1
|
Assié G, Letouzé E, Fassnacht M, Jouinot
A, Luscap W, Barreau O, Omeiri H, Rodriguez S, Perlemoine K,
René-Corail F, et al: Integrated genomic characterization of
adrenocortical carcinoma. Nat Genet. 46:607–612. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Juhlin CC, Goh G, Healy JM, Fonseca AL,
Scholl UI, Stenman A, Kunstman JW, Brown TC, Overton JD, Mane SM,
et al: Whole-exome sequencing characterizes the landscape of
somatic mutations and copy number alterations in adrenocortical
carcinoma. J Clin Endocrinol Metab. 100:E493–E502. 2015. View Article : Google Scholar
|
3
|
Zheng S, Cherniack AD, Dewal N, Moffitt
RA, Danilova L, Murray BA, Lerario AM, Else T, Knijnenburg TA,
Ciriello G, et al: Comprehensive pan-genomic characterization of
adrenocortical carcinoma. Cancer Cell. 29:723–736. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Boulle N, Logié A, Gicquel C, Perin L and
Le Bouc Y: Increased levels of insulin-like growth factor II
(IGF-II) and IGF-binding protein-2 are associated with malignancy
in sporadic adrenocortical tumors. J Clin Endocrinol Metab.
83:1713–1720. 1998.PubMed/NCBI
|
5
|
Gicquel C, Bertagna X, Schneid H,
Francillard-Leblond M, Luton JP, Girard F and Le Bouc Y:
Rearrangements at the 11p15 locus and overexpression of
insulin-like growth factor-II gene in sporadic adrenocortical
tumors. J Clin Endocrinol Metab. 78:1444–1453. 1994.PubMed/NCBI
|
6
|
Gicquel C, Raffin-Sanson ML, Gaston V,
Bertagna X, Plouin PF, Schlumberger M, Louvel A, Luton JP and Le
Bouc Y: Structural and functional abnormalities at 11p15 are
associated with the malignant phenotype in sporadic adrenocortical
tumors: Study on a series of 82 tumors. J Clin Endocrinol Metab.
82:2559–2565. 1997.PubMed/NCBI
|
7
|
Larsson C: Epigenetic aspects on therapy
development for gastroenteropancreatic neuroendocrine tumors.
Neuroendocrinology. 97:19–25. 2013. View Article : Google Scholar
|
8
|
Brannan CI, Dees EC, Ingram RS and
Tilghman SM: The product of the H19 gene may function as an RNA.
Mol Cell Biol. 10:28–36. 1990.PubMed/NCBI
|
9
|
Ogawa O, Eccles MR, Szeto J, McNoe LA, Yun
K, Maw MA, Smith PJ and Reeve AE: Relaxation of insulin-like growth
factor II gene imprinting implicated in Wilms' tumour. Nature.
362:749–751. 1993. View Article : Google Scholar : PubMed/NCBI
|
10
|
Rainier S, Johnson LA, Dobry CJ, Ping AJ,
Grundy PE and Feinberg AP: Relaxation of imprinted genes in human
cancer. Nature. 362:747–749. 1993. View Article : Google Scholar : PubMed/NCBI
|
11
|
Weksberg R, Shen DR, Fei YL, Song QL and
Squire J: Disruption of insulin-like growth factor 2 imprinting in
Beckwith-Wiedemann syndrome. Nat Genet. 5:143–150. 1993. View Article : Google Scholar : PubMed/NCBI
|
12
|
Pravtcheva DD and Wise TL: Metastasizing
mammary carcinomas in H19 enhancers-Igf2 transgenic mice. J Exp
Zool. 281:43–57. 1998. View Article : Google Scholar : PubMed/NCBI
|
13
|
Veronese A, Lupini L, Consiglio J, Visone
R, Ferracin M, Fornari F, Zanesi N, Alder H, D'Elia G, Gramantieri
L, et al: Oncogenic role of miR-483-3p at the IGF2/483 locus.
