Epigenetic modifications: Critical participants of the PD‑L1 regulatory mechanism in solid tumors (Review)
- Authors:
- Xiaoran Ma
- Jibiao Wu
- Bin Wang
- Cun Liu
- Lijuan Liu
- Changgang Sun
-
Affiliations: College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China, College of Basic Medicine, Qingdao University, Qingdao, Shandong 266073, P.R. China, College of Traditional Chinese Medicine, Weifang Medical University, Weifang, Shandong 261041, P.R. China, Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong 261041, P.R. China - Published online on: September 20, 2022 https://doi.org/10.3892/ijo.2022.5424
- Article Number: 134
-
Copyright: © Ma et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Chen J, Jiang CC, Jin L and Zhang XD: Regulation of PD-L1: A novel role of pro-survival signalling in cancer. Ann Oncol. 27:409–416. 2016. View Article : Google Scholar | |
Mellman I, Coukos G and Dranoff G: Cancer immunotherapy comes of age. Nature. 480:480–489. 2011. View Article : Google Scholar : PubMed/NCBI | |
Guan J, Lim KS, Mekhail T and Chang CC: Programmed death ligand-1 (PD-L1) expression in the programmed death receptor-1 (PD-1)/PD-L1 blockade: A key player against various cancers. Arch Pathol Lab Med. 141:851–861. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, Roche PC, Lu J, Zhu G, Tamada K, et al: Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion. Nat Med. 8:793–800. 2002. View Article : Google Scholar : PubMed/NCBI | |
Yang F, Wang JF, Wang Y, Liu B and Molina JR: Comparative analysis of predictive biomarkers for PD-1/PD-L1 inhibitors in cancers: Developments and challenges. Cancers. 14:1092021. View Article : Google Scholar | |
Liu D, Wang S and Bindeman W: Clinical applications of PD-L1 bioassays for cancer immunotherapy. J Hematol Oncol. 10:1102017. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zhang H, Liu C, Wang Z, Wu W, Zhang N, Zhang L, Hu J, Luo P, Zhang J, et al: Immune checkpoint modulators in cancer immunotherapy: Recent advances and emerging concepts. J Hematol Oncol. 15:1112022. View Article : Google Scholar : PubMed/NCBI | |
Kim CG, Kim M, Hwang J, Kim ST, Jung M, Kim KH, Kim KH, Chang JS, Koom WS, Roh MR, et al: First-line pembrolizumab versus dabrafenib/trametinib treatment for BRAF V600-mutant advanced melanoma. J Am Acad Dermatol. Sep 3–2022.Epub ahead of print. View Article : Google Scholar | |
Donne R and Lujambio A: The liver cancer immune microenvironment: Therapeutic Implications for hepatocellular carcinoma. Hepatology. Aug 21–2022.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
Sun C, Mezzadra R and Schumacher TN: Regulation and function of the PD-L1 checkpoint. Immunity. 48:434–452. 2018. View Article : Google Scholar : PubMed/NCBI | |
Topalian SL, Drake CG and Pardoll DM: Immune checkpoint blockade: A common denominator approach to cancer therapy. Cancer Cell. 27:450–461. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Fu C, Du J, Wang H, He R, Yin X, Li H, Li X, Wang H, Li K, et al: Enhanced histone H3 acetylation of the PD-L1 promoter via the COP1/c-Jun/HDAC3 axis is required for PD-L1 expression in drug-resistant cancer cells. J Exp Clin Cancer Res. 39:292020. View Article : Google Scholar : PubMed/NCBI | |
Sharma P, Hu-Lieskovan S, Wargo JA and Ribas A: Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell. 168:707–723. 2017. View Article : Google Scholar : PubMed/NCBI | |
Burkitt K and Saloura V: Epigenetic modifiers as novel therapeutic targets and a systematic review of clinical studies investigating epigenetic inhibitors in head and neck cancer. Cancers (Basel). 13:52412021. View Article : Google Scholar | |
Huo M, Zhang J, Huang W and Wang Y: Interplay among metabolism, epigenetic modifications, and gene expression in cancer. Front Cell Dev Biol. 9:7934282021. View Article : Google Scholar | |
Perrier A, Didelot A, Laurent-Puig P, Blons H and Garinet S: Epigenetic mechanisms of resistance to immune checkpoint inhibitors. Biomolecules. 10:10612020. View Article : Google Scholar : | |
Martínez-Cano J, Campos-Sánchez E and Cobaleda C: Epigenetic priming in immunodeficiencies. Front Cell Dev Biol. 7:1252019. View Article : Google Scholar : PubMed/NCBI | |
Kuendgen A and Lübbert M: Current status of epigenetic treatment in myelodysplastic syndromes. Ann Hematol. 87:601–611. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hoy SM: Tazemetostat: First approval. Drugs. 80:513–521. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li Y and Seto E: HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb Perspect Med. 6:a0268312016. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Liu X, Li Y, Quan C, Zheng L and Huang K: Lung cancer therapy targeting histone methylation: Opportunities and challenges. Comput Struct Biotechnol J. 16:211–223. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lei Q, Wang D, Sun K, Wang L and Zhang Y: Resistance mechanisms of anti-PD1/PDL1 therapy in solid tumors. Front Cell Dev Biol. 8:6722020. View Article : Google Scholar : PubMed/NCBI | |
O'Donnell JS, Long GV, Scolyer RA, Teng MW and Smyth MJ: Resistance to PD1/PDL1 checkpoint inhibition. Cancer Treat Rev. 52:71–81. 2017. View Article : Google Scholar | |
Shen Y, Liu L, Wang M, Xu B, Lyu R, Shi YG and Tan L: TET2 inhibits PD-L1 gene expression in breast cancer cells through histone deacetylation. Cancers (Basel). 13:22072021. View Article : Google Scholar | |
Fan P, Zhao J, Meng Z, Wu H, Wang B, Wu H and Jin X: Overexpressed histone acetyltransferase 1 regulates cancer immunity by increasing programmed death-ligand 1 expression in pancreatic cancer. J Exp Clin Cancer Res. 38:472019. View Article : Google Scholar : PubMed/NCBI | |
