Role of the tumor microenvironment in cancer hallmarks and targeted therapy (Review)
- Authors:
- Rayan Naser
- Isabelle Fakhoury
- Adam El-Fouani
- Ralph Abi-Habib
- Mirvat El-Sibai
-
Affiliations: Department of Natural Sciences, Lebanese American University, Beirut 1102‑2801, Lebanon - Published online on: December 27, 2022 https://doi.org/10.3892/ijo.2022.5471
- Article Number: 23
This article is mentioned in:
Abstract
Cooper GM: The development and causes of cancer, The cell: A molecular approach. 2nd edition. Sunderland (MA): Sinauer Associates; 2000 | |
Balkwill FR, Capasso M and Hagemann T: The tumor microenvironment at a glance. J Cell Sci. 125:5591–5596. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lu P, Weaver VM and Werb Z: The extracellular matrix: A dynamic niche in cancer progression. J Cell Biol. 196:395–406. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Coussens LM: Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell. 21:309–322. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li H, Fan X and Houghton J: Tumor microenvironment: The role of the tumor stroma in cancer. J Cell Biochem. 101:805–815. 2007. View Article : Google Scholar : PubMed/NCBI | |
Pietras K and Ostman A: Hallmarks of cancer: Interactions with the tumor stroma. Exp Cell Res. 316:1324–1331. 2010. View Article : Google Scholar : PubMed/NCBI | |
Li H, Zhou L, Zhou J, Li Q and Ji Q: Underlying mechanisms and drug intervention strategies for the tumour microenvironment. J Exp Clin Cancer Res. 40:972021. View Article : Google Scholar : PubMed/NCBI | |
Joyce JA: Therapeutic targeting of the tumor microenvironment. Cancer Cell. 7:513–520. 2005. View Article : Google Scholar : PubMed/NCBI | |
Henke E, Nandigama R and Ergün S: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Front Mol Biosci. 6:1602020. View Article : Google Scholar : PubMed/NCBI | |
Tsai MJ, Chang WA, Huang MS and Kuo PL: Tumor microenvironment: A new treatment target for cancer. ISRN Biochem. 2014:e3519592014. View Article : Google Scholar : PubMed/NCBI | |
Willumsen N, Thomsen LB, Bager CL, Jensen C and Karsdal MA: Quantification of altered tissue turnover in a liquid biopsy: A proposed precision medicine tool to assess chronic inflammation and desmoplasia associated with a pro-cancerous niche and response to immuno-therapeutic anti-tumor modalities. Cancer Immunol Immunother. 67:1–12. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen F, Zhuang X, Lin L, Yu P, Wang Y, Shi Y, Hu G and Sun Y: New horizons in tumor microenvironment biology: Challenges and opportunities. BMC Med. 13:452015. View Article : Google Scholar : PubMed/NCBI | |
Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, Coussens LM, Gabrilovich DI, Ostrand-Rosenberg S, Hedrick CC, et al: Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 24:541–550. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen X and Song E: Turning foes to friends: Targeting cancer-associated fibroblasts. Nat Rev Drug Discov. 18:99–115. 2019. View Article : Google Scholar : PubMed/NCBI | |
Brassart-Pasco S, Brézillon S, Brassart B, Ramont L, Oudart JB and Monboisse JC: Tumor microenvironment: Extracellular matrix alterations influence tumor progression. Front Oncol. 10:3972020. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Chen JQ, Liu JL and Tian L: Exosomes in tumor microenvironment: Novel transporters and biomarkers. J Transl Med. 14:2972016. View Article : Google Scholar : PubMed/NCBI | |
Helmink BA, Khan MAW, Hermann A, Gopalakrishnan V and Wargo JA: The microbiome, cancer, and cancer therapy. Nat Med. 25:377–388. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, Fearon D, Greten FR, Hingorani SR, Hunter T, et al: A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 20:174–186. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ganguly D, Chandra R, Karalis J, Teke M, Aguilera T, Maddipati R, Wachsmann MB, Ghersi D, Siravegna G, Zeh HJ III, et al: Cancer-associated fibroblasts: Versatile players in the tumor microenvironment. Cancers (Basel). 12:26522020. View Article : Google Scholar : PubMed/NCBI | |
Liao Z, Tan ZW, Zhu P and Tan NS: Cancer-associated fibroblasts in tumor microenvironment-accomplices in tumor malignancy. Cell Immunol. 343:1037292019. View Article : Google Scholar : PubMed/NCBI | |
Arina A, Idel C, Hyjek EM, Alegre ML, Wang Y, Bindokas VP, Weichselbaum RR and Schreiber H: Tumor-associated fibroblasts predominantly come from local and not circulating precursors. Proc Natl Acad Sci USA. 113:7551–7556. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jung Y, Kim JK, Shiozawa Y, Wang J, Mishra A, Joseph J, Berry JE, McGee S, Lee E, Sun H, et al: Recruitment of mesenchymal stem cells into prostate tumours promotes metastasis. Nat Commun. 4:17952013. View Article : Google Scholar : PubMed/NCBI | |
Mishra PJ, Mishra PJ, Humeniuk R, Medina DJ, Alexe G, Mesirov JP, Ganesan S, Glod JW and Banerjee D: Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res. 68:4331–4339. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhu Q, Zhang X, Zhang L, Li W, Wu H, Yuan X, Mao F, Wang M, Zhu W, Qian H and Xu W: The IL-6-STAT3 axis mediates a reciprocal crosstalk between cancer-derived mesenchymal stem cells and neutrophils to synergistically prompt gastric cancer progression. Cell Death Dis. 5:e12952014. View Article : Google Scholar : PubMed/NCBI | |