Cancer Res. 70:3140–3149. 2010. View Article : Google Scholar : PubMed/NCBI
|
14
|
Drelon C, Berthon A, Ragazzon B, Tissier
F, Bandiera R, Sahut-Barnola I, de Joussineau C, Batisse-Lignier M,
Lefrancois-Martinez AM, Bertherat J, et al: Analysis of the role of
Igf2 in adrenal tumour development in transgenic mouse models. PLoS
One. 7:e441712012. View Article : Google Scholar : PubMed/NCBI
|
15
|
Heaton JH, Wood MA, Kim AC, Lima LO,
Barlaskar FM, Almeida MQ, Fragoso MC, Kuick R, Lerario AM, Simon
DP, et al: Progression to adrenocortical tumorigenesis in mice and
humans through insulin-like growth factor 2 and β-catenin. Am J
Pathol. 181:1017–1033. 2012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Barlaskar FM, Spalding AC, Heaton JH,
Kuick R, Kim AC, Thomas DG, Giordano TJ, Ben-Josef E and Hammer GD:
Preclinical targeting of the type I insulin-like growth factor
receptor in adrenocortical carcinoma. J Clin Endocrinol Metab.
94:204–212. 2009. View Article : Google Scholar :
|
17
|
Fassnacht M, Berruti A, Baudin E, Demeure
MJ, Gilbert J, Haak H, Kroiss M, Quinn DI, Hesseltine E, Ronchi CL,
et al: Linsitinib (OSI-906) versus placebo for patients with
locally advanced or metastatic adrenocortical carcinoma: A
double-blind, randomised, phase 3 study. Lancet Oncol. 16:426–435.
2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Haluska P, Worden F, Olmos D, Yin D,
Schteingart D, Batzel GN, Paccagnella ML, de Bono JS, Gualberto A
and Hammer GD: Safety, tolerability, and pharmacokinetics of the
anti-IGF-1R monoclonal antibody figitumumab in patients with
refractory adrenocortical carcinoma. Cancer Chemother Pharmacol.
65:765–773. 2010. View Article : Google Scholar :
|
19
|
Jones RL, Kim ES, Nava-Parada P, Alam S,
Johnson FM, Stephens AW, Simantov R, Poondru S, Gedrich R, Lippman
SM, et al: Phase I study of intermittent oral dosing of the
insulin-like growth factor-1 and insulin receptors inhibitor
OSI-906 in patients with advanced solid tumors. Clin Cancer Res.
21:693–700. 2015. View Article : Google Scholar
|
20
|
Lerario AM, Worden FP, Ramm CA, Hesseltine
EA, Stadler WM, Else T, Shah MH, Agamah E, Rao K and Hammer GD: The
combination of insulin-like growth factor receptor 1 (IGF1R)
antibody cixutumumab and mitotane as a first-line therapy for
patients with recurrent/metastatic adrenocortical carcinoma: A
multi-institutional NCI-sponsored trial. Horm Cancer. 5:232–239.
2014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Naing A, Kurzrock R, Burger A, Gupta S,
Lei X, Busaidy N, Hong D, Chen HX, Doyle LA, Heilbrun LK, et al:
Phase I trial of cixutumumab combined with temsirolimus in patients
with advanced cancer. Clin Cancer Res. 17:6052–6060. 2011.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Ilvesmäki V, Kahri AI, Miettinen PJ and
Voutilainen R: Insulin-like growth factors (IGFs) and their
receptors in adrenal tumors: High IGF-II expression in functional
adrenocortical carcinomas. J Clin Endocrinol Metab. 77:852–858.
1993.PubMed/NCBI
|
23
|
Laurell C, Velázquez-Fernández D, Lindsten
K, Juhlin C, Enberg U, Geli J, Höög A, Kjellman M, Lundeberg J,
Hamberger B, et al: Transcriptional profiling enables molecular
classification of adrenocortical tumours. Eur J Endocrinol.
