Article : Google Scholar | |
Han LY, Fan YC, Mu NN, Gao S, Li F, Ji XF, Dou CY and Wang K: Aberrant DNA methylation of G-protein-coupled bile acid receptor Gpbar1 (TGR5) is a potential biomarker for hepatitis B virus associated hepatocellular carcinoma. Int J Med Sci. 11:164–171. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Lin H, Wu G, Zhu M and Li M: IL-6/STAT3 is a promising therapeutic target for hepatocellular carcinoma. Front Oncol. 11:7609712021. View Article : Google Scholar : | |
Wang J, Zhou M, Jin X, Li B, Wang C, Zhang Q, Liao M, Hu X and Yang M: Glycochenodeoxycholate induces cell survival and chemoresistance via phosphorylation of STAT3 at Ser727 site in HCC. J Cell Physiol. 235:2557–2568. 2020. View Article : Google Scholar | |
Zhang WJ, Chen SJ, Zhou SC, Wu SZ and Wang H: Inflammasomes and fibrosis. Front Immunol. 12:6431492021. View Article : Google Scholar : PubMed/NCBI | |
Liu T, Yang H, Fan W, Tu J, Li TWH, Wang J, Shen H, Yang J, Xiong T, Steggerda J, et al: Mechanisms of MAFG dysregulation in cholestatic liver injury and development of liver cancer. Gastroenterology. 155:557–571.e14. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cai J, Zhang N, Zheng Y, de Wilde RF, Maitra A and Pan D: The Hippo signaling pathway restricts the oncogenic potential of an intestinal regeneration program. Genes Dev. 24:2383–2388. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhang S and Zhou D: Role of the transcriptional coactivators YAP/TAZ in liver cancer. Curr Opin Cell Biol. 61:64–71. 2019. View Article : Google Scholar : PubMed/NCBI | |
Anakk S, Bhosale M, Schmidt VA, Johnson RL, Finegold MJ and Moore DD: Bile acids activate YAP to promote liver carcinogenesis. Cell Rep. 5:1060–1069. 2013. View Article : Google Scholar : PubMed/NCBI | |
Russell JO and Camargo FD: Hippo signalling in the liver: Role in development, regeneration and disease. Nat Rev Gastroenterol Hepatol. 19:297–312. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hohenester S, Gates A, Wimmer R, Beuers U, Anwer MS, Rust C and Webster CR: Phosphatidylinositol-3-kinase p110γ contributes to bile salt-induced apoptosis in primary rat hepatocytes and human hepatoma cells. J Hepatol. 53:918–926. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ma C, Han M, Heinrich B, Fu Q, Zhang Q, Sandhu M, Agdashian D, Terabe M, Berzofsky JA, Fako V, et al: Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science. 360:eaan59312018. View Article : Google Scholar : PubMed/NCBI | |
Friedman SL: Hepatic stellate cells: Protean, multifunctional, and enigmatic cells of the liver. Physiol Rev. 88:125–172. 2008. View Article : Google Scholar : PubMed/NCBI | |
Matsuda M and Seki E: Hepatic stellate cell-macrophage crosstalk in liver fibrosis and carcinogenesis. Semin Liver Dis. 40:307–320. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S, Oyadomari S, Iwakura Y, Oshima K, Morita H, Hattori M, et al: Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature. 499:97–101. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ohtani N: The roles and mechanisms of senescence-associated secretory phenotype (SASP): Can it be controlled by senolysis? Inflamm Regen. 42:112022. View Article : Google Scholar : PubMed/NCBI | |
Orabi D, Berger NA and Brown JM: Abnormal metabolism in the progression of nonalcoholic fatty liver disease to hepatocellular carcinoma: Mechanistic insights to chemoprevention. Cancers (Basel). 13:34732021. View Article : Google Scholar | |
Attia YM, Tawfiq RA, Gibriel AA, Ali AA, Kassem DH, Hammam OA and Elmazar MM: Activation of FXR modulates SOCS3/Jak2/STAT3 signaling axis in a NASH-dependent hepatocellular carcinoma animal model. Biochem Pharmacol. 186:1144972021. View Article : Google Scholar : PubMed/NCBI | |
Attia YM, Tawfiq RA, Ali AA and Elmazar MM: The FXR agonist, obeticholic acid, suppresses HCC proliferation & metastasis: Role of IL-6/STAT3 signalling pathway. Sci Rep. 7:125022017. View Article : Google Scholar : | |
Zhou J, Cui S, He Q, Guo Y, Pan X, Zhang P, Huang N, Ge C, Wang G, Gonzalez FJ, et al: SUMOylation inhibitors synergize with FXR agonists in combating liver fibrosis. Nat Commun. 11:2402020. View Article : Google Scholar : PubMed/NCBI | |
Chow MD, Lee YH and Guo GL: The role of bile acids in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Mol Aspects Med. 56:34–44. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ji G, Si X, Dong S, Xu Y, Li M, Yang B, Tang Z, Fang X, Huang L, Song W and Chen X: Manipulating liver bile acid signaling by nanodelivery of bile acid receptor modulators for liver cancer immunotherapy. Nano Lett. 21:6781–6791. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jiang M, Li F, Liu Y, Gu Z, Zhang L, Lee J, He L, Vatsalya V, Zhang HG, Deng Z, et al: Probiotic-derived nanoparticles inhibit ALD through intestinal miR194 suppression and subsequent FXR activation. Hepatology. Jun;112022.Epub ahead of print. | |