Jotzu C, Alt E, Welte G, Li J, Hennessy BT, Devarajan E, Krishnappa S, Pinilla S, Droll L and Song YH: Adipose tissue-derived stem cells differentiate into carcinoma-associated fibroblast-like cells under the influence of tumor-derived factors. Anal Cell Pathol (Amst). 33:61–79. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kidd S, Spaeth E, Watson K, Burks J, Lu H, Klopp A, Andreeff M and Marini FC: Origins of the tumor microenvironment: Quantitative assessment of adipose-derived and bone marrow-derived stroma. PLoS One. 7:e305632012. View Article : Google Scholar : PubMed/NCBI | |
Miyazaki Y, Oda T, Mori N and Kida YS: Adipose-derived mesenchymal stem cells differentiate into pancreatic cancer-associated fibroblasts in vitro. FEBS Open Bio. 10:2268–2281. 2020. View Article : Google Scholar : PubMed/NCBI | |
Nurmik M, Ullmann P, Rodriguez F, Haan S and Letellier E: In search of definitions: Cancer-associated fibroblasts and their markers. Int J Cancer. 146:895–905. 2020. View Article : Google Scholar : PubMed/NCBI | |
Simon T and Salhia B: Cancer-Associated fibroblast subpopulations with diverse and dynamic roles in the tumor microenvironment. Mol Cancer Res. 20:183–192. 2022. View Article : Google Scholar : PubMed/NCBI | |
Sebastian A, Hum NR, Martin KA, Gilmore SF, Peran I, Byers SW, Wheeler EK, Coleman MA and Loots GG: Single-cell transcriptomic analysis of tumor-derived fibroblasts and normal tissue-resident fibroblasts reveals fibroblast heterogeneity in breast cancer. Cancers (Basel). 12:13072020. View Article : Google Scholar : PubMed/NCBI | |
Öhlund D, Handly-Santana A, Biffi G, Elyada E, Almeida AS, Ponz-Sarvise M, Corbo V, Oni TE, Hearn SA, Lee EJ, et al: Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J Exp Med. 214:579–596. 2017. View Article : Google Scholar : PubMed/NCBI | |
Elyada E, Bolisetty M, Laise P, Flynn WF, Courtois ET, Burkhart RA, Teinor JA, Belleau P, Biffi G, Lucito MS, et al: Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov. 9:1102–1123. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cohen N, Shani O, Raz Y, Sharon Y, Hoffman D, Abramovitz L and Erez N: Fibroblasts drive an immunosuppressive and growth-promoting microenvironment in breast cancer via secretion of Chitinase 3-like 1. Oncogene. 36:4457–4468. 2017. View Article : Google Scholar : PubMed/NCBI | |
Amatangelo MD, Bassi DE, Klein-Szanto AJP and Cukierman E: Stroma-derived three-dimensional matrices are necessary and sufficient to promote desmoplastic differentiation of normal fibroblasts. Am J Pathol. 167:475–488. 2005. View Article : Google Scholar : PubMed/NCBI | |
Carmeliet P and Jain RK: Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov. 10:417–427. 2011. View Article : Google Scholar : PubMed/NCBI | |
Nishida N, Yano H, Nishida T, Kamura T and Kojiro M: Angiogenesis in cancer. Vasc Health Risk Manag. 2:213–219. 2006. View Article : Google Scholar : PubMed/NCBI | |
Jain RK: Normalization of tumor vasculature: An emerging concept in antiangiogenic therapy. Science. 307:58–62. 2005. View Article : Google Scholar : PubMed/NCBI | |
Semenza GL: Cancer-stromal cell interactions mediated by hypoxia-inducible factors promote angiogenesis, lymphangiogenesis, and metastasis. Oncogene. 32:4057–4063. 2013. View Article : Google Scholar : PubMed/NCBI | |
Weis SM and Cheresh DA: Tumor angiogenesis: Molecular pathways and therapeutic targets. Nat Med. 17:1359–1370. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hillen F and Griffioen AW: Tumour vascularization: Sprouting angiogenesis and beyond. Cancer Metastasis Rev. 26:489–502. 2007. View Article : Google Scholar : PubMed/NCBI | |
Italiano JE Jr, Richardson JL, Patel-Hett S, Battinelli E, Zaslavsky A, Short S, Ryeom S, Folkman J and Klement GL: Angiogenesis is regulated by a novel mechanism: Pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. Blood. 111:1227–1233. 2008. View Article : Google Scholar : PubMed/NCBI | |
Armulik A, Genové G and Betsholtz C: Pericytes: Developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell. 21:193–215. 2011. View Article : Google Scholar : PubMed/NCBI | |
Balta E, Wabnitz GH and Samstag Y: Hijacked immune cells in the tumor microenvironment: Molecular mechanisms of immunosuppression and cues to improve T cell-based immunotherapy of solid tumors. Int J Mol Sci. 22:57362021. View Article : Google Scholar : PubMed/NCBI | |
Biswas SK and Mantovani A: Macrophage plasticity and interaction with lymphocyte subsets: Cancer as a paradigm. Nat Immunol. 11:889–896. 2010. View Article : Google Scholar : PubMed/NCBI | |
Franklin RA, Liao W, Sarkar A, Kim MV, Bivona MR, Liu K, Pamer EG and Li MO: The cellular and molecular origin of tumor-associated macrophages. Science. 344:921–925. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wu K, Lin K, Li X, Yuan X, Xu P, Ni P and Xu D: Redefining tumor-associated macrophage subpopulations and functions in the tumor microenvironment. Front Immunol. 11:17312020. View Article : Google Scholar : PubMed/NCBI | |
