1
|
Chondrogianni N and Gonos ES: Proteasome
function determines cellular homeostasis and the rate of aging. Adv
Exp Med Biol. 694:38–46. 2010. View Article : Google Scholar : PubMed/NCBI
|
2
|
Bard JAM, Goodall EA, Greene ER, Jonsson
E, Dong KC and Martin A: Structure and function of the 26S
proteasome. Annu Rev Biochem. 87:697–724. 2018. View Article : Google Scholar : PubMed/NCBI
|
3
|
Bachiller S, Alonso-Bellido IM, Real LM,
Pérez-Villegas EM, Venero JL, Deierborg T, Armengol JA and Ruiz R:
The ubiquitin proteasome system in neuromuscular disorders: Moving
beyond movement. Int J Mol Sci. 21:64292020. View Article : Google Scholar : PubMed/NCBI
|
4
|
Park HB, Kim JW and Baek KH: Regulation of
Wnt signaling through ubiquitination and deubiquitination in
cancers. Int J Mol Sci. 21:39042020. View Article : Google Scholar : PubMed/NCBI
|
5
|
Park HB and Baek KH: E3 ligases and
deubiquitinating enzymes regulating the MAPK signaling pathway in
cancers. Biochim Biophys Acta Rev Cancer. 1877:1887362022.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Caputi FF, Rullo L, Stamatakos S,
Candeletti S and Romualdi P: Interplay between the endogenous
opioid system and proteasome complex: Beyond signaling. Int J Mol
Sci. 20:14412019. View Article : Google Scholar : PubMed/NCBI
|
7
|
Suresh B, Lee J, Kim H and Ramakrishna S:
Regulation of pluripotency and differentiation by deubiquitinating
enzymes. Cell Death Differ. 23:1257–1264. 2016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Suresh B, Lee J, Kim KS and Ramakrishna S:
The importance of ubiquitination and deubiquitination in cellular
reprogramming. Stem Cells Int. 2016:67059272016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Grice GL and Nathan JA: The recognition of
ubiquitinated proteins by the proteasome. Cell Mol Life Sci.
73:3497–3506. 2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Kwon YT and Ciechanover A: The ubiquitin
code in the ubiquitin-proteasome system and autophagy. Trends
Biochem Sci. 42:873–886. 2017. View Article : Google Scholar : PubMed/NCBI
|
11
|
Dosa A and Csizmadia T: The role of
K63-linked polyubiquitin in several types of autophagy. Biol Futur.
73:137–148. 2022. View Article : Google Scholar : PubMed/NCBI
|
12
|
Lafont E, Hartwig T and Walczak H: Paving
TRAIL's path with ubiquitin. Trends Biochem Sci. 43:44–60. 2018.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Yuan T, Yan F, Ying M, Cao J, He Q, Zhu H
and Yang B: Inhibition of ubiquitin-specific proteases as a novel
anticancer therapeutic strategy. Front Pharmacol. 9:10802018.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Lange SM, Armstrong LA and Kulathu Y:
Deubiquitinases: From mechanisms to their inhibition by small
molecules. Mol Cell. 82:15–29. 2022. View Article : Google Scholar : PubMed/NCBI
|
15
|
Fhu CW and Ali A: Dysregulation of the
ubiquitin proteasome system in human malignancies: A window for
therapeutic intervention. Cancers (Basel). 13:15132021. View Article : Google Scholar : PubMed/NCBI
|
16
|
Shi L, Liu J, Peng Y, Zhang J, Dai X,
Zhang S, Wang Y, Liu J and Long J: Deubiquitinase OTUD6A promotes
proliferation of cancer cells via regulating Drp1 stability and
mitochondrial fission. Mol Oncol. 14:3169–3183. 2020. View Article : Google Scholar : PubMed/NCBI
|
17
|
Kim HJ and Kim J: OTUD6A Is an aurora
kinase a-specific deubiquitinase. Int J Mol Sci. 22:19362021.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Fu X, Zhao J, Yu G, Zhang X, Sun J, Li L,
Yin J, Niu Y, Ren S, Zhu Y, et al: OTUD6A promotes prostate
tumorigenesis via deubiquitinating Brg1 and AR. Commun Biol.
5:1822022. View Article : Google Scholar : PubMed/NCBI
|
19
|
Peng Y, Liu J, Wang Z, Cui C, Zhang T,
Zhang S, Gao P, Hou Z, Liu H, Guo J, et al: Prostate-specific
oncogene OTUD6A promotes prostatic tumorigenesis via
deubiquitinating and stabilizing c-Myc. Cell Death Differ.
29:1730–1743. 2022. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhao Y, Huang X, Zhu D, Wei M, Luo J, Yu
S, Tian Y and Zheng X: Deubiquitinase OTUD6A promotes breast cancer
progression by increasing TopBP1 stability and rendering tumor
cells resistant to DNA-damaging therapy. Cell Death Differ. Jun
29–2022.(Epub ahead of print). View Article : Google Scholar
|
21
|
Kim SY, Kwon SK, Lee SY and Baek KH:
Ubiquitin-specific peptidase 5 and ovarian tumor deubiquitinase 6A
are differentially expressed in p53+/+ and
p53−/− HCT116 cells. Int J Oncol. 52:1705–1714.