van de Peppel IP, Verkade HJ and Jonker JW: Metabolic consequences of ileal interruption of the enterohepatic circulation of bile acids. Am J Physiol Gastrointest Liver Physiol. 319:G619–G625. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jang ES, Yoon JH, Lee SH, Lee SM, Lee JH, Yu SJ, Kim YJ, Lee HS and Kim CY: Sodium taurocholate cotransporting polypeptide mediates dual actions of deoxycholic acid in human hepatocellular carcinoma cells: Enhanced apoptosis versus growth stimulation. J Cancer Res Clin Oncol. 140:133–144. 2014. View Article : Google Scholar | |
Yang N, Dong YQ, Jia GX, Fan SM, Li SZ, Yang SS and Li YB: ASBT(SLC10A2): A promising target for treatment of diseases and drug discovery. Biomed Pharmacother. 132:1108352020. View Article : Google Scholar : PubMed/NCBI | |
Cabrera D, Arab JP and Arrese M: UDCA, NorUDCA, and TUDCA in liver diseases: A review of their mechanisms of action and clinical applications. Handb Exp Pharmacol. 256:237–264. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kusaczuk M: Tauroursodeoxycholate-bile acid with chaperoning activity: Molecular and cellular effects and therapeutic perspectives. Cells. 8:14712019. View Article : Google Scholar | |
Castro RE, Solá S, Ma X, Ramalho RM, Kren BT, Steer CJ and Rodrigues CM: A distinct microarray gene expression profile in primary rat hepatocytes incubated with ursodeoxycholic acid. J Hepatol. 42:897–906. 2005. View Article : Google Scholar : PubMed/NCBI | |
Solá S, Amaral JD, Castro RE, Ramalho RM, Borralho PM, Kren BT, Tanaka H, Steer CJ and Rodrigues CM: Nuclear translocation of UDCA by the glucocorticoid receptor is required to reduce TGF-beta1-induced apoptosis in rat hepatocytes. Hepatology. 42:925–934. 2005. View Article : Google Scholar | |
Huang TE, Deng YN, Hsu JL, Leu WJ, Marchesi E, Capobianco ML, Marchetti P, Navacchia ML, Guh JH, Perrone D and Hsu LC: Evaluation of the anticancer activity of a bile acid-dihydroartemisinin hybrid ursodeoxycholic-dihydroartemisinin in hepatocellular carcinoma cells. Front Pharmacol. 11:5990672020. View Article : Google Scholar : PubMed/NCBI | |
Goossens JF and Bailly C: Ursodeoxycholic acid and cancer: From chemoprevention to chemotherapy. Pharmacol Ther. 203:1073962019. View Article : Google Scholar : PubMed/NCBI | |
Lee S, Cho YY, Cho EJ, Yu SJ, Lee JH, Yoon JH and Kim YJ: Synergistic effect of ursodeoxycholic acid on the antitumor activity of sorafenib in hepatocellular carcinoma cells via modulation of STAT3 and ERK. Int J Mol Med. 42:2551–2559. 2018.PubMed/NCBI | |
Sangro B, Sarobe P, Hervás-Stubbs S and Melero I: Advances in immunotherapy for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 18:525–543. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ji G, Ma L, Yao H, Ma S, Si X, Wang Y, Bao X, Ma L, Chen F, Ma C, et al: Precise delivery of obeticholic acid via nanoapproach for triggering natural killer T cell-mediated liver cancer immunotherapy. Acta Pharm Sin B. 10:2171–2182. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cariello M, Peres C, Zerlotin R, Porru E, Sabbà C, Roda A and Moschetta A: Long-term administration of nuclear bile acid receptor FXR agonist prevents spontaneous hepatocarcinogenesis in Abcb4-/mice. Sci Rep. 7:112032017. View Article : Google Scholar | |
Shen Y, Lu C, Song Z, Qiao C, Wang J, Chen J, Zhang C, Zeng Z, Ma Z, Chen J, et al: Ursodeoxycholic acid reduces antitumor immunosuppression by inducing CHIP-mediated TGF-β degradation. Nat Commun. 13:34192022. View Article : Google Scholar | |
Zhao MX, Cai ZC, Zhu BJ and Zhang ZQ: The apoptosis effect on liver cancer cells of gold nanoparticles modified with lithocholic acid. Nanoscale Res Lett. 13:3042018. View Article : Google Scholar : PubMed/NCBI | |
Liu T, Song X, Khan S, Li Y, Guo Z, Li C, Wang S, Dong W, Liu W, Wang B and Cao H: The gut microbiota at the intersection of bile acids and intestinal carcinogenesis: An old story, yet mesmerizing. Int J Cancer. 146:1780–1790. 2020. View Article : Google Scholar | |
Degirolamo C, Rainaldi S, Bovenga F, Murzilli S and Moschetta A: Microbiota modification with probiotics induces hepatic bile acid synthesis via downregulation of the Fxr-Fgf15 axis in mice. Cell Rep. 7:12–18. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jones ML, Tomaro-Duchesneau C and Prakash S: The gut microbiome, probiotics, bile acids axis, and human health. Trends Microbiol. 22:306–308. 2014. View Article : Google Scholar : PubMed/NCBI | |
Polyzos SA, Kountouras J and Mantzoros CS: Obeticholic acid for the treatment of nonalcoholic steatohepatitis: Expectations and concerns. Metabolism. 104:1541442020. View Article : Google Scholar : PubMed/NCBI |