Dehne N, Mora J, Namgaladze D, Weigert A and Brüne B: Cancer cell and macrophage cross-talk in the tumor microenvironment. Curr Opin Pharmacol. 35:12–19. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cassetta L, Fragkogianni S, Sims AH, Swierczak A, Forrester LM, Zhang H, Soong DYH, Cotechini T, Anur P, Lin EY, et al: Human tumor-associated macrophage and monocyte transcriptional landscapes reveal cancer-specific reprogramming, biomarkers, and therapeutic targets. Cancer Cell. 35:588–602.e10. 2019. View Article : Google Scholar : PubMed/NCBI | |
Costa AC, Santos JMO, Gil da Costa RM and Medeiros R: Impact of immune cells on the hallmarks of cancer: A literature review. Crit Rev Oncol Hematol. 168:1035412021. View Article : Google Scholar : PubMed/NCBI | |
Roma-Rodrigues C, Mendes R, Baptista PV and Fernandes AR: Targeting tumor microenvironment for cancer therapy. Int J Mol Sci. 20:8402019. View Article : Google Scholar : PubMed/NCBI | |
Ostrand-Rosenberg S and Sinha P: Myeloid-derived suppressor cells: Linking inflammation and cancer. J Immunol. 182:4499–4506. 2009. View Article : Google Scholar : PubMed/NCBI | |
Veglia F, Sanseviero E and Gabrilovich DI: Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat Rev Immunol. 21:485–498. 2021. View Article : Google Scholar : PubMed/NCBI | |
Masucci MT, Minopoli M and Carriero MV: Tumor associated neutrophils. Their role in tumorigenesis, metastasis, prognosis and therapy. Front Oncol. 9:11462019. View Article : Google Scholar : PubMed/NCBI | |
Ye Y, Gaugler B, Mohty M and Malard F: Plasmacytoid dendritic cell biology and its role in immune-mediated diseases. Clin Transl Immunology. 9:e11392020. View Article : Google Scholar : PubMed/NCBI | |
Karthaus N, Torensma R and Tel J: Deciphering the message broadcast by tumor-infiltrating dendritic cells. Am J Pathol. 181:733–742. 2012. View Article : Google Scholar : PubMed/NCBI | |
Benavente S, Sánchez-García A, Naches S, LLeonart ME and Lorente J: Therapy-induced modulation of the tumor microenvironment: New opportunities for cancer therapies. Front Oncol. 10:5828842020. View Article : Google Scholar : PubMed/NCBI | |
Campbell DJ and Koch MA: Treg cells: Patrolling a dangerous neighborhood. Nat Med. 17:929–930. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hsieh CS, Lee HM and Lio CWJ: Selection of regulatory T cells in the thymus. Nat Rev Immunol. 12:157–167. 2012. View Article : Google Scholar : PubMed/NCBI | |
Coronella JA, Telleman P, Kingsbury GA, Truong TD, Hays S and Junghans RP: Evidence for an antigen-driven humoral immune response in medullary ductal breast cancer. Cancer Res. 61:7889–7899. 2001.PubMed/NCBI | |
Schioppa T, Moore R, Thompson RG, Rosser EC, Kulbe H, Nedospasov S, Mauri C, Coussens LM and Balkwill FR: B regulatory cells and the tumor-promoting actions of TNF-α during squamous carcinogenesis. Proc Natl Acad Sci USA. 108:10662–10667. 2011. View Article : Google Scholar : PubMed/NCBI | |
Quail DF and Joyce JA: Microenvironmental regulation of tumor progression and metastasis. Nat Med. 19:1423–1437. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wu J and Lanier LL: Natural killer cells and cancer. Adv Cancer Res. 90:127–156. 2003. View Article : Google Scholar : PubMed/NCBI | |
Hong J, Jin JO, Chen WY, Poggi A and Cheong JH: Editorial: Emerging roles and mechanisms of stromal cells in carcinomas at the molecular level. Front Immunol. 13:10258382022. View Article : Google Scholar : PubMed/NCBI | |
Koppensteiner L, Mathieson L, O'Connor RA and Akram AR: Cancer associated fibroblasts-an impediment to effective anti-cancer T cell immunity. Front Immunol. 13:8873802022. View Article : Google Scholar : PubMed/NCBI | |
Mun JY, Leem SH, Lee JH and Kim HS: Dual relationship between stromal cells and immune cells in the tumor microenvironment. Front Immunol. 13:8647392022. View Article : Google Scholar : PubMed/NCBI | |
Belli C, Antonarelli G, Repetto M, Boscolo Bielo L, Crimini E and Curigliano G: Targeting cellular components of the tumor microenvironment in solid malignancies. Cancers (Basel). 14:42782022. View Article : Google Scholar : PubMed/NCBI | |
Theocharis AD, Skandalis SS, Gialeli C and Karamanos NK: Extracellular matrix structure. Adv Drug Deliv Rev. 97:4–27. 2016. View Article : Google Scholar : PubMed/NCBI | |
Badylak SF: The extracellular matrix as a biologic scaffold material. Biomaterials. 28:3587–3593. 2007. View Article : Google Scholar : PubMed/NCBI | |
Fuhrmann A and Engler AJ: The Cytoskeleton regulates cell attachment strength. Biophys J. 109:57–65. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kechagia JZ, Ivaska J and Roca-Cusachs P: Integrins as biomechanical sensors of the microenvironment. Nat Rev Mol Cell Biol. 20:457–473. 2019. View Article : Google Scholar : PubMed/NCBI | |
Romani P, Valcarcel-Jimenez L, Frezza C and Dupont S: Crosstalk between mechanotransduction and metabolism. Nat Rev Mol Cell Biol. 22:22–38. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cichon MA and Radisky DC: Extracellular matrix as a contextual determinant of transforming growth factor-β signaling in epithelial-mesenchymal transition and in cancer. Cell Adhes Migr. 8:588–594. 2014. View Article : Google Scholar : PubMed/NCBI | |