2018.PubMed/NCBI
|
22
|
Lim KH, Park JJ, Gu BH, Kim JO, Park SG
and Baek KH: HAUSP-nucleolin interaction is regulated by p53-Mdm2
complex in response to DNA damage response. Sci Rep. 5:127932015.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Park JH, Kim SY, Cho HJ, Lee SY and Baek
KH: YOD1 deubiquitinates NEDD4 involved in the hippo signaling
pathway. Cell Physiol Biochem. 54:1–14. 2020.PubMed/NCBI
|
24
|
Roth JA, Swisher SG and Meyn RE: p53 tumor
suppressor gene therapy for cancer. Oncology (Williston Park).
13:148–154. 1999.PubMed/NCBI
|
25
|
Bhatt P, d'Avout C, Kane NS, Borowiec JA
and Saxena A: Specific domains of nucleolin interact with Hdm2 and
antagonize Hdm2-mediated p53 ubiquitination. FEBS J. 279:370–383.
2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Daniely Y, Dimitrova DD and Borowiec JA:
Stress-dependent nucleolin mobilization mediated by p53-nucleolin
complex formation. Mol Cell Biol. 22:6014–6022. 2002. View Article : Google Scholar : PubMed/NCBI
|
27
|
Jia W, Yao Z, Zhao J, Guan Q and Gao L:
New perspectives of physiological and pathological functions of
nucleolin (NCL). Life Sci. 186:1–10. 2017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Yan Y, Narayan A, Cho S, Cheng Z, Liu JO,
Zhu H, Wang G, Wharram B, Lisok A, Brummet M, et al: CRYbetaB2
enhances tumorigenesis through upregulation of nucleolin in triple
negative breast cancer. Oncogene. 40:5752–5763. 2021. View Article : Google Scholar : PubMed/NCBI
|
29
|
Mahib MR, Hosojima S, Kushiyama H,
Kinoshita T, Shiroishi T, Suda T and Tsuchiya K: Caspase-7 mediates
caspase-1-induced apoptosis independently of Bid. Microbiol
Immunol. 64:143–152. 2020. View Article : Google Scholar : PubMed/NCBI
|
30
|
Wang W, Luo J, Xiang F, Liu X, Jiang M,
Liao L and Hu J: Nucleolin down-regulation is involved in
ADP-induced cell cycle arrest in S phase and cell apoptosis in
vascular endothelial cells. PLoS One. 9:e1101012014. View Article : Google Scholar : PubMed/NCBI
|
31
|
McClurg UL and Robson CN: Deubiquitinating
enzymes as oncotargets. Oncotarget. 6:9657–9668. 2015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Poondla N, Chandrasekaran AP, Kim KS and
Ramakrishna S: Deubiquitinating enzymes as cancer biomarkers: New
therapeutic opportunities? BMB Rep. 52:181–189. 2019. View Article : Google Scholar : PubMed/NCBI
|
33
|
Zhu X, Zhang Y, Luo Q, Wu X, Huang F, Shu
T, Wan Y, Chen H and Liu Z: The deubiquitinase USP11 promotes
ovarian cancer chemoresistance by stabilizing BIP. Signal Transduct
Target Ther. 6:2642021. View Article : Google Scholar : PubMed/NCBI
|
34
|
Zhang Z, Li J, Ou Y, Yang G, Deng K, Wang
Q, Wang Z, Wang W, Zhang Q, Wang H, et al: CDK4/6 inhibition blocks
cancer metastasis through a USP51-ZEB1-dependent deubiquitination
mechanism. Signal Transduct Target Ther. 5:252020. View Article : Google Scholar : PubMed/NCBI
|
35
|
Machado-Silva A, Perrier S and Bourdon JC:
p53 family members in cancer diagnosis and treatment. Semin Cancer
Biol. 20:57–62. 2010. View Article : Google Scholar : PubMed/NCBI
|
36
|
Hollstein M, Sidransky D, Vogelstein B and
Harris CC: p53 mutations in human cancers. Science. 253:49–53.
1991. View Article : Google Scholar : PubMed/NCBI
|
37
|
Yuan X, He J, Sun F and Gu J: Effects and
interactions of MiR-577 and TSGA10 in regulating esophageal
squamous cell carcinoma. Int J Clin Exp Pathol. 6:2651–2667.