Lu C, Paschall AV, Shi H, Savage N, Waller JL, Sabbatini ME, Oberlies NH, Pearce C and Liu K: The MLL1-H3K4me3 axis-mediated PD-L1 expression and pancreatic cancer immune evasion. J Natl Cancer Inst. 109:djw2832017. View Article : Google Scholar : | |
Xia R, Geng G, Yu X, Xu Z, Guo J, Liu H, Li N, Li Z, Li Y, Dai X, et al: LINC01140 promotes the progression and tumor immune escape in lung cancer by sponging multiple microRNAs. J Immunother Cancer. 9:e0027462021. View Article : Google Scholar : PubMed/NCBI | |
Gilles ME and Slack FJ: Let-7 microRNA as a potential therapeutic target with implications for immunotherapy. Expert Opin Ther Targets. 22:929–939. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hou J, Huang Q, Fan Z, Sang H, Wu S, Cheng S and Li Q: LncRNA OIP5-AS1 knockdown facilitated the ferroptosis and immune evasion by modulating the GPX4 in oesophageal carcinoma. Comput Math Methods Med. 2022:81031982022. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Liang C, Yao X, Yang RH, Zhang ZS, Liu FY, Li WQ, Pei SH, Ma J, Xie SQ and Fang D: Corrigendum: PKM2-induced the phosphorylation of histone H3 contributes to EGF-Mediated PD-L1 transcription in HCC. Front Pharmacol. 12:7247992021. View Article : Google Scholar : PubMed/NCBI | |
Chung HC, Ros W, Delord JP, Perets R, Italiano A, Shapira-Frommer R, Manzuk L, Piha-Paul SA, Xu L, Zeigenfuss S, et al: Efficacy and safety of pembrolizumab in previously treated advanced cervical cancer: Results from the phase II KEYNOTE-158 study. J Clin Oncol. 37:1470–1478. 2019. View Article : Google Scholar : PubMed/NCBI | |
Abiko K, Hamanishi J, Matsumura N and Mandai M: Dynamic host immunity and PD-L1/PD-1 blockade efficacy: Developments after 'IFN-γ from lymphocytes induces PD-L1 expression and promotes progression of ovarian cancer'. Br J Cancer. Sep 6–2022.Epub ahead of print. View Article : Google Scholar | |
Mussafi O, Mei J, Mao W and Wan Y: Immune checkpoint inhibitors for PD-1/PD-L1 axis in combination with other immunotherapies and targeted therapies for non-small cell lung cancer. Front Oncol. 12:9484052022. View Article : Google Scholar : PubMed/NCBI | |
Garcia-Diaz A, Shin DS, Moreno BH, Saco J, Escuin-Ordinas H, Rodriguez GA, Zaretsky JM, Sun L, Hugo W, Wang X, et al: Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep. 29:37662019. View Article : Google Scholar : PubMed/NCBI | |
Ribas A and Wolchok JD: Cancer immunotherapy using checkpoint blockade. Science. 359:1350–1355. 2018. View Article : Google Scholar : PubMed/NCBI | |
Akinleye A and Rasool Z: Immune checkpoint inhibitors of PD-L1 as cancer therapeutics. J Hematol Oncol. 12:922019. View Article : Google Scholar : PubMed/NCBI | |
Heemskerk B, Kvistborg P and Schumacher TN: The cancer antigenome. EMBO J. 32:194–203. 2013. View Article : Google Scholar : | |
McLane LM, Abdel-Hakeem MS and Wherry EJ: CD8 T cell exhaustion during chronic viral infection and cancer. Annu Rev Immunol. 37:457–495. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Liu S, Zhang B, Qiao L and Zhang Y and Zhang Y: T cell dysfunction and exhaustion in cancer. Front Cell Dev Biol. 8:172020. View Article : Google Scholar : PubMed/NCBI | |
Sade-Feldman M, Jiao YJ, Chen JH, Rooney MS, Barzily-Rokni M, Eliane JP, Bjorgaard SL, Hammond MR, Vitzthum H, Blackmon SM, et al: Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat Commun. 8:11362017. View Article : Google Scholar : PubMed/NCBI | |
Yeon Yeon S, Jung SH, Jo YS, Choi EJ, Kim MS, Chung YJ and Lee SH: Immune checkpoint blockade resistance-related B2M hotspot mutations in microsatellite-unstable colorectal carcinoma. Pathol Res Pract. 215:209–214. 2019. View Article : Google Scholar | |
Ngiow SF, Young A, Jacquelot N, Yamazaki T, Enot D, Zitvogel L and Smyth MJ: A threshold level of intratumor CD8+ T-cell PD1 expression dictates therapeutic response to anti-PD1. Cancer Res. 75:3800–3811. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li X, Wenes M, Romero P, Huang SC, Fendt SM and Ho PC: Navigating metabolic pathways to enhance antitumour immunity and immunotherapy. Nat Rev Clin Oncol. 16:425–441. 2019. View Article : Google Scholar : PubMed/NCBI | |
O'Donnell JS, Teng MWL and Smyth MJ: Cancer immunoediting and resistance to T cell-based immunotherapy. Nat Rev Clin Oncol. 16:151–167. 2019. View Article : Google Scholar | |
Pauken KE, Sammons MA, Odorizzi PM, Manne S, Godec J, Khan O, Drake AM, Chen Z, Sen DR, Kurachi M, et al: Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science. 354:1160–1165. 2016. View Article : Google Scholar : PubMed/NCBI | |
Theivanthiran B, Evans KS, DeVito NC, Plebanek M, Sturdivant M, Wachsmuth LP, Salama AK, Kang Y, Hsu D, Balko JM, et al: A tumor-intrinsic PD-L1/NLRP3 inflammasome signaling pathway drives resistance to anti-PD-1 immunotherapy. J Clin Invest. 130:2570–2586. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bowman GD and Poirier MG: Post-translational modifications of histones that influence nucleosome dynamics. Chem Rev. 115:2274–2295. 2015. View Article : Google Scholar : | |
Bajbouj K, Al-Ali A, Ramakrishnan RK, Saber-Ayad M and Hamid Q: Histone modification in NSCLC: Molecular mechanisms and therapeutic targets. Int J Mol Sci. 22:117012021. View Article : Google Scholar : PubMed/NCBI | |
Hu X, Lin Z, Wang Z and Zhou Q: Emerging role of PD-L1 modification in cancer immunotherapy. Am J Cancer Res. 11:3832–3840. 2021.PubMed/NCBI | |
