Mechanism of exosomes in the tumor microenvironment in the abscopal effect (Review)
- Authors:
- Guicheng Kuang
- Zirui Wang
- Chengyu Luo
- Jingyan Luo
- Jing Wang
-
Affiliations: Clinical Medical College, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China, Department of Blood Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China - Published online on: November 7, 2022 https://doi.org/10.3892/ijo.2022.5450
- Article Number: 2
-
Copyright: © Kuang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Chargari C, Deutsch E, Blanchard P, Gouy S, Martelli H, Guérin F, Dumas I, Bossi A, Morice P, Viswanathan AN and Haie-Meder C: Brachytherapy: An overview for clinicians. CA Cancer J Clin. 69:386–401. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mohamad O, Tabuchi T, Nitta Y, Nomoto A, Sato A, Kasuya G, Makishima H, Choy H, Yamada S, Morishima T, et al: Risk of subsequent primary cancers after carbon ion radiotherapy, photon radiotherapy, or surgery for localised prostate cancer: A propensity score-weighted, retrospective, cohort study. Lancet Oncol. 20:674–685. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kahalley LS, Peterson R, Ris MD, Janzen L, Okcu MF, Grosshans DR, Ramaswamy V, Paulino AC, Hodgson D, Mahajan A, et al: Superior intellectual outcomes after proton radiotherapy compared with photon radiotherapy for pediatric medulloblastoma. J Clin Oncol. 38:454–461. 2020. View Article : Google Scholar : | |
Mole RH: Whole body irradiation; radiobiology or medicine? Br J Radiol. 26:234–241. 1953. View Article : Google Scholar : PubMed/NCBI | |
Demaria S, Ng B, Devitt ML, Babb JS, Kawashima N, Liebes L and Formenti SC: Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys. 58:862–870. 2004. View Article : Google Scholar : PubMed/NCBI | |
Tan AC, Ashley DM, López GY, Malinzak M, Friedman HS and Khasraw M: Management of glioblastoma: State of the art and future directions. CA Cancer J Clin. 70:299–312. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ene CI, Kreuser SA, Jung M, Zhang H, Arora S, White Moyes K, Szulzewsky F, Barber J, Cimino PJ, Wirsching HG, et al: Anti-PD-L1 antibody direct activation of macrophages contributes to a radiation-induced abscopal response in glioblastoma. Neuro Oncol. 22:639–651. 2020. View Article : Google Scholar | |
Lheureux S, Braunstein M and Oza AM: Epithelial ovarian cancer: Evolution of management in the era of precision medicine. CA Cancer J Clin. 69:280–304. 2019.PubMed/NCBI | |
Formenti SC, Rudqvist NP, Golden E, Cooper B, Wennerberg E, Lhuillier C, Vanpouille-Box C, Friedman K, Ferrari de Andrade L, Wucherpfennig KW, et al: Radiotherapy induces responses of lung cancer to CTLA-4 blockade. Nat Med. 24:1845–1851. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yang W, Zhang F, Deng H, Lin L, Wang S, Kang F, Yu G, Lau J, Tian R, Zhang M, et al: Smart nanovesicle-mediated immunogenic cell death through tumor microenvironment modulation for effective photodynamic immunotherapy. ACS Nano. 14:620–631. 2020. View Article : Google Scholar | |
Hu ZI, McArthur HL and Ho AY: The abscopal effect of radiation therapy: What is it and how can we use it in breast cancer? Curr Breast Cancer Rep. 9:45–51. 2017. View Article : Google Scholar : PubMed/NCBI | |
Beyls C, Haustermans K, Deroose CM, Pans S, Vanbeckevoort D, Verslype C and Dekervel J: Could autoimmune disease contribute to the abscopal effect in metastatic hepatocellular carcinoma? Hepatology. 72:1152–1154. 2020. View Article : Google Scholar : PubMed/NCBI | |
Guan S, Wang H, Qi XH, Guo Q, Zhang HY, Liu H and Zhu BJ: Abscopal effect of local irradiation treatment for thymoma: A case report. Am J Transl Res. 12:2234–2240. 2020.PubMed/NCBI | |
Chakravarty PK, Alfieri A, Thomas EK, Beri V, Tanaka KE, Vikram B and Guha C: Flt3-ligand administration after radiation therapy prolongs survival in a murine model of metastatic lung cancer. Cancer Res. 59:6028–6032. 1999. | |
Camphausen K, Moses MA, Ménard C, Sproull M, Beecken WD, Folkman J and O'Reilly MS: Radiation abscopal antitumor effect is mediated through p53. Cancer Res. 63:1990–1993. 2003.PubMed/NCBI | |
Ngwa W, Irabor OC, Schoenfeld JD, Hesser J, Demaria S and Formenti SC: Using immunotherapy to boost the abscopal effect. Nat Rev Cancer. 18:313–322. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sexton RE, Mpilla G, Kim S, Philip PA and Azmi AS: Ras and exosome signaling. Semin Cancer Biol. 54:131–137. 2019. View Article : Google Scholar : PubMed/NCBI | |
Möller A and Lobb RJ: The evolving translational potential of small extracellular vesicles in cancer. Nat Rev Cancer. 20:697–709. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kalluri R and LeBleu VS: The biology, function, and biomedical applications of exosomes. Science. 367:eaau69772020. View Article : Google Scholar : PubMed/NCBI | |
He C, Li L, Wang L, Meng W, Hao Y and Zhu G: Exosome-mediated cellular crosstalk within the tumor microenvironment upon irradiation. Cancer Biol Med. 18:21–33. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hu X, Qiu Y, Zeng X and Wang H: Exosomes reveal the dual nature of radiotherapy in tumor immunology. Cancer Sci. 113:1105–1112. 2022. View Article : Google Scholar : PubMed/NCBI | |
Vanpouille-Box C, Alard A, Aryankalayil MJ, Sarfraz Y, Diamond JM, Schneider RJ, Inghirami G, Coleman CN, Formenti SC and Demaria S: DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat Commun. 8:156182017. View Article : Google Scholar : PubMed/NCBI | |
Craig DJ, Nanavaty NS, Devanaboyina M, Stanbery L, Hamouda D, Edelman G, Dworkin L and Nemunaitis JJ: The abscopal effect of radiation therapy. Future Oncol. 17:1683–1694. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhao X, Hu S, Zeng L, Liu X, Song Y, Zhang Y, Chen Q, Bai Y, Zhang J, Zhang H, et al: Irradiation combined with PD-L1(-/-) and autophagy inhibition enhances the antitumor effect of lung cancer via cGAS-STING-mediated T cell activation. iScience. 25:1046902022. View Article : Google Scholar | |
Wang J, Wang L, Lin Z, Tao L and Chen M: More efficient induction of antitumor T cell immunity by exosomes from CD40L gene-modified lung tumor cells. Mol Med Rep. 9:125–131. 2014. View Article : Google Scholar | |