161:141–152. 2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Liu J, Kahri AI, Heikkilä P, Ilvesmäki V
and Voutilainen R: H19 and insulin-like growth factor-II gene
expression in adrenal tumors and cultured adrenal cells. J Clin
Endocrinol Metab. 80:492–496. 1995.PubMed/NCBI
|
25
|
Bartel DP: MicroRNAs: Genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Doghman M, El Wakil A, Cardinaud B, Thomas
E, Wang J, Zhao W, Peralta-Del Valle MH, Figueiredo BC, Zambetti GP
and Lalli E: Regulation of insulin-like growth factor-mammalian
target of rapamycin signaling by microRNA in childhood
adrenocortical tumors. Cancer Res. 70:4666–4675. 2010. View Article : Google Scholar : PubMed/NCBI
|
27
|
Özata DM, Caramuta S, Velázquez-Fernández
D, Akçakaya P, Xie H, Höög A, Zedenius J, Bäckdahl M, Larsson C and
Lui WO: The role of microRNA deregulation in the pathogenesis of
adrenocortical carcinoma. Endocr Relat Cancer. 18:643–655. 2011.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Soon PS, Tacon LJ, Gill AJ, Bambach CP,
Sywak MS, Campbell PR, Yeh MW, Wong SG, Clifton-Bligh RJ, Robinson
BG and Sidhu SB: miR-195 and miR-483-5p identified as predictors of
poor prognosis in adrenocortical cancer. Clin Cancer Res.
15:7684–7692. 2009. View Article : Google Scholar : PubMed/NCBI
|
29
|
Patterson EE, Holloway AK, Weng J, Fojo T
and Kebebew E: MicroRNA profiling of adrenocortical tumors reveals
miR-483 as a marker of malignancy. Cancer. 117:1630–1639. 2011.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Agosta C, Laugier J, Guyon L, Denis J,
Bertherat J, Libé R, Boisson B, Sturm N, Feige JJ, Chabre O and
Cherradi N: MiR-483-5p and miR-139-5p promote aggressiveness by
targeting N-myc downstream-regulated gene family members in
adrenocortical cancer. Int J Cancer. 143:944–957. 2018. View Article : Google Scholar : PubMed/NCBI
|
31
|
Chabre O, Libé R, Assie G, Barreau O,
Bertherat J, Bertagna X, Feige JJ and Cherradi N: Serum miR-483-5p
and miR-195 are predictive of recurrence risk in adrenocortical
cancer patients. Endocr Relat Cancer. 20:579–594. 2013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Decmann A, Bancos I, Khanna A, Thomas MA,
Turai P, Perge P, Pintér JZ, Tóth M, Patócs A and Igaz P:
Comparison of plasma and urinary microRNA-483-5p for the diagnosis
of adrenocortical malignancy. J Biotechnol. 297:49–53. 2019.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Patel D, Boufraqech M, Jain M, Zhang L, He
M, Gesuwan K, Gulati N, Nilubol N, Fojo T and Kebebew E: MiR-34a
and miR-483-5p are candidate serum biomarkers for adrenocortical
tumors. Surgery. 154:1224–1229. 2013. View Article : Google Scholar : PubMed/NCBI
|
34
|
Li H, Yu B, Li J, Su L, Yan M, Zhu Z and
Liu B: Overexpression of lncRNA H19 enhances carcinogenesis and
metastasis of gastric cancer. Oncotarget. 5:2318–2329. 2014.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Tsang WP, Ng EK, Ng SS, Jin H, Yu J, Sung
JJ and Kwok TT: Oncofetal H19-derived miR-675 regulates tumor
suppressor RB in human colorectal cancer. Carcinogenesis.
31:350–358. 2010. View Article : Google Scholar
|
36
|
Zhai LL, Wang P, Zhou LY, Yin JY, Tang Q,
Zhang TJ, Wang YX, Yang DQ, Lin J and Deng ZQ: Over-expression of
miR-675 in formalin-fixed paraffin-embedded (FFPE) tissues of
breast cancer patients. Int J Clin Exp Med. 8:11195–11201.