Greer EL and Shi Y: Histone methylation: A dynamic mark in health, disease and inheritance. Nat Rev Genet. 13:343–357. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li W, Wu H, Sui S, Wang Q, Xu S and Pang D: Targeting histone modifications in breast cancer: A precise weapon on the way. Front Cell Dev Biol. 9:7369352021. View Article : Google Scholar : PubMed/NCBI | |
Shi Y, Fu Y, Zhang X, Zhao G, Yao Y, Guo Y, Ma G, Bai S and Li H: Romidepsin (FK228) regulates the expression of the immune checkpoint ligand PD-L1 and suppresses cellular immune functions in colon cancer. Cancer Immunol Immunother. 70:61–73. 2021. View Article : Google Scholar : | |
Zingg D, Arenas-Ramirez N, Sahin D, Rosalia RA, Antunes AT, Haeusel J, Sommer L and Boyman O: The histone methyltransferase Ezh2 controls mechanisms of adaptive resistance to tumor immunotherapy. Cell Rep. 20:854–867. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gallagher SJ, Tiffen JC and Hersey P: Histone modifications, modifiers and readers in melanoma resistance to targeted and immune therapy. Cancers (Basel). 7:1959–1982. 2015. View Article : Google Scholar | |
Deng S, Hu Q, Zhang H, Yang F, Peng C and Huang C: HDAC3 inhibition upregulates PD-L1 expression in B-cell lymphomas and augments the efficacy of anti-PD-L1 therapy. Mol Cancer Ther. 18:900–908. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mondello P, Tadros S, Teater M, Fontan L, Chang AY, Jain N, Yang H, Singh S, Ying HY, Chu CS, et al: Selective inhibition of HDAC3 targets synthetic vulnerabilities and activates immune surveillance in lymphoma. Cancer Discov. 10:440–459. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hashimoto S, Hashimoto A, Muromoto R, Kitai Y, Oritani K and Matsuda T: Central roles of STAT3-mediated signals in onset and development of cancers: Tumorigenesis and immunosurveillance. Cells. 11:26182022. View Article : Google Scholar : PubMed/NCBI | |
Hu G, He N, Cai C, Cai F, Fan P, Zheng Z and Jin X: HDAC3 modulates cancer immunity via increasing PD-L1 expression in pancreatic cancer. Pancreatology. 19:383–389. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang YF, Liu F, Sherwin S, Farrelly M, Yan XG, Croft A, Liu T, Jin L, Zhang XD and Jiang CC: Cooperativity of HOXA5 and STAT3 is critical for HDAC8 inhibition-mediated transcriptional activation of PD-L1 in human melanoma cells. J Invest Dermatol. 138:922–932. 2018. View Article : Google Scholar | |
ML PPV, TK MP, ES JP, KVW CL, FC SD, et al: Essential role of HDAC6 in the regulation of PD-L1 in melanoma. Mol Oncol. 10:735–750. 2016. View Article : Google Scholar | |
Keremu A, Aimaiti A, Liang Z and Zou X: Role of the HDAC6/STAT3 pathway in regulating PD-L1 expression in osteosarcoma cell lines. Cancer Chemother Pharmacol. 83:255–264. 2019. View Article : Google Scholar | |
Yano M, Katoh T, Miyazawa M, Miyazawa M, Ogane N, Miwa M, Hasegawa K, Narahara H and Yasuda M: Clinicopathological correlation of ARID1A status with HDAC6 and its related factors in ovarian clear cell carcinoma. Sci Rep. 9:23972019. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Wang Y, Zhang R, Jin T, Qu L, Jin Q, Zheng J, Sun J, Wu Z, Wang L, et al: HDAC10 is positively associated with PD-L1 expression and poor prognosis in patients with NSCLC. Front Oncol. 10:4852020. View Article : Google Scholar : PubMed/NCBI | |
Xu P, Xiong W, Lin Y, Fan L, Pan H and Li Y: Histone deacetylase 2 knockout suppresses immune escape of triple-negative breast cancer cells via downregulating PD-L1 expression. Cell Death Dis. 12:7792021. View Article : Google Scholar : PubMed/NCBI | |
Darvin P, Sasidharan Nair V and Elkord E: PD-L1 expression in human breast cancer stem cells is epigenetically regulated through posttranslational histone modifications. J Oncol. 2019:39589082019. View Article : Google Scholar : PubMed/NCBI | |
Makowski AM, Dutnall RN and Annunziato AT: Effects of acetylation of histone H4 at lysines 8 and 16 on activity of the Hat1 histone acetyltransferase. J Biol Chem. 276:43499–43502. 2001. View Article : Google Scholar : PubMed/NCBI | |
Jin X, Tian S and Li P: Histone acetyltransferase 1 promotes cell proliferation and induces cisplatin resistance in hepatocellular carcinoma. Oncol Res. 25:939–946. 2017. View Article : Google Scholar | |
Halaburková A, Jendželovský R, Kovaľ J, Herceg Z, Fedoročko P and Ghantous A: Histone deacetylase inhibitors potentiate photodynamic therapy in colon cancer cells marked by chromatin-mediated epigenetic regulation of CDKN1A. Clin Epigenetics. 9:622017. View Article : Google Scholar : | |
Maccallini C, Ammazzalorso A, De Filippis B, Fantacuzzi M, Giampietro L and Amoroso R: HDAC inhibitors for the therapy of triple negative breast cancer. Pharmaceuticals (Basel). 15:6672022. View Article : Google Scholar | |
Knox T, Sahakian E, Banik D, Hadley M, Palmer E, Noonepalle S, Kim J, Powers J, Gracia-Hernandez M, Oliveira V, et al: Author correction: Selective HDAC6 inhibitors improve anti-PD-1 immune checkpoint blockade therapy by decreasing the anti-inflammatory phenotype of macrophages and down-regulation of immunosuppressive proteins in tumor cells. Sci Rep. 9:148242019. View Article : Google Scholar : PubMed/NCBI | |
Briere D, Sudhakar N, Woods DM, Hallin J, Engstrom LD, Aranda R, Chiang H, Sodré AL, Olson P, Weber JS and Christensen JG: The class I/IV HDAC inhibitor mocetinostat increases tumor antigen presentation, decreases immune suppressive cell types and augments checkpoint inhibitor therapy. Cancer Immunol Immunother. 67:381–392. 2018. View Article : Google Scholar | |