Choi D, Montermini L, Kim DK, Meehan B, Roth FP and Rak J: The impact of oncogenic EGFRvIII on the proteome of extracellular vesicles released from glioblastoma cells. Mol Cell Proteomics. 17:1948–1964. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hsieh RC, Krishnan S, Wu RC, Boda AR, Liu A, Winkler M, Hsu WH, Lin SH, Hung MC, Chan LC, et al: ATR-mediated CD47 and PD-L1 up-regulation restricts radiotherapy-induced immune priming and abscopal responses in colorectal cancer. Sci Immunol. 7:eabl93302022. View Article : Google Scholar : PubMed/NCBI | |
Feng M, Jiang W, Kim BYS, Zhang CC, Fu YX and Weissman IL: Phagocytosis checkpoints as new targets for cancer immunotherapy. Nat Rev Cancer. 19:568–586. 2019. View Article : Google Scholar : PubMed/NCBI | |
He S, Cheng J, Sun L, Wang Y, Wang C, Liu X, Zhang Z, Zhao M, Luo Y, Tian L, et al: HMGB1 released by irradiated tumor cells promotes living tumor cell proliferation via paracrine effect. Cell Death Dis. 9:6482018. View Article : Google Scholar : PubMed/NCBI | |
Leonardi GC, Falzone L, Salemi R, Zanghì A, Spandidos DA, Mccubrey JA, Candido S and Libra M: Cutaneous melanoma: From pathogenesis to therapy (Review). Int J Oncol. 52:1071–1080. 2018.PubMed/NCBI | |
Minton K: Predicting the anti-PD1 response. Nat Rev Immunol. 19:414–415. 2019. View Article : Google Scholar : PubMed/NCBI | |
Daassi D, Mahoney KM and Freeman GJ: The importance of exosomal PDL1 in tumour immune evasion. Nat Rev Immunol. 20:209–215. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bennett F, Luxenberg D, Ling V, Wang IM, Marquette K, Lowe D, Khan N, Veldman G, Jacobs KA, Valge-Archer VE, et al: Program death-1 engagement upon TCR activation has distinct effects on costimulation and cytokine-driven proliferation: Attenuation of ICOS, IL-4, and IL-21, but not CD28, IL-7, and IL-15 responses. J Immunol. 170:711–718. 2003. View Article : Google Scholar : PubMed/NCBI | |
Yuan Y, Wang L, Ge D, Tan L, Cao B, Fan H and Xue L: Exosomal O-GlcNAc transferase from esophageal carcinoma stem cell promotes cancer immunosuppression through up-regulation of PD-1 in CD8(+) T cells. Cancer Lett. 500:98–106. 2021. View Article : Google Scholar | |
Liu J, Fan L, Yu H, Zhang J, He Y, Feng D, Wang F, Li X, Liu Q, Li Y, et al: Endoplasmic reticulum stress causes liver cancer cells to release exosomal miR-23a-3p and Up-regulate programmed death ligand 1 expression in macrophages. Hepatology. 70:241–258. 2019.PubMed/NCBI | |
Ye L, Zhang Q, Cheng Y, Chen X, Wang G, Shi M, Zhang T, Cao Y, Pan H, Zhang L, et al: Tumor-derived exosomal HMGB1 fosters hepatocellular carcinoma immune evasion by promoting TIM-1(+) regulatory B cell expansion. J Immunother Cancer. 6:1452018. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Yi J, Chen X, Zhang Y, Xu M and Yang Z: The regulation of cancer cell migration by lung cancer cell-derived exosomes through TGF-β and IL-10. Oncol Lett. 11:1527–1530. 2016. View Article : Google Scholar : PubMed/NCBI | |
Andreola G, Rivoltini L, Castelli C, Huber V, Perego P, Deho P, Squarcina P, Accornero P, Lozupone F, Lugini L, et al: Induction of lymphocyte apoptosis by tumor cell secretion of FasL-bearing microvesicles. J Exp Med. 195:1303–1316. 2002. View Article : Google Scholar : PubMed/NCBI | |
Fuentes P, Sesé M, Guijar ro PJ, Emperador M, Sánchez-Redondo S, Peinado H, Hümmer S and Cajal SRY: Publisher Correction: ITGB3-mediated uptake of small extracellular vesicles facilitates intercellular communication in breast cancer cells. Nat Commun. 11:47302020. View Article : Google Scholar : PubMed/NCBI | |
Ji Q, Zhou L, Sui H, Yang L, Wu X, Song Q, Jia R, Li R, Sun J, Wang Z, et al: Primary tumors release ITGBL1-rich extracellular vesicles to promote distal metastatic tumor growth through fibroblast-niche formation. Nat Commun. 11:12112020. View Article : Google Scholar : PubMed/NCBI | |
Gabrusiewicz K, Li X, Wei J, Hashimoto Y, Marisetty AL, Ott M, Wang F, Hawke D, Yu J, Healy LM, et al: Glioblastoma stem cell-derived exosomes induce M2 macrophages and PD-L1 expression on human monocytes. Oncoimmunology. 7:e14129092018. View Article : Google Scholar : PubMed/NCBI | |
Ferguson Bennit HR, Gonda A, Kabagwira J, Oppegard L, Chi D, Licero Campbell J, De Leon M and Wall NR: Natural killer cell phenotype and functionality affected by exposure to extracellular survivin and lymphoma-derived exosomes. Int J Mol Sci. 22:12552021. View Article : Google Scholar : PubMed/NCBI | |
Kitai Y, Kawasaki T, Sueyoshi T, Kobiyama K, Ishii KJ, Zou J, Akira S, Matsuda T and Kawai T: DNA-containing exosomes derived from cancer cells treated with topotecan activate a STING-Dependent pathway and reinforce antitumor immunity. J Immunol. 198:1649–1659. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sun J, Jia H, Bao X, Wu Y, Zhu T, Li R and Zhao H: Tumor exosome promotes Th17 cell differentiation by transmitting the lncRNA CRNDE-h in colorectal cancer. Cell Death Dis. 12:1232021. View Article : Google Scholar : PubMed/NCBI | |
Ding G, Zhou L, Qian Y, Fu M, Chen J, Chen J, Xiang J, Wu Z, Jiang G and Cao L: Pancreatic cancer-derived exosomes transfer miRNAs to dendritic cells and inhibit RFXAP expression via miR-212-3p. Oncotarget. 6:29877–29888. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhao S, Mi Y, Guan B, Zheng B, Wei P, Gu Y, Zhang Z, Cai S, Xu Y, Li X, et al: Tumor-derived exosomal miR-934 induces macrophage M2 polarization to promote liver metastasis of colorectal cancer. J Hematol Oncol. 13:1562020. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Luo G, Zhang K, Cao J, Huang C, Jiang T, Liu B, Su L and Qiu Z: Hypoxic tumor-derived exosomal miR-301a Mediates M2 macrophage polarization via PTEN/PI3Kγ to promote pancreatic cancer metastasis. Cancer Res. 78:4586–4598. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Zhou J, Li X and Wang X, Lin Y and Wang X: Exosomes derived from hypoxic epithelial ovarian cancer cells deliver microRNAs to macrophages and elicit a tumor-promoted phenotype. Cancer Lett. 435:80–91. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hurley JH: ESCRTs are everywhere. EMBO J. 34:2398–2407. 2015. View Article : Google Scholar : PubMed/NCBI | |