2015.PubMed/NCBI
|
37
|
Zhou YW, Zhang H, Duan CJ, Gao Y, Cheng
YD, He D, Li R and Zhang CF: miR-675-5p enhances tumorigenesis and
metastasis of esophageal squamous cell carcinoma by targeting
REPS2. Oncotarget. 7:30730–30747. 2016. View Article : Google Scholar : PubMed/NCBI
|
38
|
He D, Wang J, Zhang C, Shan B, Deng X, Li
B, Zhou Y, Chen W, Hong J, Gao Y, et al: Down-regulation of
miR-675-5p contributes to tumor progression and development by
targeting pro-tumorigenic GPR55 in non-small cell lung cancer. Mol
Cancer. 14:732015. View Article : Google Scholar : PubMed/NCBI
|
39
|
Schmitz KJ, Helwig J, Bertram S, Sheu SY,
Suttorp AC, Seggewiss J, Willscher E, Walz MK, Worm K and Schmid
KW: Differential expression of microRNA-675, microRNA-139-3p and
microRNA-335 in benign and malignant adrenocortical tumours. J Clin
Pathol. 64:529–535. 2011. View Article : Google Scholar : PubMed/NCBI
|
40
|
DeLellis RA, Lloyd RV, Heitz PU and Eng C:
Pathology and genetics of tumours of endocrine organs. World Health
Organization Classification of Tumours. 3rd edition. 8. IARC Press;
Lyon, France: 2004
|
41
|
Kjellin H, Johansson H, Höög A, Lehtiö J,
Jakobsson PJ and Kjellman M: Differentially expressed proteins in
malignant and benign adrenocortical tumors. PLoS One. 9:e879512014.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Tang Z, Li C, Kang B, Gao G, Li C and
Zhang Z: GEPIA: A web server for cancer and normal gene expression
profiling and interactive analyses. Nucleic Acids Res. 45(W1):
W98–W102. 2017. View Article : Google Scholar : PubMed/NCBI
|
43
|
Li JH, Liu S, Zhou H, Qu LH and Yang JH:
starBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA
interaction networks from large-scale CLIP-Seq data. Nucleic Acids
Res. 42(Database Issue): D92–D97. 2014. View Article : Google Scholar
|
44
|
Gazdar AF, Oie HK, Shackleton CH, Chen TR,
Triche TJ, Myers CE, Chrousos GP, Brennan MF, Stein CA and La Rocca
RV: Establishment and characterization of a human adrenocortical
carcinoma cell line that expresses multiple pathways of steroid
biosynthesis. Cancer Res. 50:5488–5496. 1990.PubMed/NCBI
|
45
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
46
|
Weiss LM: Comparative histologic study of
43 metastasizing and nonmetastasizing adrenocortical tumors. Am J
Surg Pathol. 8:163–169. 1984. View Article : Google Scholar : PubMed/NCBI
|
47
|
Valente FM, Sparago A, Freschi A,
Hill-Harfe K, Maas SM, Frints SGM, Alders M, Pignata L, Franzese M,
Angelini C, et al: Transcription alterations of KCNQ1 associated
with imprinted methylation defects in the Beckwith-Wiedemann locus.
Genet Med. 21:1808–1820. 2019. View Article : Google Scholar : PubMed/NCBI
|
48
|
Corrêa GT, Bandeira GA, Cavalcanti BG, de
Carvalho Fraga CA, dos Santos EP, Silva TF, Gomez RS, Guimarães AL
and De Paula AM: Association of-308 TNF-α promoter polymorphism
with clinical aggressiveness in patients with head and neck
squamous cell carcinoma. Oral Oncol. 47:888–894. 2011. View Article : Google Scholar
|
49
|
Schteingart DE, Giordano TJ, Benitez RS,
Burdick MD, Starkman MN, Arenberg DA and Strieter RM:
Overexpression of CXC chemokines by an adrenocortical carcinoma: A
novel clinical syndrome. J Clin Endocrinol Metab. 86:3968–3974.