Que Y, Zhang XL, Liu ZX, Zhao JJ, Pan QZ, Wen XZ, Xiao W, Xu BS, Hong DC, Guo TH, et al: Frequent amplification of HDAC genes and efficacy of HDAC inhibitor chidamide and PD-1 blockade combination in soft tissue sarcoma. J Immunother Cancer. 9:e0016962021. View Article : Google Scholar : PubMed/NCBI | |
Sheikh TN, Chen X, Xu X, McGuire JT, Ingham M, Lu C and Schwartz GK: Growth inhibition and induction of innate immune signaling of chondrosarcomas with epigenetic inhibitors. Mol Cancer Ther. 20:2362–2371. 2021. View Article : Google Scholar : PubMed/NCBI | |
Huang R, Zhang X, Min Z, Shadia AS, Yang S and Liu X: MGCD0103 induces apoptosis and simultaneously increases the expression of NF-κB and PD-L1 in classical Hodgkin's lymphoma. Exp Ther Med. 16:3827–3834. 2018.PubMed/NCBI | |
Woods DM, Sodré AL, Villagra A, Sarnaik A, Sotomayor EM and Weber J: HDAC inhibition upregulates PD-1 ligands in melanoma and augments immunotherapy with PD-1 blockade. Cancer Immunol Res. 3:1375–1385. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu J, He D, Cheng L, Huang C, Zhang Y, Rao X, Kong Y, Li C, Zhang Z, Liu J, et al: p300/CBP inhibition enhances the efficacy of programmed death-ligand 1 blockade treatment in prostate cancer. Oncogene. 39:3939–3951. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bissonnette RP, Cesario RM, Goodenow B, Shojaei F and Gillings M: The epigenetic immunomodulator, HBI-8000, enhances the response and reverses resistance to checkpoint inhibitors. BMC Cancer. 21:9692021. View Article : Google Scholar : PubMed/NCBI | |
Chen MC, Lin YC, Liao YH, Liou JP and Chen CH: MPT0G612, a novel HDAC6 inhibitor, induces apoptosis and suppresses IFN-γ-induced programmed death-ligand 1 in human colorectal carcinoma cells. Cancers (Basel). 11:16172019. View Article : Google Scholar | |
Shin HS, Choi J, Lee J and Lee SY: Histone deacetylase as a valuable predictive biomarker and therapeutic target in immunotherapy for non-small cell lung cancer. Cancer Res Treat. 54:458–468. 2022. View Article : Google Scholar | |
Kuroki H, Anraku T, Kazama A, Shirono Y, Bilim V and Tomita Y: Histone deacetylase 6 inhibition in urothelial cancer as a potential new strategy for cancer treatment. Oncol Lett. 21:642021. View Article : Google Scholar | |
Hai R, Yang D, Zheng F, Wang W, Han X, Bode AM and Luo X: The emerging roles of HDACs and their therapeutic implications in cancer. Eur J Pharmacol. 931:1752162022. View Article : Google Scholar : PubMed/NCBI | |
Xia C, Leon-Ferre R, Laux D, Deutsch J, Smith BJ, Frees M and Milhem M: Treatment of resistant metastatic melanoma using sequential epigenetic therapy (decitabine and panobinostat) combined with chemotherapy (temozolomide). Cancer Chemother Pharmacol. 74:691–697. 2014. View Article : Google Scholar : PubMed/NCBI | |
Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I and Zhao K: High-resolution profiling of histone methylations in the human genome. Cell. 129:823–837. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sasidharan Nair V, Saleh R, Toor SM, Taha RZ, Ahmed AA, Kurer MA, Murshed K, Abu Nada M and Elkord E: Epigenetic regulation of immune checkpoints and T cell exhaustion markers in tumor-infiltrating T cells of colorectal cancer patients. Epigenomics. 12:1871–1882. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bedford MT and Richard S: Arginine methylation an emerging regulator of protein function. Mol Cell. 18:263–272. 2005. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Yuan Y, Chen M, Li S, Bai J, Zhang Y, Sun Y, Wang G, Xu H, Wang Z, et al: PRMT5 disruption drives antitumor immunity in cervical cancer by reprogramming T cell-mediated response and regulating PD-L1 expression. Theranostics. 11:9162–9176. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhou Q, Chen X, He H, Peng S, Zhang Y, Zhang J, Cheng L, Liu S, Huang M, Xie R, et al: WD repeat domain 5 promotes chemoresistance and programmed death-ligand 1 expression in prostate cancer. Theranostics. 11:4809–4824. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kim KH and Roberts CW: Targeting EZH2 in cancer. Nat Med. 22:128–134. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Wang XX, Wu W, Long H, Huang J, Wang Z, Li T, Tang S, Zhu B and Chen D: EZH2 regulates PD-L1 expression via HIF-1α in non-small cell lung cancer cells. Biochem Biophys Res Commun. 517:201–209. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Yu T, Jin Y, Mai W, Zhou J and Zhao C: MicroRNA-15a carried by mesenchymal stem cell-derived extracellular vesicles inhibits the immune evasion of colorectal cancer cells by regulating the KDM4B/HOXC4/PD-L1 axis. Front Cell Dev Biol. 9:6298932021. View Article : Google Scholar : PubMed/NCBI | |
Soldi R, Ghosh Halder T, Weston A, Thode T, Drenner K, Lewis R, Kaadige MR, Srivastava S, Daniel Ampanattu S, Rodriguez Del Villar R, et al: The novel reversible LSD1 inhibitor SP-2577 promotes anti-tumor immunity in SWItch/Sucrose-NonFermentable (SWI/SNF) complex mutated ovarian cancer. PLoS One. 15:e02357052020. View Article : Google Scholar : PubMed/NCBI | |
Qin Y, Vasilatos SN, Chen L, Wu H, Cao Z, Fu Y, Huang M, Vlad AM, Lu B, Oesterreich S, et al: Inhibition of histone lysine-specific demethylase 1 elicits breast tumor immunity and enhances antitumor efficacy of immune checkpoint blockade. Oncogene. 38:390–405. 2019. View Article : Google Scholar : | |
Liu J, Zhao Z, Qiu N, Zhou Q, Wang G, Jiang H, Piao Y, Zhou Z, Tang J and Shen Y: Co-delivery of IOX1 and doxorubicin for antibody-independent cancer chemo-immunotherapy. Nat Commun. 12:24252021. View Article : Google Scholar : PubMed/NCBI | |
Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ, Gnad F, Cox J, Jensen TS, Nigg EA, et al: Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal. 3:ra32010. View Article : Google Scholar : PubMed/NCBI | |
Schmitz ML, Higgins JMG and Seibert M: Priming chromatin for segregation: Functional roles of mitotic histone modifications. Cell Cycle. 19:625–641. 2020. View Article : Google Scholar : PubMed/NCBI | |
Santaguida S and Amon A: Short- and long-term effects of chromosome mis-segregation and aneuploidy. Nat Rev Mol Cell Biol. 16:473–485. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cerutti H and Casas-Mollano JA: Histone H3 phosphorylation: Universal code or lineage specific dialects? Epigenetics. 4:71–75. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chen S, Youhong T, Tan Y, He Y, Ban Y, Cai J, Li X, Xiong W, Zeng Z, Li G, et al: EGFR-PKM2 signaling promotes the metastatic potential of nasopharyngeal carcinoma through induction of FOSL1 and ANTXR2. Carcinogenesis. 41:723–733. 2020. View Article : Google Scholar : | |
Wang WT, Han C, Sun YM, Chen TQ and Chen YQ: Noncoding RNAs in cancer therapy resistance and targeted drug development. J Hematol Oncol. 12:552019. View Article : Google Scholar : PubMed/NCBI | |
Kaur M, Kaur B, Konar M and Sharma S: Noncoding RNAs as novel immunotherapeutic tools against cancer. Adv Protein Chem Struct Biol. 129:135–161. 2022. View Article : Google Scholar : PubMed/NCBI | |
Rolfo C, Fanale D, Hong DS, Tsimberidou AM, Piha-Paul SA, Pauwels P, Van Meerbeeck JP, Caruso S, Bazan V, Cicero G, et al: Impact of microRNAs in resistance to chemotherapy and novel targeted agents in non-small cell lung cancer. Curr Pharm Biotechnol. 15:475–485. 2014. View Article : Google Scholar : PubMed/NCBI | |
Schanza LM, Seles M, Stotz M, Fosselteder J, Hutterer GC, Pichler M and Stiegelbauer V: MicroRNAs associated with Von Hippel-Lindau pathway in renal cell carcinoma: A comprehensive review. Int J Mol Sci. 18:24952017. View Article : Google Scholar | |
Forterre A, Komuro H, Aminova S and Harada M: A comprehensive review of cancer MicroRNA therapeutic delivery strategies. Cancers (Basel). 12:18522020. View Article : Google Scholar | |
Anastasiadou E, Faggioni A, Trivedi P and Slack FJ: The nefarious nexus of noncoding RNAs in cancer. Int J Mol Sci. 19:20722018. View Article : Google Scholar : | |
Shi C and Zhang Z: The prognostic value of the miR-200 family in ovarian cancer: A meta-analysis. Acta Obstet Gynecol Scand. 95:505–512. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cortez MA, Anfossi S, Ramapriyan R, Menon H, Atalar SC, Aliru M, Welsh J and Calin GA: Role of miRNAs in immune responses and immunotherapy in cancer. Genes Chromosomes Cancer. 58:244–253. 2019. View Article : Google Scholar : | |
Tang D, Zhao D, Wu Y, Yao R, Zhou L, Lu L, Gao W and Sun Y: The miR-3127-5p/p-STAT3 axis up-regulates PD-L1 inducing chemoresistance in non-small-cell lung cancer. J Cell Mol Med. 22:3847–3856. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Xie C, Zheng X, Nie X, Wang Z, Liu H and Zhao Y: LIN28/let-7/PD-L1 pathway as a target for cancer immunotherapy. Cancer Immunol Res. 7:487–497. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hong W, Xue M, Jiang J, Zhang Y and Gao X: Circular RNA circ-CPA4/let-7 miRNA/PD-L1 axis regulates cell growth, stemness, drug resistance and immune evasion in non-small cell lung cancer (NSCLC). J Exp Clin Cancer Res. 39:1492020. View Article : Google Scholar | |
Zhang Q, Pan J, Xiong D, Wang Y, Miller MS, Sei S, Shoemaker RH, Izzotti A and You M: Pulmonary aerosol delivery of Let-7b microRNA confers a striking inhibitory effect on lung carcinogenesis through targeting the tumor immune microenvironment. Adv Sci (Weinh). 8:e21006292021. View Article : Google Scholar | |
Xie WB, Liang LH, Wu KG, Wang LX, He X, Song C, Wang YQ and Li YH: MiR-140 expression regulates cell proliferation and targets PD-L1 in NSCLC. Cell Physiol Biochem. 46:654–663. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jo H, Shim K and Jeoung D: Potential of the miR-200 family as a target for developing anti-cancer therapeutics. Int J Mol Sci. 23:58812022. View Article : Google Scholar : PubMed/NCBI | |
Katakura S, Kobayashi N, Hashimoto H, Kamimaki C, Tanaka K, Kubo S, Nakashima K, Teranishi S, Manabe S, Watanabe K, et al: MicroRNA-200b is a potential biomarker of the expression of PD-L1 in patients with lung cancer. Thorac Cancer. 11:2975–2982. 2020. View Article : Google Scholar : PubMed/NCBI | |
Anastasiadou E, Messina E, Sanavia T, Mundo L, Farinella F, Lazzi S, Megiorni F, Ceccarelli S, Pontecorvi P, Marampon F, et al: MiR-200c-3p contrasts PD-L1 induction by combinatorial therapies and slows proliferation of epithelial ovarian cancer through downregulation of β-catenin and c-Myc. Cells. 10:5192021. View Article : Google Scholar | |
Rogers TJ, Christenson JL, Greene LI, O'Neill KI, Williams MM, Gordon MA, Nemkov T, D'Alessandro A, Degala GD, Shin J, et al: Reversal of triple-negative breast cancer EMT by miR-200c decreases tryptophan catabolism and a program of immunosuppression. Mol Cancer Res. 17:30–41. 2019. View Article : Google Scholar | |
Yao Y, Kong X, Liu R, Xu F, Liu G and Sun C: Development of a novel immune-related gene prognostic index for breast cancer. Front Immunol. 13:8450932022. View Article : Google Scholar : PubMed/NCBI | |
Samanta D, Park Y, Ni X, Li H, Zahnow CA, Gabrielson E, Pan F and Semenza GL: Chemotherapy induces enrichment of CD47+/CD73+/PDL1+ immune evasive triple-negative breast cancer cells. Proc Natl Acad Sci USA. 115:E1239–E1248. 2018. | |