de Araujo Farias V, O'Valle F, Serrano-Saenz S, Anderson P, Andrés E, López-Peñalver J, Tovar I, Nieto A, Santos A, Martín F, et al: Exosomes derived from mesenchymal stem cells enhance radiotherapy-induced cell death in tumor and metastatic tumor foci. Mol Cancer. 17:1222018. View Article : Google Scholar : PubMed/NCBI | |
Stary V, Wolf B, Unterleuthner D, List J, Talic M, Laengle J, Beer A, Strobl J, Stary G, Dolznig H and Bergmann M: Short-course radiotherapy promotes pro-inflammatory macrophages via extracellular vesicles in human rectal cancer. J Immunother Cancer. 8:e0006672020. View Article : Google Scholar : PubMed/NCBI | |
Ahn J, Xia T, Rabasa Capote A, Betancourt D and Barber GN: Extrinsic phagocyte-dependent STING signaling dictates the immunogenicity of dying cells. Cancer Cell. 33:862–873.e5. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jiang MJ, Chen YY, Dai JJ, Gu DN, Mei Z, Liu FR, Huang Q and Tian L: Dying tumor cell-derived exosomal miR-194-5p potentiates survival and repopulation of tumor repopulating cells upon radiotherapy in pancreatic cancer. Mol Cancer. 19:682020. View Article : Google Scholar : PubMed/NCBI | |
Khambu B, Huda N, Chen X, Antoine DJ, Li Y, Dai G, Köhler UA, Zong WX, Waguri S, Werner S, et al: HMGB1 promotes ductular reaction and tumorigenesis in autophagy-deficient livers. J Clin Invest. 128:2419–2435. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kazama H, Ricci JE, Herndon JM, Hoppe G, Green DR and Ferguson TA: Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high-mobility group box-1 protein. Immunity. 29:21–32. 2008. View Article : Google Scholar : PubMed/NCBI | |
Golden EB, Frances D, Pellicciotta I, Demaria S, Helen Barcellos-Hoff M and Formenti SC: Radiation fosters dose-dependent and chemotherapy-induced immunogenic cell death. Oncoimmunology. 3:e285182014. View Article : Google Scholar : PubMed/NCBI | |
Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y, Pellegatti P, Shen S, Kepp O, Scoazec M, Mignot G, et al: Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science. 334:1573–1577. 2011. View Article : Google Scholar : PubMed/NCBI | |
Shi Y and Lammers T: Combining nanomedicine and immunotherapy. Acc Chem Res. 52:1543–1554. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lecciso M, Ocadlikova D, Sangaletti S, Trabanelli S, De Marchi E, Orioli E, Pegoraro A, Portararo P, Jandus C, Bontadini A, et al: ATP release from chemotherapy-treated dying leukemia cells elicits an immune suppressive effect by increasing regulatory T cells and tolerogenic dendritic cells. Front Immunol. 8:19182017. View Article : Google Scholar | |
Yamaguchi H, Maruyama T, Urade Y and Nagata S: Immunosuppression via adenosine receptor activation by adenosine monophosphate released from apoptotic cells. Elife. 3:e021722014. View Article : Google Scholar : PubMed/NCBI | |
Allard D, Allard B and Stagg J: On the mechanism of anti-CD39 immune checkpoint therapy. J Immunother Cancer. 8:e0001862020. View Article : Google Scholar : PubMed/NCBI | |
Baghbani E, Noorolyai S, Shanehbandi D, Mokhtarzadeh A, Aghebati-Maleki L, Shahgoli VK, Brunetti O, Rahmani S, Shadbad MA, Baghbanzadeh A, et al: Regulation of immune responses through CD39 and CD73 in cancer: Novel checkpoints. Life Sci. 282:1198262021. View Article : Google Scholar : PubMed/NCBI | |
Batlle E and Massagué J: Transforming growth factor-β signaling in immunity and cancer. Immunity. 50:924–940. 2019. View Article : Google Scholar : PubMed/NCBI | |
Formenti SC, Lee P, Adams S, Goldberg JD, Li X, Xie MW, Ratikan JA, Felix C, Hwang L, Faull KF, et al: Focal irradiation and systemic TGFβ blockade in metastatic breast cancer. Clin Cancer Res. 24:2493–2504. 2018. View Article : Google Scholar : PubMed/NCBI | |
Karapetyan L, Luke JJ and Davar D: Toll-Like Receptor 9 Agonists in Cancer. Onco Targets Ther. 13:10039–10060. 2020. View Article : Google Scholar : PubMed/NCBI | |
Vincent-Schneider H, Stumptner-Cuvelette P, Lankar D, Pain S, Raposo G, Benaroch P and Bonnerot C: Exosomes bearing HLA-DR1 molecules need dendritic cells to efficiently stimulate specific T cells. Int Immunol. 14:713–722. 2002. View Article : Google Scholar : PubMed/NCBI | |
Xie F, Zhou X, Fang M, Li H, Su P, Tu Y, Zhang L and Zhou F: Extracellular vesicles in cancer immune microenvironment and cancer immunotherapy. Adv Sci (Weinh). 6:19017792019. View Article : Google Scholar : PubMed/NCBI | |
Pitt JM, André F, Amigorena S, Soria JC, Eggermont A, Kroemer G and Zitvogel L: Dendritic cell-derived exosomes for cancer therapy. J Clin Invest. 126:1224–1232. 2016. View Article : Google Scholar : PubMed/NCBI | |
Quah BJ and O'Neill HC: Maturation of function in dendritic cells for tolerance and immunity. J Cell Mol Med. 9:643–654. 2005. View Article : Google Scholar : PubMed/NCBI | |
Pang G, Chen C, Liu Y, Jiang T, Yu H, Wu Y, Wang Y, Wang FJ, Liu Z and Zhang LW: Bioactive polysaccharide nanoparticles improve radiation-induced abscopal effect through manipulation of dendritic cells. ACS Appl Mater Interfaces. 11:42661–42670. 2019. View Article : Google Scholar : PubMed/NCBI | |
Accogli T, Bruchard M and Végran F: Modulation of CD4 T cell response according to tumor cytokine microenvironment. Cancers (Basel). 13:3732021. View Article : Google Scholar : PubMed/NCBI | |
Shiokawa A, Kotaki R, Takano T, Nakajima-Adachi H and Hachimura S: Mesenteric lymph node CD11b(−) CD103(+) PD-L1High dendritic cells highly induce regulatory T cells. Immunology. 152:52–64. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhou F, Zhang GX and Rostami A: Distinct Role of IL-27 in Immature and LPS-Induced mature dendritic cell-mediated development of CD4(+) CD127(+)3G11(+) regulatory T cell subset. Front Immunol. 9:25622018. View Article : Google Scholar : PubMed/NCBI | |