Karamanos NK, Piperigkou Z, Passi A, Götte M, Rousselle P and Vlodavsky I: Extracellular matrix-based cancer targeting. Trends Mol Med. 27:1000–1013. 2021. View Article : Google Scholar : PubMed/NCBI | |
Rilla K, Mustonen AM, Arasu UT, Härkönen K, Matilainen J and Nieminen P: Extracellular vesicles are integral and functional components of the extracellular matrix. Matrix Biol. 75–76. 201–219. 2019.PubMed/NCBI | |
Apte MV, Yang L, Phillips PA, Xu Z, Kaplan W, Cowley M, Pirola RC and Wilson JS: Extracellular matrix composition significantly influences pancreatic stellate cell gene expression pattern: Role of transgelin in PSC function. Am J Physiol Gastrointest Liver Physiol. 305:G408–G417. 2013. View Article : Google Scholar : PubMed/NCBI | |
Naba A, Clauser KR, Hoersch S, Liu H, Carr SA and Hynes RO: The matrisome: In silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol Cell Proteomics. 11:M111.014647. 2012. View Article : Google Scholar : PubMed/NCBI | |
Musiime M, Chang J, Hansen U, Kadler KE, Zeltz C and Gullberg D: Collagen assembly at the cell surface: Dogmas revisited. Cells. 10:6622021. View Article : Google Scholar : PubMed/NCBI | |
Eble JA and Niland S: The extracellular matrix in tumor progression and metastasis. Clin Exp Metastasis. 36:171–198. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yue B: Biology of the extracellular matrix: An overview. J Glaucoma. 23 (8 Suppl 1):S20–S23. 2014. View Article : Google Scholar : PubMed/NCBI | |
Naba A, Pearce OMT, Del Rosario A, Ma D, Ding H, Rajeeve V, Cutillas PR, Balkwill FR and Hynes RO: Characterization of the extracellular matrix of normal and diseased tissues using proteomics. J Proteome Res. 16:3083–3091. 2017. View Article : Google Scholar : PubMed/NCBI | |
Erdogan B and Webb DJ: Cancer-associated fibroblasts modulate growth factor signaling and extracellular matrix remodeling to regulate tumor metastasis. Biochem Soc Trans. 45:229–236. 2017. View Article : Google Scholar : PubMed/NCBI | |
Najafi M, Farhood B and Mortezaee K: Extracellular matrix (ECM) stiffness and degradation as cancer drivers. J Cell Biochem. 120:2782–2790. 2019. View Article : Google Scholar : PubMed/NCBI | |
Muncie JM and Weaver VM: The physical and biochemical properties of the extracellular matrix regulate cell fate. Curr Top Dev Biol. 130:1–37. 2018. View Article : Google Scholar : PubMed/NCBI | |
Provenzano PP, Inman DR, Eliceiri KW, Knittel JG, Yan L, Rueden CT, White JG and Keely PJ: Collagen density promotes mammary tumor initiation and progression. BMC Med. 6:112008. View Article : Google Scholar : PubMed/NCBI | |
Mammoto T, Jiang A, Jiang E, Panigrahy D, Kieran MW and Mammoto A: Role of collagen matrix in tumor angiogenesis and glioblastoma multiforme progression. Am J Pathol. 183:1293–1305. 2013. View Article : Google Scholar : PubMed/NCBI | |
Peinado H, Zhang H, Matei IR, Costa-Silva B, Hoshino A, Rodrigues G, Psaila B, Kaplan RN, Bromberg JF, Kang Y, et al: Pre-metastatic niches: Organ-specific homes for metastases. Nat Rev Cancer. 17:302–317. 2017. View Article : Google Scholar : PubMed/NCBI | |
Moreira AM, Pereira J, Melo S, Fernandes MS, Carneiro P, Seruca R and Figueiredo J: The extracellular matrix: An accomplice in gastric cancer development and progression. Cells. 9:3942020. View Article : Google Scholar : PubMed/NCBI | |
Høgdall D, Lewinska M and Andersen JB: Desmoplastic tumor microenvironment and immunotherapy in cholangiocarcinoma. Trends Cancer. 4:239–255. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ho WJ, Jaffee EM and Zheng L: The tumour microenvironment in pancreatic cancer-clinical challenges and opportunities. Nat Rev Clin Oncol. 17:527–540. 2020. View Article : Google Scholar : PubMed/NCBI | |
Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, Fong SF, Csiszar K, Giaccia A, Weninger W, et al: Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell. 139:891–906. 2009. View Article : Google Scholar : PubMed/NCBI | |
Damodarasamy M, Vernon RB, Chan CK, Plymate SR, Wight TN and Reed MJ: Hyaluronan in aged collagen matrix increases prostate epithelial cell proliferation. In Vitro Cell Dev Biol Anim. 51:50–58. 2015. View Article : Google Scholar : PubMed/NCBI | |
Suhovskih AV, Mostovich LA, Kunin IS, Boboev MM, Nepomnyashchikh GI, Aidagulova SV and Grigorieva EV: Proteoglycan expression in normal human prostate tissue and prostate cancer. ISRN Oncol. 2013:6801362013.PubMed/NCBI | |
Ajeti V, Nadiarnykh O, Ponik SM, Keely PJ, Eliceiri KW and Campagnola PJ: Structural changes in mixed Col I/Col V collagen gels probed by SHG microscopy: Implications for probing stromal alterations in human breast cancer. Biomed Opt Express. 2:2307–2316. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fang S, Dai Y, Mei Y, Yang M, Hu L, Yang H, Guan X and Li J: Clinical significance and biological role of cancer-derived type I collagen in lung and esophageal cancers. Thorac Cancer. 10:277–288. 2019. View Article : Google Scholar : PubMed/NCBI | |
Miskolczi Z, Smith MP, Rowling EJ, Ferguson J, Barriuso J and Wellbrock C: Collagen abundance controls melanoma phenotypes through lineage-specific microenvironment sensing. Oncogene. 37:3166–3182. 2018. View Article : Google Scholar : PubMed/NCBI | |