Dou D, Ren X, Han M, Xu X, Ge X, Gu Y and Wang X: Cancer-associated fibroblasts-derived exosomes suppress immune cell function in breast cancer via the miR-92/PD-L1 pathway. Front Immunol. 11:20262020. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Shi Y, Zhang Y, Wang Y, Alotaibi F, Qiu L, Wang H, Peng S, Liu Y, Li Q, et al: miRNA-5119 regulates immune checkpoints in dendritic cells to enhance breast cancer immunotherapy. Cancer Immunol Immunother. 69:951–967. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang LL, Huang WW, Huang J, Huang RF, Li NN, Hong Y, Chen ML, Wu F and Liu J: Protective effect of hsa-miR-570-3p targeting CD274 on triple negative breast cancer by blocking PI3K/AKT/mTOR signaling pathway. Kaohsiung J Med Sci. 36:581–591. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Cai Y, Zhang D, Sun J, Xu C, Zhao W, Jiang W and Pan C: miR-195/miR-497 regulate CD274 expression of immune regulatory ligands in triple-negative breast cancer. J Breast Cancer. 21:371–381. 2018. View Article : Google Scholar | |
Li D, Wang X, Yang M, Kan Q and Duan Z: miR3609 sensitizes breast cancer cells to adriamycin by blocking the programmed death-ligand 1 immune checkpoint. Exp Cell Res. 380:20–28. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Ren L, Li S, Li W, Zheng X, Yang Y, Fu W, Yi J, Wang J and Du G: The biology, function, and applications of exosomes in cancer. Acta Pharm Sin B. 11:2783–2797. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mathivanan S, Ji H and Simpson RJ: Exosomes: Extracellular organelles important in intercellular communication. J Proteomics. 73:1907–1920. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yao X, Tu Y, Xu Y, Guo Y, Yao F and Zhang X: Endoplasmic reticulum stress-induced exosomal miR-27a-3p promotes immune escape in breast cancer via regulating PD-L1 expression in macrophages. J Cell Mol Med. 24:9560–9573. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li L, Cao B, Liang X, Lu S, Luo H, Wang Z, Wang S, Jiang J, Lang J and Zhu G: Microenvironmental oxygen pressure orchestrates an anti- and pro-tumoral γδ T cell equilibrium via tumor-derived exosomes. Oncogene. 38:2830–2843. 2019. View Article : Google Scholar | |
Li Z, Suo B, Long G, Gao Y, Song J, Zhang M, Feng B, Shang C and Wang D: Exosomal miRNA-16-5p derived from M1 macrophages enhances T cell-dependent immune response by regulating PD-L1 in gastric cancer. Front Cell Dev Biol. 8:5726892020. View Article : Google Scholar : PubMed/NCBI | |
Miliotis C and Slack FJ: miR-105-5p regulates PD-L1 expression and tumor immunogenicity in gastric cancer. Cancer Lett. 518:115–126. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Sun J, Li F, Li R, Gu Y, Liu C, Yang P, Zhu M, Chen L, Tian W, et al: A frequent somatic mutation in CD274 3′-UTR leads to protein over-expression in gastric cancer by disrupting miR-570 binding. Hum Mutat. 33:480–484. 2012. View Article : Google Scholar | |
Ashizawa M, Okayama H, Ishigame T, Thar Min AK, Saito K, Ujiie D, Murakami Y, Kikuchi T, Nakayama Y, Noda M, et al: miRNA-148a-3p regulates immunosuppression in DNA mismatch repair-deficient colorectal cancer by targeting PD-L1. Mol Cancer Res. 17:1403–1413. 2019. View Article : Google Scholar : PubMed/NCBI | |
Roshani Asl E, Rasmi Y and Baradaran B: MicroRNA-124-3p suppresses PD-L1 expression and inhibits tumorigenesis of colorectal cancer cells via modulating STAT3 signaling. J Cell Physiol. 236:7071–7087. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xu YJ, Zhao JM, Ni XF, Wang W, Hu WW and Wu CP: LncRNA HCG18 suppresses CD8+ T cells to confer resistance to cetuximab in colorectal cancer via miR-20b-5p/PD-L1 axis. Epigenomics. 13:1281–1297. 2021.PubMed/NCBI | |
Whiteside TL: The role of regulatory T cells in cancer immunology. Immunotargets Ther. 4:159–171. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cai J, Wang D, Zhang G and Guo X: The role Of PD-1/PD-L1 axis in treg development and function: Implications for cancer immunotherapy. Onco Targets Ther. 12:8437–8445. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li S, Wu T, Zhang D, Sun X and Zhang X: The long non-coding RNA HCG18 promotes the growth and invasion of colorectal cancer cells through sponging miR-1271 and upregulating MTDH/Wnt/β-catenin. Clin Exp Pharmacol Physiol. 47:703–712. 2020. View Article : Google Scholar | |
Bian W, Li Y, Zhu H, Gao S, Niu R, Wang C, Zhang H, Qin X and Li S: miR-493 by regulating of c-Jun targets Wnt5a/PD-L1-inducing esophageal cancer cell development. Thorac Cancer. 12:1579–1588. 2021. View Article : Google Scholar : PubMed/NCBI | |
Javadrashid D, Mohammadzadeh R, Baghbanzadeh A, Safaee S, Amini M, Lotfi Z, Baghbani E, Khaze Shahgoli V and Baradaran B: Simultaneous microRNA-612 restoration and 5-FU treatment inhibit the growth and migration of human PANC-1 pancreatic cancer cells. EXCLI J. 20:160–173. 2021.PubMed/NCBI | |
Cioffi M, Trabulo SM, Vallespinos M, Raj D, Kheir TB, Lin ML, Begum J, Baker AM, Amgheib A, Saif J, et al: The miR-25-93-106b cluster regulates tumor metastasis and immune evasion via modulation of CXCL12 and PD-L1. Oncotarget. 8:21609–21625. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang Y and Cao K: KDM1A promotes immunosuppression in hepatocellular carcinoma by regulating PD-L1 through demethylating MEF2D. J Immunol Res. 2021:99650992021. View Article : Google Scholar : PubMed/NCBI | |