Shirasawa M, Yoshida T, Matsumoto Y, Shinno Y, Okuma Y, Goto Y, Horinouchi H, Yamamoto N, Watanabe SI, Ohe Y and Motoi N: Impact of chemoradiotherapy on the immune-related tumour microenvironment and efficacy of anti-PD-(L)1 therapy for recurrences after chemoradiotherapy in patients with unresectable locally advanced non-small cell lung cancer. Eur J Cancer. 140:28–36. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tang C, Wang X, Soh H, Seyedin S, Cortez MA, Krishnan S, Massarelli E, Hong D, Naing A, Diab A, et al: Combining radiation and immunotherapy: A new systemic therapy for solid tumors? Cancer Immunol Res. 2:831–838. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cassetta L and Pollard JW: Targeting macrophages: Therapeutic approaches in cancer. Nat Rev Drug Discov. 17:887–904. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Deng Z, Wang Z, Wu J, Gu T, Jiang Y and Li G: MicroRNA-155 in exosomes secreted from helicobacter pylori infection macrophages immunomodulates inflammatory response. Am J Transl Res. 8:3700–3709. 2016.PubMed/NCBI | |
Wang P, Wang H, Huang Q, Peng C, Yao L, Chen H, Qiu Z, Wu Y, Wang L and Chen W: Exosomes from M1-Polarized macrophages enhance paclitaxel antitumor activity by activating macrophages-mediated inflammation. Theranostics. 9:1714–1727. 2019. View Article : Google Scholar : PubMed/NCBI | |
Deng F, Yan J, Lu J, Luo M, Xia P, Liu S, Wang X, Zhi F and Liu D: M2 Macrophage-Derived Exosomal miR-590-3p Attenuates DSS-Induced mucosal damage and promotes epithelial repair via the LATS1/YAP/β-Catenin Signalling Axis. J Crohns Colitis. 15:665–677. 2021. View Article : Google Scholar | |
Wu J, Gao W, Tang Q, Yu Y, You W, Wu Z, Fan Y, Zhang L, Wu C, Han G, et al: M2 Macrophage-derived exosomes facilitate HCC metastasis by transferring αM β2 integrin to tumor cells. Hepatology. 73:1365–1380. 2021. View Article : Google Scholar | |
Tavazoie MF, Pollack I, Tanqueco R, Ostendorf BN, Reis BS, Gonsalves FC, Kurth I, Andreu-Agullo C, Derbyshire ML, Posada J, et al: LXR/ApoE Activation restricts innate immune suppression in cancer. Cell. 172:825–840.e18. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zheng P, Chen L, Yuan X, Luo Q, Liu Y, Xie G, Ma Y and Shen L: Exosomal transfer of tumor-associated macrophage-derived miR-21 confers cisplatin resistance in gastric cancer cells. J Exp Clin Cancer Res. 36:532017. View Article : Google Scholar : PubMed/NCBI | |
Hao Y, Yasmin-Karim S, Moreau M, Sinha N, Sajo E and Ngwa W: Enhancing radiotherapy for lung cancer using immunoadjuvants delivered in situ from new design radiotherapy biomaterials: A preclinical study. Phys Med Biol. 61:N697–n707. 2016. View Article : Google Scholar : PubMed/NCBI | |
Qian M, Wang S, Guo X, Wang J, Zhang Z, Qiu W, Gao X, Chen Z, Xu J, Zhao R, et al: Hypoxic glioma-derived exosomes deliver microRNA-1246 to induce M2 macrophage polarization by targeting TERF2IP via the STAT3 and NF-κB pathways. Oncogene. 39:428–442. 2020. View Article : Google Scholar | |
Kelly A, Gunaltay S, McEntee CP, Shuttleworth EE, Smedley C, Houston SA, Fenton TM, Levison S, Mann ER and Travis MA: Human monocytes and macrophages regulate immune tolerance via integrin αvβ8-mediated TGFβ activation. J Exp Med. 215:2725–2736. 2018. View Article : Google Scholar : PubMed/NCBI | |
Veremeyko T, Yung AWY, Dukhinova M, Kuznetsova IS, Pomytkin I, Lyundup A, Strekalova T, Barteneva NS and Ponomarev ED: Cyclic AMP pathway suppress autoimmune neuroinflammation by inhibiting functions of encephalitogenic CD4 T cells and enhancing M2 macrophage polarization at the site of inflammation. Front Immunol. 9:502018. View Article : Google Scholar : PubMed/NCBI | |
Su B, Han H, Gong Y, Li X, Ji C, Yao J, Yang J, Hu W, Zhao W, Li J, et al: Let-7d inhibits intratumoral macrophage M2 polarization and subsequent tumor angiogenesis by targeting IL-13 and IL-10. Cancer Immunol Immunother. 70:1619–1634. 2021. View Article : Google Scholar | |
Ivashkiv LB: IFNγ: Signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy. Nat Rev Immunol. 18:545–558. 2018. View Article : Google Scholar : PubMed/NCBI | |
Teresa Pinto A, Laranjeiro Pinto M, Patrícia Cardoso A, Monteiro C, Teixeira Pinto M, Filipe Maia A, Castro P, Figueira R, Monteiro A, Marques M, et al: Ionizing radiation modulates human macrophages towards a pro-inflammatory phenotype preserving their pro-invasive and pro-angiogenic capacities. Sci Rep. 6:187652016. View Article : Google Scholar : PubMed/NCBI | |
Klug F, Prakash H, Huber PE, Seibel T, Bender N, Halama N, Pfirschke C, Voss RH, Timke C, Umansky L, et al: Low-dose irradiation programs macrophage differentiation to an iNOS+/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell. 24:589–602. 2013. View Article : Google Scholar : PubMed/NCBI | |
Leblond MM, Pérès EA, Helaine C, Gérault AN, Moulin D, Anfray C, Divoux D, Petit E, Bernaudin M and Valable S: M2 macrophages are more resistant than M1 macrophages following radiation therapy in the context of glioblastoma. Oncotarget. 8:72597–72612. 2017. View Article : Google Scholar : PubMed/NCBI | |
Proctor DT, Huang J, Lama S, Albakr A, Van Marle G and Sutherland GR: Tumor-associated macrophage infiltration in meningioma. Neurooncol Adv. 1:vdz0182019. | |
Gordon SR, Maute RL, Dulken BW, Hutter G, George BM, McCracken MN, Gupta R, Tsai JM, Sinha R, Corey D, et al: PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature. 545:495–499. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Tao F, Jiang J, Chen L, Du J, Cheng X, He Q, Zhong S, Chen W, Wu X, et al: Tryptophan 2, 3-dioxygenase promotes proliferation, migration and invasion of ovarian cancer cells. Mol Med Rep. 23:4452021. View Article : Google Scholar : | |
Suek N, Campesato LF, Merghoub T and Khalil DN: Targeted APC activation in cancer immunotherapy to enhance the abscopal effect. Front Immunol. 10:6042019. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Li X, Wu X, Zhang T, Zhu Q and Wang X, Wang H, Wang K, Lin Y and Wang X: Exosomes Released from Tumor-Associated Macrophages Transfer miRNAs that induce a Treg/Th17 cell imbalance in epithelial ovarian cancer. Cancer Immunol Res. 6:1578–1592. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jiang M, Liu X, Zhang D, Wang Y, Hu X, Xu F, Jin M, Cao F and Xu L: Celastrol treatment protects against acute ischemic stroke-induced brain injury by promoting an IL-33/ST2 axis-mediated microglia/macrophage M2 polarization. J Neuroinflammation. 15:782018. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Zhang C, Liu L, A X, Chen B, Li Y and Du J: Macrophage-Derived mir-155-Containing exosomes suppress fibroblast proliferation and promote fibroblast inflammation during cardiac injury. Mol Ther. 25:192–204. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tan HY, Wang N, Zhang C, Chan YT, Yuen MF and Feng Y: Lysyl Oxidase-Like 4 fosters an immunosuppressive microenvironment during hepatocarcinogenesis. Hepatology. 73:2326–2341. 2021. View Article : Google Scholar | |