Rossow L, Veitl S, Vorlová S, Wax JK, Kuhn AE, Maltzahn V, Upcin B, Karl F, Hoffmann H, Gätzner S, et al: LOX-catalyzed collagen stabilization is a proximal cause for intrinsic resistance to chemotherapy. Oncogene. 37:4921–4940. 2018. View Article : Google Scholar : PubMed/NCBI | |
Guzman A, Ziperstein MJ and Kaufman LJ: The effect of fibrillar matrix architecture on tumor cell invasion of physically challenging environments. Biomaterials. 35:6954–6963. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xu S, Xu H, Wang W, Li S, Li H, Li T, Zhang W, Yu X and Liu L: The role of collagen in cancer: From bench to bedside. J Transl Med. 17:3092019. View Article : Google Scholar : PubMed/NCBI | |
Gilkes DM, Semenza GL and Wirtz D: Hypoxia and the extracellular matrix: Drivers of tumour metastasis. Nat Rev Cancer. 14:430–439. 2014. View Article : Google Scholar : PubMed/NCBI | |
Allen SC, Widman JA, Datta A and Suggs LJ: Dynamic extracellular matrix stiffening induces a phenotypic transformation and a migratory shift in epithelial cells. Integr Biol (Camb). 12:161–174. 2020. View Article : Google Scholar : PubMed/NCBI | |
Fischer KR, Durrans A, Lee S, Sheng J, Li F, Wong ST, Choi H, El Rayes T, Ryu S, Troeger J, et al: Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature. 527:472–476. 2015. View Article : Google Scholar : PubMed/NCBI | |
Han L, Lam EWF and Sun Y: Extracellular vesicles in the tumor microenvironment: Old stories, but new tales. Mol Cancer. 18:592019. View Article : Google Scholar : PubMed/NCBI | |
Kanada M, Bachmann MH and Contag CH: Signaling by extracellular vesicles advances cancer hallmarks. Trends Cancer. 2:84–94. 2016. View Article : Google Scholar : PubMed/NCBI | |
Minciacchi VR, Freeman MR and Di Vizio D: Extracellular vesicles in cancer: Exosomes, microvesicles and the emerging role of large oncosomes. Semin Cell Dev Biol. 40:41–51. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chronopoulos A and Kalluri R: Emerging role of bacterial extracellular vesicles in cancer. Oncogene. 39:6951–6960. 2020. View Article : Google Scholar : PubMed/NCBI | |
Morad G and Moses MA: Brainwashed by extracellular vesicles: The role of extracellular vesicles in primary and metastatic brain tumour microenvironment. J Extracell Vesicles. 8:16271642019. View Article : Google Scholar : PubMed/NCBI | |
Parayath NN, Padmakumar S and Amiji MM: Extracellular vesicle-mediated nucleic acid transfer and reprogramming in the tumor microenvironment. Cancer Lett. 482:33–43. 2020. View Article : Google Scholar : PubMed/NCBI | |
Patras L and Banciu M: Intercellular crosstalk via extracellular vesicles in tumor milieu as emerging therapies for cancer progression. Curr Pharm Des. 25:1980–2006. 2019. View Article : Google Scholar : PubMed/NCBI | |
Xie C, Ji N, Tang Z, Li J and Chen Q: The role of extracellular vesicles from different origin in the microenvironment of head and neck cancers. Mol Cancer. 18:832019. View Article : Google Scholar : PubMed/NCBI | |
Caicedo-Carvajal CE, Liu Q and Goy A: Three-dimensional cell culture models for biomarker discoveries and cancer research. Transl Med. 1:1–8. 2012. | |
Wang HX and Gires O: Tumor-derived extracellular vesicles in breast cancer: From bench to bedside. Cancer Lett. 460:54–64. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gould SJ and Raposo G: As we wait: Coping with an imperfect nomenclature for extracellular vesicles. J Extracell Vesicles. 2:2013. View Article : Google Scholar : PubMed/NCBI | |
Beach A, Zhang HG, Ratajczak MZ and Kakar SS: Exosomes: An overview of biogenesis, composition and role in ovarian cancer. J Ovarian Res. 7:142014. View Article : Google Scholar : PubMed/NCBI | |
Mashouri L, Yousefi H, Aref AR, Ahadi A mohammad, Molaei F and Alahari SK: Exosomes: Composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol Cancer. 18:752019. View Article : Google Scholar : PubMed/NCBI | |
Théry C, Zitvogel L and Amigorena S: Exosomes: Composition, biogenesis and function. Nat Rev Immunol. 2:569–579. 2002. View Article : Google Scholar : PubMed/NCBI | |
Chang WH, Cerione RA and Antonyak MA: Extracellular Vesicles and their roles in cancer progression. Methods Mol Biol. 2174:143–170. 2021. View Article : Google Scholar : PubMed/NCBI | |
Menck K, Sivaloganathan S, Bleckmann A and Binder C: Microvesicles in cancer: Small size, large potential. Int J Mol Sci. 21:53732020. View Article : Google Scholar : PubMed/NCBI | |
Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A and Rak J: Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol. 10:619–624. 2008. View Article : Google Scholar : PubMed/NCBI | |
Di Vizio D, Kim J, Hager MH, Morello M, Yang W, Lafargue CJ, True LD, Rubin MA, Adam RM, Beroukhim R, et al: Oncosome formation in prostate cancer: Association with a region of frequent chromosomal deletion in metastatic disease. Cancer Res. 69:5601–5609. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gurunathan S, Kang MH, Jeyaraj M, Qasim M and Kim JH: Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes. Cells. 8:3072019. View Article : Google Scholar : PubMed/NCBI | |