2013.PubMed/NCBI
|
38
|
Ohashi T, Idogawa M, Sasaki Y and Tokino
T: p53 mediates the suppression of cancer cell invasion by inducing
LIMA1/EPLIN. Cancer Lett. 390:58–66. 2017. View Article : Google Scholar : PubMed/NCBI
|
39
|
Taha M, Aldirawi M, Marz S, Seebach J,
Odenthal-Schnittler M, Bondareva O, Bojovic V, Schmandra T, Wirth
B, Mietkowska M, et al: EPLIN-alpha and -beta Isoforms modulate
endothelial cell dynamics through a spatiotemporally differentiated
interaction with actin. Cell Rep. 29:1010–1026.e6. 2019. View Article : Google Scholar : PubMed/NCBI
|
40
|
Lamkanfi M and Kanneganti TD: Caspase-7: A
protease involved in apoptosis and inflammation. Int J Biochem Cell
Biol. 42:21–24. 2010. View Article : Google Scholar : PubMed/NCBI
|
41
|
Chen Y, Yang SH, Hueng DY, Syu JP, Liao CC
and Wu YC: Cordycepin induces apoptosis of C6 glioma cells through
the adenosine 2A receptor-p53-caspase-7-PARP pathway. Chem Biol
Interact. 216:17–25. 2014. View Article : Google Scholar : PubMed/NCBI
|
42
|
Yang C, Kaushal V, Haun RS, Seth R, Shah
SV and Kaushal GP: Transcriptional activation of caspase-6 and −7
genes by cisplatin-induced p53 and its functional significance in
cisplatin nephrotoxicity. Cell Death Differ. 15:530–544. 2008.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Zhou B and Zeng L: Conventional and
unconventional ubiquitination in plant immunity. Mol Plant Pathol.
18:1313–1330. 2017. View Article : Google Scholar : PubMed/NCBI
|
44
|
Akutsu M, Dikic I and Bremm A: Ubiquitin
chain diversity at a glance. J Cell Sci. 129:875–880.
2016.PubMed/NCBI
|
45
|
Ohtake F, Tsuchiya H, Saeki Y and Tanaka
K: K63 ubiquitylation triggers proteasomal degradation by seeding
branched ubiquitin chains. Proc Natl Acad Sci USA. 115:E1401–E1408.
2018. View Article : Google Scholar : PubMed/NCBI
|
46
|
Valerio-Fernandes A, Fonseca NA, Goncalves
N, Cruz AF, Pereira MI, Gregório AC, Moura V, Ladeirinha AF,
Alarcão A, Gonçalves J, et al: Nucleolin overexpression predicts
patient prognosis while providing a framework for targeted
therapeutic intervention in lung cancer. Cancers (Basel).
14:22172022. View Article : Google Scholar : PubMed/NCBI
|
47
|
Firlej V, Soyeux P, Nourieh M, Huet E,
Semprez F, Allory Y, Londono-Vallejo A, de la Taille A, Vacherot F
and Destouches D: Overexpression of nucleolin and associated genes
in prostate cancer. Int J Mol Sci. 23:44912022. View Article : Google Scholar : PubMed/NCBI
|
48
|
Shin SH, Lee GY, Lee M, Lee M, Kang J,
Shin HW, Chun YS and Park JW: Aberrant expression of CITED2
promotes prostate cancer metastasis by activating the nucleolin-AKT
pathway. Nat Commun. 9:41132018. View Article : Google Scholar : PubMed/NCBI
|
49
|
Yu Y, Jin H, Xu J, Gu J, Li X, Xie Q,
Huang H, Li J, Tian Z, Jiang G, et al: XIAP overexpression promotes
bladder cancer invasion in vitro and lung metastasis in vivo via
enhancing nucleolin-mediated Rho-GDIbeta mRNA stability. Int J
Cancer. 142:2040–2055. 2018. View Article : Google Scholar : PubMed/NCBI
|
50
|
Yan J, Zhang Y, Ren C, Shi W and Chen L:
Involvement of nuclear protein C23 in activation of EGFR signaling
in cervical cancer. Tumour Biol. 37:905–910. 2016. View Article : Google Scholar : PubMed/NCBI
|
51
|
Wolfson E, Goldenberg M, Solomon S,
Frishberg A and Pinkas-Kramarski R: Nucleolin-binding by ErbB2
enhances tumorigenicity of ErbB2-positive breast cancer.
Oncotarget. 7:65320–65334. 2016. View Article : Google Scholar : PubMed/NCBI
|
52
|
Wolfson E, Solomon S, Schmukler E,
Goldshmit Y and Pinkas-Kramarski R: Nucleolin and ErbB2 inhibition
reduces tumorigenicity of ErbB2-positive breast cancer. Cell Death
Dis. 9:472018. View Article : Google Scholar : PubMed/NCBI
|
53
|
Gilles ME, Maione F, Cossutta M,
Carpentier G, Caruana L, Maria SD, Houppe C, Destouches D, Shchors
K, Prochasson C, et al: Nucleolin targeting impairs the progression
of pancreatic cancer and promotes the normalization of tumor
vasculature. Cancer Res. 76:7181–7193. 2016. View Article : Google Scholar : PubMed/NCBI
|
54
|
Brentnall M, Rodriguez-Menocal L, De
Guevara RL, Cepero E and Boise LH: Caspase-9, caspase-3 and
caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell
Biol. 14:322013. View Article : Google Scholar : PubMed/NCBI
|