Incorvaia L, Fanale D, Badalamenti G, Brando C, Bono M, De Luca I, Algeri L, Bonasera A, Corsini LR, Scurria S, et al: A 'lymphocyte MicroRNA signature' as predictive biomarker of immunotherapy response and plasma PD-1/PD-L1 expression levels in patients with metastatic renal cell carcinoma: Pointing towards epigenetic reprogramming. Cancers (Basel). 12:33962020. View Article : Google Scholar | |
Adil MS, Khulood D and Somanath PR: Targeting Akt-associated microRNAs for cancer therapeutics. Biochem Pharmacol. 189:1143842021. View Article : Google Scholar : | |
Xue J, Yang J, Luo M, Cho WC and Liu X: MicroRNA-targeted therapeutics for lung cancer treatment. Expert Opin Drug Discov. 12:141–157. 2017. View Article : Google Scholar | |
Pal S, Garg M and Pandey AK: Deciphering the mounting complexity of the p53 regulatory network in correlation to long non-coding RNAs (lncRNAs) in ovarian cancer. Cells. 9:5272020. View Article : Google Scholar : | |
Chen X, Tang FR, Arfuso F, Cai WQ, Ma Z, Yang J and Sethi G: The emerging role of long non-coding RNAs in the metastasis of hepatocellular carcinoma. Biomolecules. 10:662019. View Article : Google Scholar | |
Vafadar A, Shabaninejad Z, Movahedpour A, Mohammadi S, Fathullahzadeh S, Mirzaei HR, Namdar A, Savardashtaki A and Mirzaei H: Long non-coding RNAs as epigenetic regulators in cancer. Curr Pharm Des. 25:3563–3577. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yi K, Cui X, Liu X, Wang Y, Zhao J, Yang S, Xu C, Yang E, Xiao M, Hong B, et al: PTRF/Cavin-1 as a novel RNA-binding protein expedites the NF-κB/PD-L1 axis by stabilizing lncRNA NEAT1, contributing to tumorigenesis and immune evasion in glioblastoma. Front Immunol. 12:8027952022. View Article : Google Scholar | |
Ni W, Mo H, Liu Y, Xu Y, Qin C, Zhou Y, Li Y, Li Y, Zhou A, Yao S, et al: Targeting cholesterol biosynthesis promotes anti-tumor immunity by inhibiting long noncoding RNA SNHG29-mediated YAP activation. Mol Ther. 29:2995–3010. 2021. View Article : Google Scholar : PubMed/NCBI | |
Fan Y, Dong X, Li M, Liu P, Zheng J, Li H and Zhang Y: LncRNA KRT19P3 is involved in breast cancer cell proliferation, migration and invasion. Front Oncol. 11:7990822022. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Wang N, Song P, Fu Y, Ren Y, Li Z and Wang J: LncRNA GATA3-AS1 facilitates tumour progression and immune escape in triple-negative breast cancer through destabilization of GATA3 but stabilization of PD-L1. Cell Prolif. 53:e128552020. View Article : Google Scholar : PubMed/NCBI | |
Shang A, Wang W, Gu C, Chen C, Zeng B, Yang Y, Ji P, Sun J, Wu J, Lu W, et al: Long non-coding RNA HOTTIP enhances IL-6 expression to potentiate immune escape of ovarian cancer cells by upregulating the expression of PD-L1 in neutrophils. J Exp Clin Cancer Res. 38:4112019. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Li F, Li D, Liu W and Zhang L: Atezolizumab and blockade of LncRNA PVT1 attenuate cisplatin resistant ovarian cancer cells progression synergistically via JAK2/STAT3/PD-L1 pathway. Clin Immunol. 227:1087282021. View Article : Google Scholar : PubMed/NCBI | |
Huang Y, Xia L, Tan X, Zhang J, Zeng W, Tan B, Yu X, Fang W and Yang Z: Molecular mechanism of lncRNA SNHG12 in immune escape of non-small cell lung cancer through the HuR/PD-L1/USP8 axis. Cell Mol Biol Lett. 27:432022. View Article : Google Scholar : PubMed/NCBI | |
Shi L, Yang Y, Li M, Li C, Zhou Z, Tang G, Wu L, Yao Y, Shen X, Hou Z and Jia H: LncRNA IFITM4P promotes immune escape by up-regulating PD-L1 via dual mechanism in oral carcinogenesis. Mol Ther. 30:1564–1577. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Yi K, Liu X, Tan Y, Jin W, Li Y, Zhou J, Wang H and Kang C: HOTAIR up-regulation activates NF-κB to induce immunoescape in gliomas. Front Immunol. 12:7854632021. View Article : Google Scholar | |
Atianand MK, Hu W, Satpathy AT, Shen Y, Ricci EP, Alvarez-Dominguez JR, Bhatta A, Schattgen SA, McGowan JD, Blin J, et al: A long noncoding RNA lincRNA-EPS acts as a transcriptional brake to restrain inflammation. Cell. 165:1672–1685. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mineo M, Lyons SM, Zdioruk M, von Spreckelsen N, Ferrer-Luna R, Ito H, Alayo QA, Kharel P, Giantini Larsen A, Fan WY, et al: Tumor interferon signaling is regulated by a lncRNA INCR1 transcribed from the PD-L1 locus. Mol Cell. 78:1207–1223.e8. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Meng Q, Li X, Yang H, Xu J, Gao N, Sun H, Wu S, Familiari G, Relucenti M, et al: Long noncoding RNA MIR17HG promotes colorectal cancer progression via miR-17-5p. Cancer Res. 79:4882–4895. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yin L, Tang Y and Yuan Y: An overview of the advances in research on the molecular function and specific role of circular RNA in cardiovascular diseases. Biomed Res Int. 2022:51541222022. View Article : Google Scholar : PubMed/NCBI | |
Verduci L, Tarcitano E, Strano S, Yarden Y and Blandino G: CircRNAs: Role in human diseases and potential use as biomarkers. Cell Death Dis. 12:4682021. View Article : Google Scholar : PubMed/NCBI | |
Dong W, Dai ZH, Liu FC, Guo XG, Ge CM, Ding J, Liu H and Yang F: The RNA-binding protein RBM3 promotes cell proliferation in hepatocellular carcinoma by regulating circular RNA SCD-circRNA 2 production. EBioMedicine. 45:155–167. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Yi J, Lu LY, Zhang YY, Wang L, Hu GS, Liu YC, Ding JC, Shen HF, Zhao FQ, et al: Estrogen-induced circRNA, circPGR, functions as a ceRNA to promote estrogen receptor-positive breast cancer cell growth by regulating cell cycle-related genes. Theranostics. 11:1732–1752. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Qian L, Cao T, Xu L, Jin Y, Hu H, Fu Q, Li Q, Wang Y, Wang J, et al: Advances in the study of CircRNAs in tumor drug resistance. Front Oncol. 12:8683632022. View Article : Google Scholar : PubMed/NCBI | |