Chen X, Zhang L, Zhang IY, Liang J, Wang H, Ouyang M, Wu S, da Fonseca ACC, Weng L, Yamamoto Y, et al: RAGE expression in tumor-associated macrophages promotes angiogenesis in glioma. Cancer Res. 74:7285–7297. 2014. View Article : Google Scholar : PubMed/NCBI | |
Barnes TA and Amir E: HYPE or HOPE: The prognostic value of infiltrating immune cells in cancer. Br J Cancer. 118:e52018. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Shen H, Zhangyuan G, Huang R, Zhang W, He Q, Jin K, Zhuo H, Zhang Z, Wang J, et al: 14-3-3ζ delivered by hepatocellular carcinoma-derived exosomes impaired anti-tumor function of tumor-infiltrating T lymphocytes. Cell Death Dis. 9:1592018. View Article : Google Scholar | |
Golstein P and Griffiths GM: An early history of T cell-mediated cytotoxicity. Nat Rev Immunol. 18:527–535. 2018. View Article : Google Scholar : PubMed/NCBI | |
Alonso R, Rodríguez MC, Pindado J, Merino E, Mérida I and Izquierdo M: Diacylglycerol kinase alpha regulates the secretion of lethal exosomes bearing Fas ligand during activation-induced cell death of T lymphocytes. J Biol Chem. 280:28439–28450. 2005. View Article : Google Scholar : PubMed/NCBI | |
Cai Z, Yang F, Yu L, Yu Z, Jiang L, Wang Q, Yang Y, Wang L, Cao X and Wang J: Activated T cell exosomes promote tumor invasion via Fas signaling pathway. J Immunol. 188:5954–5961. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lugini L, Cecchetti S, Huber V, Luciani F, Macchia G, Spadaro F, Paris L, Abalsamo L, Colone M, Molinari A, et al: Immune surveillance properties of human NK cell-derived exosomes. J Immunol. 189:2833–2842. 2012. View Article : Google Scholar : PubMed/NCBI | |
van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde BJ, Knuth A and Boon T: A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. J Immunol. 178:2617–2621. 2007.PubMed/NCBI | |
Torralba D, Baixauli F, Villarroya-Beltri C, Fernández-Delgado I, Latorre-Pellicer A, Acín-Pérez R, Martín-Cófreces NB, Jaso-Tamame ÁL, Iborra S, Jorge I, et al: Priming of dendritic cells by DNA-containing extracellular vesicles from activated T cells through antigen-driven contacts. Nat Commun. 9:26582018. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Shen H, He Q, Tian W, Xia A and Lu XJ: Exosomes derived from exhausted CD8+ T cells impaired the anticancer function of normal CD8+ T cells. J Med Genet. 56:29–31. 2019. View Article : Google Scholar | |
Hui E, Cheung J, Zhu J, Su X, Taylor MJ, Wallweber HA, Sasmal DK, Huang J, Kim JM, Mellman I and Vale RD: T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science. 355:1428–1433. 2017. View Article : Google Scholar : PubMed/NCBI | |
Anderson AC, Joller N and Kuchroo VK: Lag-3, Tim-3, and TIGIT: Co-inhibitory receptors with specialized functions in immune regulation. Immunity. 44:989–1004. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dimitrijević M, Arsenović-Ranin N, Kosec D, Bufan B, Nacka-Aleksić M, Pilipović I and Leposavić G: Sexual dimorphism in Th17/Treg axis in lymph nodes draining inflamed joints in rats with collagen-induced arthritis. Brain Behav Immun. 76:198–214. 2019. View Article : Google Scholar | |
Asano T, Meguri Y, Yoshioka T, Kishi Y, Iwamoto M, Nakamura M, Sando Y, Yagita H, Koreth J, Kim HT, et al: PD-1 modulates regulatory T-cell homeostasis during low-dose interleukin-2 therapy. Blood. 129:2186–2197. 2017. View Article : Google Scholar : PubMed/NCBI | |
Abbas AK, Trotta E, R Simeonov D, Marson A and Bluestone JA: Revisiting IL-2: Biology and therapeutic prospects. Sci Immunol. 3:eaat14822018. View Article : Google Scholar : PubMed/NCBI | |
Jukić T, Jurin Martić A, Ivanković S, Antica M, Pavan Jukić D, Rotim C and Jurin M: The role of regulatory T lymphocytes in immune control of MC-2 fibrosarcoma. Acta Clin Croat. 59:351–358. 2020. | |
Mailloux AW and Young MR: Regulatory T-cell trafficking: From thymic development to tumor-induced immune suppression. Crit Rev Immunol. 30:435–447. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hammami A, Allard D, Allard B and Stagg J: Targeting the adenosine pathway for cancer immunotherapy. Semin Immunol. 42:1013042019. View Article : Google Scholar : PubMed/NCBI | |
Smyth LA, Ratnasothy K, Tsang JY, Boardman D, Warley A, Lechler R and Lombardi G: CD73 expression on extracellular vesicles derived from CD4+ CD25+ Foxp3+ T cells contributes to their regulatory function. Eur J Immunol. 43:2430–2440. 2013. View Article : Google Scholar : PubMed/NCBI | |
Aiello S, Rocchetta F, Longaretti L, Faravelli S, Todeschini M, Cassis L, Pezzuto F, Tomasoni S, Azzollini N, Mister M, et al: Extracellular vesicles derived from T regulatory cells suppress T cell proliferation and prolong allograft survival. Sci Rep. 7:115182017. View Article : Google Scholar : PubMed/NCBI | |
Tung SL, Fanelli G, Matthews RI, Bazoer J, Letizia M, Vizcay-Barrena G, Faruqu FN, Philippeos C, Hannen R, Al-Jamal KT, et al: Regulatory T cell extracellular vesicles modify t-effector cell cytokine production and protect against human skin allograft damage. Front Cell Dev Biol. 8:3172020. View Article : Google Scholar : PubMed/NCBI | |
Torri A, Carpi D, Bulgheroni E, Crosti MC, Moro M, Gruarin P, Rossi RL, Rossetti G, Di Vizio D, Hoxha M, et al: Extracellular MicroRNA signature of human helper T cell subsets in health and autoimmunity. J Biol Chem. 292:2903–2915. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tung SL, Boardman DA, Sen M, Letizia M, Peng Q, Cianci N, Dioni L, Carlin LM, Lechler R, Bollati V, et al: Regulatory T cell-derived extracellular vesicles modify dendritic cell function. Sci Rep. 8:60652018. View Article : Google Scholar : PubMed/NCBI | |