Hessvik NP and Llorente A: Current knowledge on exosome biogenesis and release. Cell Mol Life Sci. 75:193–208. 2018. View Article : Google Scholar : PubMed/NCBI | |
Baig AM, Khaleeq A, Ali U and Syeda H: Evidence of the COVID-19 virus targeting the CNS: Tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem Neurosci. 11:995–998. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li I and Nabet BY: Exosomes in the tumor microenvironment as mediators of cancer therapy resistance. Mol Cancer. 18:322019. View Article : Google Scholar : PubMed/NCBI | |
Peinado H, Alečković M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, García-Santos G, Ghajar C, et al: Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med. 18:883–891. 2012. View Article : Google Scholar : PubMed/NCBI | |
Walbrecq G, Margue C, Behrmann I and Kreis S: Distinct cargos of small extracellular vesicles derived from hypoxic cells and their effect on cancer cells. Int J Mol Sci. 21:50712020. View Article : Google Scholar : PubMed/NCBI | |
Azulay EE, Cooks T and Elkabets M: Potential oncogenic roles of mutant-p53-derived exosomes in the tumor-host interaction of head and neck cancers. Cancer Immunol Immunother. 69:285–292. 2020. View Article : Google Scholar : PubMed/NCBI | |
Pavlakis E, Neumann M and Stiewe T: Extracellular vesicles: Messengers of p53 in tumor-stroma communication and cancer metastasis. Int J Mol Sci. 21:96482020. View Article : Google Scholar : PubMed/NCBI | |
de Jong OG, Verhaar MC, Chen Y, Vader P, Gremmels H, Posthuma G, Schiffelers RM, Gucek M and van Balkom BW: Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. J Extracell Vesicles. 1:2012. View Article : Google Scholar : PubMed/NCBI | |
Drake RR and Kislinger T: The proteomics of prostate cancer exosomes. Expert Rev Proteomics. 11:167–177. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hamzah RN, Alghazali KM, Biris AS and Griffin RJ: Exosome traceability and cell source dependence on composition and cell-cell cross talk. Int J Mol Sci. 22:53462021. View Article : Google Scholar : PubMed/NCBI | |
Jelonek K, Widlak P and Pietrowska M: The influence of ionizing radiation on exosome composition, secretion and intercellular communication. Protein Pept Lett. 23:656–663. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jiao YJ, Jin DD, Jiang F, Liu JX, Qu LS, Ni WK, Liu ZX, Lu CH, Ni RZ, Zhu J and Xiao MB: Characterization and proteomic profiling of pancreatic cancer-derived serum exosomes. J Cell Biochem. 120:988–999. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hornung T, O'Neill HA, Logie SC, Fowler KM, Duncan JE, Rosenow M, Bondre AS, Tinder T, Maher V, Zarkovic J, et al: ADAPT identifies an ESCRT complex composition that discriminates VCaP from LNCaP prostate cancer cell exosomes. Nucleic Acids Res. 48:4013–4027. 2020. View Article : Google Scholar : PubMed/NCBI | |
Nabet BY, Qiu Y, Shabason JE, Wu TJ, Yoon T, Kim BC, Benci JL, DeMichele AM, Tchou J, Marcotrigiano J and Minn AJ: Exosome RNA unshielding couples stromal activation to pattern recognition receptor signaling in cancer. Cell. 170:352–366.e13. 2017. View Article : Google Scholar : PubMed/NCBI | |
Luo N: Editorial: Tumor microenvironment in cancer hallmarks and therapeutics. Front Mol Biosci. 9:10198302022. View Article : Google Scholar : PubMed/NCBI | |
Zheng Q, Yu X, Zhang M, Zhang S, Guo W and He Y: Current research progress of the role of LncRNA LEF1-AS1 in a variety of tumors. Front Cell Dev Biol. 9:7500842021. View Article : Google Scholar : PubMed/NCBI | |
Tu J, Chen W, Zheng L, Fang S, Zhang D, Kong C, Yang Y, Qiu R, Zhao Z, Lu C, et al: Circular RNA Circ0021205 promotes cholangiocarcinoma progression through MiR-204-5p/RAB22A axis. Front Cell Dev Biol. 9:6532072021. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Wang Y, Lu X, Zhang L and Wang Z: miRNA-7062-5p promoting bone resorption after bone metastasis of colorectal cancer through inhibiting GPR65. Front Cell Dev Biol. 9:6819682021. View Article : Google Scholar : PubMed/NCBI | |
Xiao J, Liu Y, Yi J and Liu X: LINC02257, an enhancer RNA of prognostic value in colon adenocarcinoma, correlates with multi-omics immunotherapy-related analysis in 33 cancers. Front Mol Biosci. 8:6467862021. View Article : Google Scholar : PubMed/NCBI | |
Ma J, Lin X, Wang X, Min Q, Wang T and Tang C: Reconstruction and analysis of the immune-related LINC00987/A2M axis in lung adenocarcinoma. Front Mol Biosci. 8:6445572021. View Article : Google Scholar : PubMed/NCBI | |
Huang K, Fang C, Yi K, Liu X, Qi H, Tan Y, Zhou J, Li Y, Liu M, Zhang Y, et al: The role of PTRF/Cavin1 as a biomarker in both glioma and serum exosomes. Theranostics. 8:1540–1557. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ayala-Mar S, Donoso-Quezada J and González-Valdez J: Clinical implications of exosomal PD-L1 in cancer immunotherapy. J Immunol Res. 2021:88399782021. View Article : Google Scholar : PubMed/NCBI | |
Chen G, Huang AC, Zhang W, Zhang G, Wu M, Xu W, Yu Z, Yang J, Wang B, Sun H, et al: Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature. 560:382–386. 2018. View Article : Google Scholar : PubMed/NCBI | |