Li C, Zhang J, Yang X, Hu C, Chu T, Zhong R, Shen Y, Hu F, Pan F, Xu J, et al: hsa_circ_0003222 accelerates stemness and progression of non-small cell lung cancer by sponging miR-527. Cell Death Dis. 12:8072021. View Article : Google Scholar : PubMed/NCBI | |
Feinberg AP: The key role of epigenetics in human disease prevention and mitigation. N Engl J Med. 378:1323–1334. 2018. View Article : Google Scholar : PubMed/NCBI | |
Srivastava R and Lodhi N: DNA methylation malleability and dysregulation in cancer progression: Understanding the role of PARP1. Biomolecules. 12:4172022. View Article : Google Scholar : PubMed/NCBI | |
Emran AA, Chatterjee A, Rodger EJ, Tiffen JC, Gallagher SJ, Eccles MR and Hersey P: Targeting DNA methylation and EZH2 activity to overcome melanoma resistance to immunotherapy. Trends Immunol. 40:328–344. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lv D, Xing C, Cao L, Zhuo Y, Wu T and Gao N: PD-L1 gene promoter methylation represents a potential diagnostic marker in advanced gastric cancer. Oncol Lett. 19:1223–1234. 2020.PubMed/NCBI | |
Del Castillo Falconi VM, Torres-Arciga K, Matus-Ortega G, Díaz-Chávez J and Herrera LA: DNA methyltransferases: From evolution to clinical applications. Int J Mol Sci. 23:89942022. View Article : Google Scholar : PubMed/NCBI | |
Lu X, Li Y, Yang W, Tao M, Dai Y, Xu J and Xu Q: Inhibition of NF-κB is required for oleanolic acid to downregulate PD-L1 by promoting DNA demethylation in gastric cancer cells. J Biochem Mol Toxicol. 35:e226212021. View Article : Google Scholar | |
Liu J, Liu Y, Meng L, Liu K and Ji B: Targeting the PD-L1/DNMT1 axis in acquired resistance to sorafenib in human hepatocellular carcinoma. Oncol Rep. 38:899–907. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chatterjee A, Rodger EJ, Ahn A, Stockwell PA, Parry M, Motwani J, Gallagher SJ, Shklovskaya E, Tiffen J, Eccles MR and Hersey P: Marked global DNA hypomethylation is associated with constitutive PD-L1 expression in melanoma. iScience. 4:312–325. 2018. View Article : Google Scholar : PubMed/NCBI | |
Peng D, Kryczek I, Nagarsheth N, Zhao L, Wei S, Wang W, Sun Y, Zhao E, Vatan L, Szeliga W, et al: Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature. 527:249–253. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li X, Wang Z, Huang J, Luo H, Zhu S, Yi H, Zheng L, Hu B, Yu L, Li L, et al: Specific zinc finger-induced methylation of PD-L1 promoter inhibits its expression. FEBS Open Bio. 9:1063–1070. 2019. View Article : Google Scholar : PubMed/NCBI | |
Garg M: Epithelial-mesenchymal transition-activating transcription factors-multifunctional regulators in cancer. World J Stem Cells. 5:188–195. 2013. View Article : Google Scholar : PubMed/NCBI | |
Asgarova A, Asgarov K, Godet Y, Peixoto P, Nadaradjane A, Boyer-Guittaut M, Galaine J, Guenat D, Mougey V, Perrard J, et al: PD-L1 expression is regulated by both DNA methylation and NF-kB during EMT signaling in non-small cell lung carcinoma. Oncoimmunology. 7:e14231702018. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Xiang C, Wang Y, Duan Y, Liu C and Zhang Y: PD-L1 promoter methylation mediates the resistance response to anti-PD-1 therapy in NSCLC patients with EGFR-TKI resistance. Oncotarget. 8:101535–101544. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lai Q, Wang H, Li A, Xu Y, Tang L, Chen Q, Zhang C, Gao Y, Song J and Du Z: Decitibine improve the efficiency of anti-PD-1 therapy via activating the response to IFN/PD-L1 signal of lung cancer cells. Oncogene. 37:2302–2312. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mu L, Long Y, Yang C, Jin L, Tao H, Ge H, Chang YE, Karachi A, Kubilis PS, De Leon G, et al: The IDH1 mutation-induced oncometabolite, 2-hydroxyglutarate, may affect DNA methylation and expression of PD-L1 in gliomas. Front Mol Neurosci. 11:822018. View Article : Google Scholar : PubMed/NCBI | |
Briand J, Nadaradjane A, Bougras-Cartron G, Olivier C, Vallette FM and Cartron PF: Diuron exposure and Akt overexpression promote glioma formation through DNA hypomethylation. Clin Epigenetics. 11:1592019. View Article : Google Scholar : PubMed/NCBI | |
Elashi AA, Sasidharan Nair V, Taha RZ, Shaath H and Elkord E: DNA methylation of immune checkpoints in the peripheral blood of breast and colorectal cancer patients. Oncoimmunology. 8:e15429182018. View Article : Google Scholar | |
Jacot W, Lopez-Crapez E, Mollevi C, Boissière-Michot F, Simony-Lafontaine J, Ho-Pun-Cheung A, Chartron E, Theillet C, Lemoine A, Saffroy R, et al: BRCA1 promoter hypermethylation is associated with good prognosis and chemosensitivity in triple-negative breast cancer. Cancers (Basel). 12:8282020. View Article : Google Scholar | |
Yamada R, Yamaguchi T, Iijima T, Wakaume R, Takao M, Koizumi K, Hishima T and Horiguchi SI: Differences in histological features and PD-L1 expression between sporadic microsatellite instability and Lynch-syndrome-associated disease in Japanese patients with colorectal cancer. Int J Clin Oncol. 23:504–513. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hua S, Gu M, Wang Y, Ban D and Ji H: Oxymatrine reduces expression of programmed death-ligand 1 by promoting DNA demethylation in colorectal cancer cells. Clin Transl Oncol. 23:750–756. 2021. View Article : Google Scholar | |
Liu Z, Ren Y, Weng S, Xu H, Li L and Han X: A new trend in cancer treatment: The combination of epigenetics and immunotherapy. Front Immunol. 13:8097612022. View Article : Google Scholar : PubMed/NCBI |