Okoye IS, Coomes SM, Pelly VS, Czieso S, Papayannopoulos V, Tolmachova T, Seabra MC and Wilson MS: MicroRNA-containing T-regulatory-cell-derived exosomes suppress pathogenic T helper 1 cells. Immunity. 41:89–103. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sullivan JA, Tomita Y, Jankowska-Gan E, Lema DA, Arvedson MP, Nair A, Bracamonte-Baran W, Zhou Y, Meyer KK, Zhong W, et al: Treg-Cell-Derived IL-35-Coated extracellular vesicles promote infectious tolerance. Cell Rep. 30:1039–1051.e5. 2020. View Article : Google Scholar : PubMed/NCBI | |
Eckert F, Schilbach K, Klumpp L, Bardoscia L, Sezgin EC, Schwab M, Zips D and Huber SM: Potential Role of CXCR4 targeting in the context of radiotherapy and immunotherapy of cancer. Front Immunol. 9:30182018. View Article : Google Scholar | |
Zhou M, Luo C, Zhou Z, Li L and Huang Y: Improving anti-PD-L1 therapy in triple negative breast cancer by polymer-enhanced immunogenic cell death and CXCR4 blockade. J Control Release. 334:248–262. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kohno M, Murakami J, Wu L, Chan ML, Yun Z, Cho BCJ and de Perrot M: Foxp3(+) Regulatory T cell depletion after nonablative oligofractionated irradiation boosts the abscopal effects in murine malignant mesothelioma. J Immunol. 205:2519–2531. 2020. View Article : Google Scholar : PubMed/NCBI | |
Anderson BE, McNiff JM, Matte C, Athanasiadis I, Shlomchik WD and Shlomchik MJ: Recipient CD4+ T cells that survive irradiation regulate chronic graft-versus-host disease. Blood. 104:1565–1573. 2004. View Article : Google Scholar : PubMed/NCBI | |
Zhang T, Yu H, Ni C, Zhang T, Liu L, Lv Q, Zhang Z, Wang Z, Wu D, Wu P, et al: Hypofractionated stereotactic radiation therapy activates the peripheral immune response in operable stage I non-small-cell lung cancer. Sci Rep. 7:48662017. View Article : Google Scholar : PubMed/NCBI | |
Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM and Weaver CT: Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol. 6:1123–1132. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ye ZJ, Zhou Q, Gu YY, Qin SM, Ma WL, Xin JB, Tao XN and Shi HZ: Generation and differentiation of IL-17-producing CD4+ T cells in malignant pleural effusion. J Immunol. 185:6348–6354. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zou W and Restifo NP: T(H)17 cells in tumour immunity and immunotherapy. Nat Rev Immunol. 10:248–256. 2010. View Article : Google Scholar : PubMed/NCBI | |
Berkhout L, Barikbin R, Schiller B, Ravichandran G, Krech T, Neumann K, Sass G and Tiegs G: Deletion of tumour necrosis factor α receptor 1 elicits an increased TH17 immune response in the chronically inflamed liver. Sci Rep. 9:42322019. View Article : Google Scholar | |
Campanati A, Orciani M, Lazzarini R, Ganzetti G, Consales V, Sorgentoni G, Di Primio R and Offidani A: TNF-α inhibitors reduce the pathological Th1-Th17/Th2 imbalance in cutaneous mesenchymal stem cells of psoriasis patients. Exp Dermatol. 26:319–324. 2017. View Article : Google Scholar | |
Nalbant A: IL-17, IL-21, and IL-22 Cytokines of T Helper 17 cells in cancer. J Interferon Cytokine Res. 39:56–60. 2019. View Article : Google Scholar | |
Chang SH: T helper 17 (Th17) cells and interleukin-17 (IL-17) in cancer. Arch Pharm Res. 42:549–559. 2019. View Article : Google Scholar : PubMed/NCBI | |
Papadopoulou E, Nicolatou-Galitis O, Papassotiriou I, Linardou H, Karagianni A, Tsixlakis K, Tarampikou A, Michalakakou K, Vardas E and Bafaloukos D: The use of crevicular fluid to assess markers of inflammation and angiogenesis, IL-17 and VEGF, in patients with solid tumors receiving zoledronic acid and/or bevacizumab. Support Care Cancer. 28:177–184. 2020. View Article : Google Scholar | |
Messmer MN, Netherby CS, Banik D and Abrams SI: Tumor-induced myeloid dysfunction and its implications for cancer immunotherapy. Cancer Immunol Immunother. 64:1–13. 2015. View Article : Google Scholar : | |
Waigel S, Rendon BE, Lamont G, Richie J, Mitchell RA and Yaddanapudi K: MIF inhibition reverts the gene expression profile of human melanoma cell line-induced MDSCs to normal monocytes. Genom Data. 7:240–242. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fenselau C and Ostrand-Rosenberg S: Molecular cargo in myeloid-derived suppressor cells and their exosomes. Cell Immunol. 359:1042582021. View Article : Google Scholar : | |
Marvel D and Gabrilovich DI: Myeloid-derived suppressor cells in the tumor microenvironment: Expect the unexpected. J Clin Invest. 125:3356–3364. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S, Kavanaugh D and Carbone DP: Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med. 2:1096–1103. 1996. View Article : Google Scholar : PubMed/NCBI | |
Horikawa N, Abiko K, Matsumura N, Hamanishi J, Baba T, Yamaguchi K, Yoshioka Y, Koshiyama M and Konishi I: Expression of vascular endothelial growth factor in ovarian cancer inhibits tumor immunity through the accumulation of myeloid-derived suppressor cells. Clin Cancer Res. 23:587–599. 2017. View Article : Google Scholar | |
Hsieh CC, Hung CH, Chiang M, Tsai YC and He JT: Hepatic stellate cells enhance liver cancer progression by inducing myeloid-derived suppressor cells through interleukin-6 signaling. Int J Mol Sci. 20:50792019. View Article : Google Scholar : PubMed/NCBI | |
Li L, Zhang J, Diao W, Wang D, Wei Y, Zhang CY and Zen K: MicroRNA-155 and MicroRNA-21 promote the expansion of functional myeloid-derived suppressor cells. J Immunol. 192:1034–1043. 2014. View Article : Google Scholar : PubMed/NCBI | |
Meng G, Wei J, Wang Y, Qu D and Zhang J: miR-21 regulates immunosuppression mediated by myeloid-derived suppressor cells by impairing RUNX1-YAP interaction in lung cancer. Cancer Cell Int. 20:4952020. View Article : Google Scholar : PubMed/NCBI | |
Safarzadeh E, Asadzadeh Z, Safaei S, Hatefi A, Derakhshani A, Giovannelli F, Brunetti O, Silvestris N and Baradaran B: MicroRNAs and lncRNAs-A new layer of myeloid-derived suppressor cells regulation. Front Immunol. 11:5723232020. View Article : Google Scholar : PubMed/NCBI | |
Geis-Asteggiante L, Belew AT, Clements VK, Edwards NJ, Ostrand-Rosenberg S, El-Sayed NM and Fenselau C: Differential Content of Proteins, mRNAs, and miRNAs Suggests that MDSC and their exosomes may mediate distinct immune suppressive functions. J Proteome Res. 17:486–498. 2018. View Article : Google Scholar : | |