Rai A, Greening DW, Chen M, Xu R, Ji H and Simpson RJ: Exosomes derived from human primary and metastatic colorectal cancer cells contribute to functional heterogeneity of activated fibroblasts by reprogramming their proteome. Proteomics. 19:e18001482019. View Article : Google Scholar : PubMed/NCBI | |
Berg G, Rybakova D, Fischer D, Cernava T, Vergès MC, Charles T, Chen X, Cocolin L, Eversole K, Corral GH, et al: Microbiome definition re-visited: Old concepts and new challenges. Microbiome. 8:1032020. View Article : Google Scholar : PubMed/NCBI | |
AlHilli MM and Bae-Jump V: Diet and gut microbiome interactions in gynecologic cancer. Gynecol Oncol. 159:299–308. 2020. View Article : Google Scholar : PubMed/NCBI | |
Anfossi S and Calin GA: Gut microbiota: A new player in regulating immune- and chemo-therapy efficacy. Cancer Drug Resist. 3:356–370. 2020.PubMed/NCBI | |
De Almeida CV, de Camargo MR, Russo E and Amedei A: Role of diet and gut microbiota on colorectal cancer immunomodulation. World J Gastroenterol. 25:151–162. 2019. View Article : Google Scholar : PubMed/NCBI | |
Di Modica M, Gargari G, Regondi V, Bonizzi A, Arioli S, Belmonte B, De Cecco L, Fasano E, Bianchi F, Bertolotti A, et al: Gut microbiota condition the therapeutic efficacy of trastuzumab in HER2-positive breast cancer. Cancer Res. 81:2195–2206. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Tabung FK, Zhang X, Nowak JA, Qian ZR, Hamada T, Nevo D, Bullman S, Mima K, Kosumi K, et al: Diets that promote colon inflammation associate with risk of colorectal carcinomas that contain Fusobacterium nucleatum. Clin Gastroenterol Hepatol. 16:1622–1631.e3. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ponziani FR, Nicoletti A, Gasbarrini A and Pompili M: Diagnostic and therapeutic potential of the gut microbiota in patients with early hepatocellular carcinoma. Ther Adv Med Oncol. 11:17588359198481842019. View Article : Google Scholar : PubMed/NCBI | |
Rodríguez-García C, Sánchez-Quesada C, Algarra I and Gaforio JJ: The high-fat diet based on extra-virgin olive oil causes dysbiosis linked to colorectal cancer prevention. Nutrients. 12:17052020. View Article : Google Scholar : PubMed/NCBI | |
Laplane L, Duluc D, Bikfalvi A, Larmonier N and Pradeu T: Beyond the tumour microenvironment. Int J Cancer. 145:2611–2618. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chakladar J, Kuo SZ, Castaneda G, Li WT, Gnanasekar A, Yu MA, Chang EY, Wang XQ and Ongkeko WM: The pancreatic microbiome is associated with carcinogenesis and worse prognosis in males and smokers. Cancers (Basel). 12:26722020. View Article : Google Scholar : PubMed/NCBI | |
Chandel D, Sharma M, Chawla V, Sachdeva N and Shukla G: Isolation, characterization and identification of antigenotoxic and anticancerous indigenous probiotics and their prophylactic potential in experimental colon carcinogenesis. Sci Rep. 9:147692019. View Article : Google Scholar : PubMed/NCBI | |
Clanton R, Saucier D, Ford J and Akabani G: Microbial influences on hormesis, oncogenesis, and therapy: A review of the literature. Environ Res. 142:239–256. 2015. View Article : Google Scholar : PubMed/NCBI | |
Guo W, Zhang Y, Guo S, Mei Z, Liao H, Dong H, Wu K, Ye H, Zhang Y, Zhu Y, et al: Tumor microbiome contributes to an aggressive phenotype in the basal-like subtype of pancreatic cancer. Commun Biol. 4:10192021. View Article : Google Scholar : PubMed/NCBI | |
Huang H, Ren Z, Gao X, Hu X, Zhou Y, Jiang J, Lu H, Yin S, Ji J, Zhou L and Zheng S: Integrated analysis of microbiome and host transcriptome reveals correlations between gut microbiota and clinical outcomes in HBV-related hepatocellular carcinoma. Genome Med. 12:1022020. View Article : Google Scholar : PubMed/NCBI | |
Ingman WV: The gut microbiome: A new player in breast cancer metastasis. Cancer Res. 79:3539–3541. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jenkins SV, Robeson MS II, Griffin RJ, Quick CM, Siegel ER, Cannon MJ, Vang KB and Dings RPM: Gastrointestinal tract dysbiosis enhances distal tumor progression through suppression of leukocyte trafficking. Cancer Res. 79:5999–6009. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li L, Deng X, Zou Y, Lv X and Guo Y: Characterization of the nasopharynx microbiota in patients with nasopharyngeal carcinoma vs healthy controls. Braz J Microbiol. 52:1873–1880. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu HX, Tao LL, Zhang J, Zhu YG, Zheng Y, Liu D, Zhou M, Ke H, Shi MM and Qu JM: Difference of lower airway microbiome in bilateral protected specimen brush between lung cancer patients with unilateral lobar masses and control subjects. Int J Cancer. 142:769–778. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tzeng A, Sangwan N, Jia M, Liu CC, Keslar KS, Downs-Kelly E, Fairchild RL, Al-Hilli Z, Grobmyer SR and Eng C: Human breast microbiome correlates with prognostic features and immunological signatures in breast cancer. Genome Med. 13:602021. View Article : Google Scholar : PubMed/NCBI | |
Livyatan I, Nejman D, Shental N and Straussman R: Characterization of the human tumor microbiome reveals tumor-type specific intra-cellular bacteria. Oncoimmunology. 9:18009572020. View Article : Google Scholar : PubMed/NCBI | |