2001. View Article : Google Scholar : PubMed/NCBI
|
50
|
Shih CM, Lee YL, Chiou HL, Chen W, Chang
GC, Chou MC and Lin LY: Association of TNF-alpha polymorphism with
susceptibility to and severity of non-small cell lung cancer. Lung
Cancer. 52:15–20. 2006. View Article : Google Scholar : PubMed/NCBI
|
51
|
Kimmel GL, Péron FG, Haksar A, Bedigian E,
Robidoux WF Jr and Lin MT: Ultrastructure, steroidogenic potential,
and energy metabolism of the Snell adrenocortical carcinoma 494. A
comparison with normal adrenocortical tissue. J Cell Biol.
62:152–163. 1974. View Article : Google Scholar : PubMed/NCBI
|
52
|
Cheng Y, Kerppola RE and Kerppola TK:
ATR-101 disrupts mitochondrial functions in adrenocortical
carcinoma cells and in vivo. Endocr Relat Cancer. 23:1–19. 2016.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Poli G, Guasti D, Rapizzi E, Fucci R, Canu
L, Bandini A, Cini N, Bani D, Mannelli M and Luconi M:
Morphofunctional effects of mitotane on mitochondria in human
adrenocortical cancer cells. Endocr Relat Cancer. 20:537–550. 2013.
View Article : Google Scholar : PubMed/NCBI
|
54
|
Satoh K, Zhang L, Zhang Y, Chelluri R,
Boufraqech M, Nilubol N, Patel D, Shen M and Kebebew E:
Identification of niclosamide as a novel anticancer agent for
adrenocortical carcinoma. Clin Cancer Res. 22:3458–3466. 2016.
View Article : Google Scholar : PubMed/NCBI
|
55
|
Lee JH, Lee YK, Lim JJ, Byun HO, Park I,
Kim GH, Xu WG, Wang HJ and Yoon G: Mitochondrial respiratory
dysfunction induces claudin-1 expression via reactive oxygen
species-mediated heat shock factor 1 activation, leading to
hepatoma cell invasiveness. J Biol Chem. 290:21421–21431. 2015.
View Article : Google Scholar : PubMed/NCBI
|
56
|
Santidrian AF, Matsuno-Yagi A, Ritland M,
Seo BB, LeBoeuf SE, Gay LJ, Yagi T and Felding-Habermann B:
Mitochondrial complex I activity and NAD+/NADH balance regulate
breast cancer progression. J Clin Invest. 123:1068–1081. 2013.
View Article : Google Scholar : PubMed/NCBI
|
57
|
Marbet P, Klusonova P, Birk J, Kratschmar
DV and Odermatt A: Absence of hexose-6-phosphate dehydrogenase
results in reduced overall glucose consumption but does not prevent
11β-hydroxysteroid dehydrogenase-1-dependent glucocorticoid
activation. FEBS J. 285:3993–4004. 2018. View Article : Google Scholar : PubMed/NCBI
|
58
|
Marini C, Ravera S, Buschiazzo A, Bianchi
G, Orengo AM, Bruno S, Bottoni G, Emionite L, Pastorino F,
Monteverde E, et al: Discovery of a novel glucose metabolism in
cancer: The role of endoplasmic reticulum beyond glycolysis and
pentose phosphate shunt. Sci Rep. 6:250922016. View Article : Google Scholar : PubMed/NCBI
|
59
|
Berruti A, Grisanti S, Pulzer A, Claps M,
Daffara F, Loli P, Mannelli M, Boscaro M, Arvat E, Tiberio G, et
al: Long-term outcomes of adjuvant mitotane therapy in patients
with radically resected adrenocortical carcinoma. J Clin Endocrinol
Metab. 102:1358–1365. 2017. View Article : Google Scholar : PubMed/NCBI
|
60
|
Calabrese A, Basile V, Puglisi S, Perotti
P, Pia A, Saba L, Berchialla P, Porpiglia F, Veltri A, Volante M,
et al: Adjuvant mitotane therapy is beneficial in non-metastatic
adrenocortical carcinoma at high risk of recurrence. Eur J
Endocrinol. 180:387–396. 2019. View Article : Google Scholar : PubMed/NCBI
|