Li T, Li M, Xu C, Xu X, Ding J, Cheng L and Ou R: miR-146a regulates the function of Th17 cell differentiation to modulate cervical cancer cell growth and apoptosis through NF-κB signaling by targeting TRAF6. Oncol Rep. 41:2897–2908. 2019.PubMed/NCBI | |
Tian S, Song X, Wang Y, Wang X, Mou Y, Chen Q, Zhao H, Ma K, Wu Z, Yu H, et al: Chinese herbal medicine Baoyuan Jiedu decoction inhibits the accumulation of myeloid derived suppressor cells in pre-metastatic niche of lung via TGF-β/CCL9 pathway. Biomed Pharmacother. 129:1103802020. View Article : Google Scholar | |
Mao Y, Sarhan D, Steven A, Seliger B, Kiessling R and Lundqvist A: Inhibition of tumor-derived prostaglandin-e2 blocks the induction of myeloid-derived suppressor cells and recovers natural killer cell activity. Clin Cancer Res. 20:4096–4106. 2014. View Article : Google Scholar : PubMed/NCBI | |
Deng Z, Rong Y, Teng Y, Zhuang X, Samykutty A, Mu J, Zhang L, Cao P, Yan J, Miller D and Zhang HG: Exosomes miR-126a released from MDSC induced by DOX treatment promotes lung metastasis. Oncogene. 36:639–651. 2017. View Article : Google Scholar : | |
Zöller M, Zhao K, Kutlu N, Bauer N, Provaznik J, Hackert T and Schnölzer M: Immunoregulatory effects of myeloid-derived suppressor cell exosomes in mouse model of autoimmune alopecia areata. Front Immunol. 9:12792018. View Article : Google Scholar : PubMed/NCBI | |
Grisaru-Tal S, Itan M, Klion AD and Munitz A: A new dawn for eosinophils in the tumour microenvironment. Nat Rev Cancer. 20:594–607. 2020. View Article : Google Scholar : PubMed/NCBI | |
Poggio M, Hu T, Pai CC, Chu B, Belair CD, Chang A, Montabana E, Lang UE, Fu Q, Fong L and Blelloch R: Suppression of Exosomal PD-L1 induces systemic anti-tumor immunity and memory. Cell. 177:414–427.e13. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mesnil C, Raulier S, Paulissen G, Xiao X, Birrell MA, Pirottin D, Janss T, Starkl P, Ramery E, Henket M, et al: Lung-resident eosinophils represent a distinct regulatory eosinophil subset. J Clin Invest. 126:3279–3295. 2016. View Article : Google Scholar : PubMed/NCBI | |
Choi Y, Kim YM, Lee HR, Mun J, Sim S, Lee DH, Pham DL, Kim SH, Shin YS, Lee SW and Park HS: Eosinophil extracellular traps activate type 2 innate lymphoid cells through stimulating airway epithelium in severe asthma. Allergy. 75:95–103. 2020. View Article : Google Scholar | |
da Silva JM, Moreira Dos Santos TP, Sobral LM, Queiroz-Junior CM, Rachid MA, Proudfoot AEI, Garlet GP, Batista AC, Teixeira MM, Leopoldino AM, et al: Relevance of CCL3/CCR5 axis in oral carcinogenesis. Oncotarget. 8:51024–51036. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hu Y, Chen Z, Jin L, Wang M and Liao W: Decreased expression of indolamine 2,3-dioxygenase in childhood allergic asthma and its inverse correlation with fractional concentration of exhaled nitric oxide. Ann Allergy Asthma Immunol. 119:429–434. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kratochvill F, Neale G, Haverkamp JM, Van de Velde LA, Smith AM, Kawauchi D, McEvoy J, Roussel MF, Dyer MA, Qualls JE and Murray PJ: TNF counterbalances the emergence of M2 tumor macrophages. Cell Rep. 12:1902–1914. 2015. View Article : Google Scholar : PubMed/NCBI | |
Herrera FG, Bourhis J and Coukos G: Radiotherapy combination opportunities leveraging immunity for the next oncology practice. CA Cancer J Clin. 67:65–85. 2017. View Article : Google Scholar | |
Cao M, Cabrera R, Xu Y, Liu C and Nelson D: Different radio-sensitivity of CD4(+)CD25(+) regulatory T cells and effector T cells to low dose gamma irradiation in vitro. Int J Radiat Biol. 87:71–80. 2011. View Article : Google Scholar | |
Kareff SA, Lischalk JW, Krochmal R and Kim C: Abscopal effect in pulmonary carcinoid tumor following ablative stereotactic body radiation therapy: A case report. J Med Case Rep. 14:1772020. View Article : Google Scholar : PubMed/NCBI | |
Ohmatsu K, Hashimoto Y, Kawanishi M, Ishii Y, Kono S, Kuribayashi S, Ariizumi S and Karasawa K: Abscopal complete regression of hepatocellular carcinoma with multiple pleural metastases. Int Cancer Conf J. 10:54–58. 2020. View Article : Google Scholar | |
Hotta T, Okuno T, Nakao M, Amano Y, Isobe T and Tsubata Y: Reproducible abscopal effect in a patient with lung cancer who underwent whole-brain irradiation and atezolizumab administration. Thorac Cancer. 12:985–988. 2021. View Article : Google Scholar : PubMed/NCBI | |
Choi JS, Sansoni ER, Lovin BD, Lindquist NR, Phan J, Mayo LL, Ferrarotto R and Su SY: Abscopal effect following immunotherapy and combined stereotactic body radiation therapy in recurrent metastatic head and neck squamous cell carcinoma: A report of two cases and literature review. Ann Otol Rhinol Laryngol. 129:517–522. 2020. View Article : Google Scholar | |
Wang H, Lin X, Luo Y, Sun S, Tian X, Sun Y, Zhang S, Chen J, Zhang J, Liu X, et al: α-PD-L1 mAb enhances the abscopal effect of hypo-fractionated radiation by attenuating PD-L1 expression and inducing CD8(+) T-cell infiltration. Immunotherapy. 11:101–118. 2019. View Article : Google Scholar | |
Golden EB, Chhabra A, Chachoua A, Adams S, Donach M, Fenton-Kerimian M, Friedman K, Ponzo F, Babb JS, Goldberg J, et al: Local radiotherapy and granulocyte-macrophage colony-stimulating factor to generate abscopal responses in patients with metastatic solid tumours: A proof-of-principle trial. Lancet Oncol. 16:795–803. 2015. View Article : Google Scholar : PubMed/NCBI | |
Thorne AH, Malo KN, Wong AJ, Nguyen TT, Cooch N, Reed C, Yan J, Broderick KE, Smith TRF, Masteller EL and Humeau L: Adjuvant screen identifies synthetic DNA-Encoding Flt3L and CD80 immunotherapeutics as candidates for enhancing anti-tumor T cell responses. Front Immunol. 11:3272020. View Article : Google Scholar : PubMed/NCBI | |
Wennerberg E, Spada S, Rudqvist NP, Lhuillier C, Gruber S, Chen Q, Zhang F, Zhou XK, Gross SS, Formenti SC and Demaria S: CD73 blockade promotes dendritic cell infiltration of irradiated tumors and tumor rejection. Cancer Immunol Res. 8:465–478. 2020. View Article : Google Scholar : PubMed/NCBI | |
Peluso MO, Adam A, Armet CM, Zhang L, O'Connor RW, Lee BH, Lake AC, Normant E, Chappel SC, Hill JA, et al: The Fully human anti-CD47 antibody SRF231 exerts dual-mechanism antitumor activity via engagement of the activating receptor CD32a. J Immunother Cancer. 8:e0004132020. View Article : Google Scholar : PubMed/NCBI | |
Tsukui H, Horie H, Koinuma K, Ohzawa H, Sakuma Y, Hosoya Y, Yamaguchi H, Yoshimura K, Lefor AK, Sata N and Kitayama J: CD73 blockade enhances the local and abscopal effects of radiotherapy in a murine rectal cancer model. BMC Cancer. 20:4112020. View Article : Google Scholar : PubMed/NCBI | |
Puro RJ, Bouchlaka MN, Hiebsch RR, Capoccia BJ, Donio MJ, Manning PT, Frazier WA, Karr RW and Pereira DS: Development of AO-176, a Next-Generation Humanized Anti-CD47 antibody with novel anticancer properties and negligible red blood cell binding. Mol Cancer Ther. 19:835–846. 2020. View Article : Google Scholar | |
Chen D, Barsoumian HB, Yang L, Younes AI, Verma V, Hu Y, Menon H, Wasley M, Masropour F, Mosaffa S, et al: SHP-2 and PD-L1 inhibition combined with radiotherapy enhances systemic antitumor effects in an Anti-PD-1-Resistant model of non-small cell lung cancer. Cancer Immunol Res. 8:883–894. 2020. View Article : Google Scholar : PubMed/NCBI | |
Muenkel J, Xu Z, Traughber BJ, Baig T, Xu K, Langmack C, Harris E and Podder TK: Feasibility of improving patient's safety with in vivo dose tracking in intracavitary and interstitial HDR brachytherapy. Brachytherapy. 20:353–360. 2021. View Article : Google Scholar | |
Liu Y, Dong Y, Kong L, Shi F, Zhu H and Yu J: Abscopal effect of radiotherapy combined with immune checkpoint inhibitors. J Hematol Oncol. 11:1042018. View Article : Google Scholar : PubMed/NCBI | |
Ahmed TA, Adamopoulos C, Karoulia Z, Wu X, Sachidanandam R, Aaronson SA and Poulikakos PI: SHP2 drives adaptive resistance to ERK signaling inhibition in molecularly defined subsets of ERK-Dependent tumors. Cell Rep. 26:65–78.e5. 2019. View Article : Google Scholar : PubMed/NCBI | |
Strazza M, Adam K, Lerrer S, Straube J, Sandigursky S, Ueberheide B and Mor A: SHP2 Targets ITK Downstream of PD-1 to Inhibit T cell function. Inflammation. 44:1529–1539. 2021. View Article : Google Scholar : PubMed/NCBI | |
Pustylnikov S, Costabile F, Beghi S and Facciabene A: Targeting mitochondria in cancer: Current concepts and immunotherapy approaches. Transl Res. 202:35–51. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen D, Barsoumian HB, Fischer G, Yang L, Verma V, Younes AI, Hu Y, Masropour F, Klein K, Vellano C, et al: Combination treatment with radiotherapy and a novel oxidative phosphorylation inhibitor overcomes PD-1 resistance and enhances antitumor immunity. J Immunother Cancer. 8:e0002892020. View Article : Google Scholar : PubMed/NCBI | |
Vanpouille-Box C, Diamond JM, Pilones KA, Zavadil J, Babb JS, Formenti SC, Barcellos-Hoff MH and Demaria S: TGFβ Is a master regulator of radiation therapy-induced antitumor immunity. Cancer Res. 75:2232–2242. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liang Y, He J and Zhao Y: Modification of oncolytic adenovirus and its application in cancer therapy. Discov Med. 30:129–144. 2020. | |
Havunen R, Santos JM, Sorsa S, Rantapero T, Lumen D, Siurala M, Airaksinen AJ, Cervera-Carrascon V, Tähtinen S, Kanerva A and Hemminki A: Abscopal effect in Non-injected tumors achieved with cytokine-armed oncolytic adenovirus. Mol Ther Oncolytics. 11:109–121. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kaufman HL, Amatruda T, Reid T, Gonzalez R, Glaspy J, Whitman E, Harrington K, Nemunaitis J, Zloza A, Wolf M and Senzer NN: Systemic versus local responses in melanoma patients treated with talimogene laherparepvec from a multi-institutional phase II study. J Immunother Cancer. 4:122016. View Article : Google Scholar : PubMed/NCBI | |
Ono R, Takayama K, Sakurai F and Mizuguchi H: Efficient antitumor effects of a novel oncolytic adenovirus fully composed of species B adenovirus serotype 35. Mol Ther Oncolytics. 20:399–409. 2021. View Article : Google Scholar : PubMed/NCBI | |
Challenor S and Tucker D: SARS-CoV-2-induced remission of Hodgkin lymphoma. Br J Haematol. 192:4152021. View Article : Google Scholar : PubMed/NCBI | |
Ngwa W, Boateng F, Kumar R, Irvine DJ, Formenti S, Ngoma T, Herskind C, Veldwijk MR, Hildenbrand GL, Hausmann M, et al: Smart Radiation Therapy Biomaterials. Int J Radiat Oncol Biol Phys. 97:624–637. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhao X, Yang K, Zhao R, Ji T, Wang X, Yang X, Zhang Y, Cheng K, Liu S, Hao J, et al: Inducing enhanced immunogenic cell death with nanocarrier-based drug delivery systems for pancreatic cancer therapy. Biomaterials. 102:187–197. 2016. View Article : Google Scholar : PubMed/NCBI | |
Duan X, Chan C, Guo N, Han W, Weichselbaum RR and Lin W: Photodynamic therapy mediated by nontoxic core-shell nanoparticles synergizes with immune checkpoint blockade to elicit antitumor immunity and antimetastatic effect on breast cancer. J Am Chem Soc. 138:16686–16695. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen Q, Wang C, Zhang X, Chen G, Hu Q, Li H, Wang J, Wen D, Zhang Y, Lu Y, et al: In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat Nanotechnol. 14:89–97. 2019. View Article : Google Scholar | |
Min Y, Roche KC, Tian S, Eblan MJ, McKinnon KP, Caster JM, Chai S, Herring LE, Zhang L, Zhang T, et al: Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy. Nat Nanotechnol. 12:877–882. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zheng Y, Tang L, Mabardi L, Kumari S and Irvine DJ: Enhancing adoptive cell therapy of cancer through targeted delivery of small-molecule immunomodulators to internalizing or noninternalizing receptors. ACS Nano. 11:3089–3100. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chao Y, Xu L, Liang C, Feng L, Xu J, Dong Z, Tian L, Yi X, Yang K and Liu Z: Combined local immunostimulatory radioisotope therapy and systemic immune checkpoint blockade imparts potent antitumour responses. Nat Biomed Eng. 2:611–621. 2018. View Article : Google Scholar | |
Xu H, Sun W, Kong Y, Huang Y, Wei Z, Zhang L, Liang J and Ye X: Immune abscopal effect of microwave ablation for lung metastases of endometrial carcinoma. J Cancer Res Ther. 16:1718–1721. 2020. |