Burns MB, Lynch J, Starr TK, Knights D and Blekhman R: Virulence genes are a signature of the microbiome in the colorectal tumor microenvironment. Genome Med. 7:552015. View Article : Google Scholar : PubMed/NCBI | |
Burns MB, Montassier E, Abrahante J, Priya S, Niccum DE, Khoruts A, Starr TK, Knights D and Blekhman R: Colorectal cancer mutational profiles correlate with defined microbial communities in the tumor microenvironment. PLoS Genet. 14:e10073762018. View Article : Google Scholar : PubMed/NCBI | |
Lee JA, Yoo SY, Oh HJ, Jeong S, Cho NY, Kang GH and Kim JH: Differential immune microenvironmental features of microsatellite-unstable colorectal cancers according to Fusobacterium nucleatum status. Cancer Immunol Immunother. 70:47–59. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu W, Zhang R, Shu R, Yu J, Li H, Long H, Jin S, Li S, Hu Q, Yao F, et al: Study of the relationship between microbiome and colorectal cancer susceptibility using 16SrRNA sequencing. Biomed Res Int. 2020:78283922020.PubMed/NCBI | |
Liu X, Shao L, Liu X, Ji F, Mei Y, Cheng Y, Liu F, Yan C, Li L and Ling Z: Alterations of gastric mucosal microbiota across different stomach microhabitats in a cohort of 276 patients with gastric cancer. EBioMedicine. 40:336–348. 2019. View Article : Google Scholar : PubMed/NCBI | |
Oresta B, Braga D, Lazzeri M, Frego N, Saita A, Faccani C, Fasulo V, Colombo P, Guazzoni G, Hurle R and Rescigno M: The microbiome of catheter collected urine in males with bladder cancer according to disease stage. J Urol. 205:86–93. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wu P, Zhang G, Zhao J, Chen J, Chen Y, Huang W, Zhong J and Zeng J: Profiling the urinary microbiota in male patients with bladder cancer in China. Front Cell Infect Microbiol. 8:1672018. View Article : Google Scholar : PubMed/NCBI | |
Yin J, Dong L, Zhao J, Wang H, Li J, Yu A, Chen W and Wei W: Composition and consistence of the bacterial microbiome in upper, middle and lower esophagus before and after Lugol's iodine staining in the esophagus cancer screening. Scand J Gastroenterol. 55:1467–1474. 2020. View Article : Google Scholar : PubMed/NCBI | |
Minarovits J: Anaerobic bacterial communities associated with oral carcinoma: Intratumoral, surface-biofilm and salivary microbiota. Anaerobe. 68:1023002021. View Article : Google Scholar : PubMed/NCBI | |
Kostic AD, Gevers D, Pedamallu CS, Michaud M, Duke F, Earl AM, Ojesina AI, Jung J, Bass AJ, Tabernero J, et al: Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 22:292–298. 2012. View Article : Google Scholar : PubMed/NCBI | |
Thomas AM, Jesus EC, Lopes A, Aguiar S Jr, Begnami MD, Rocha RM, Carpinetti PA, Camargo AA, Hoffmann C, Freitas HC, et al: Tissue-associated bacterial alterations in rectal carcinoma patients revealed by 16S rRNA community profiling. Front Cell Infect Microbiol. 6:1792016. View Article : Google Scholar : PubMed/NCBI | |
Thompson KJ, Ingle JN, Tang X, Chia N, Jeraldo PR, Walther-Antonio MR, Kandimalla KK, Johnson S, Yao JZ, Harrington SC, et al: A comprehensive analysis of breast cancer microbiota and host gene expression. PLoS One. 12:e01888732017. View Article : Google Scholar : PubMed/NCBI | |
Cavarretta I, Ferrarese R, Cazzaniga W, Saita D, Lucianò R, Ceresola ER, Locatelli I, Visconti L, Lavorgna G, Briganti A, et al: The microbiome of the prostate tumor microenvironment. Eur Urol. 72:625–631. 2017. View Article : Google Scholar : PubMed/NCBI | |
Duan H, Chen L, Qu L, Yang H, Song SW, Han Y, Ye M, Chen W, He X and Shou C: Mycoplasma hyorhinis infection promotes NF-κB-dependent migration of gastric cancer cells. Cancer Res. 74:5782–5794. 2014. View Article : Google Scholar : PubMed/NCBI | |
Duan H, Qu L and Shou C: Mycoplasma hyorhinis induces epithelial-mesenchymal transition in gastric cancer cell MGC803 via TLR4-NF-κB signaling. Cancer Lett. 354:447–454. 2014. View Article : Google Scholar : PubMed/NCBI | |
Geller LT, Barzily-Rokni M, Danino T, Jonas OH, Shental N, Nejman D, Gavert N, Zwang Y, Cooper ZA, Shee K, et al: Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science. 357:1156–1160. 2017. View Article : Google Scholar : PubMed/NCBI | |
Huang S, Li JY, Wu J, Meng L and Shou CC: Mycoplasma infections and different human carcinomas. World J Gastroenterol. 7:266–269. 2001. View Article : Google Scholar : PubMed/NCBI | |
Liu D, Hu Y, Guo Y, Zhu Z, Lu B, Wang X and Huang Y: Mycoplasma-associated multidrug resistance of hepatocarcinoma cells requires the interaction of P37 and Annexin A2. PLoS One. 12:e01845782017. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Rong Z and Shou C: Mycoplasma hyorhinis infection promotes gastric cancer cell motility via β-catenin signaling. Cancer Med. 8:5301–5312. 2019. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Li H, Chen W, Yao X, Xing Y, Wang X, Zhong J and Meng G: Mycoplasma hyorhinis activates the NLRP3 inflammasome and promotes migration and invasion of gastric cancer cells. PLoS One. 8:e779552013. View Article : Google Scholar : PubMed/NCBI | |
Gedye C, Cardwell T, Dimopoulos N, Tan BS, Jackson H, Svobodová S, Anaka M, Behren A, Maher C, Hofmann O, et al: Mycoplasma infection alters cancer stem cell properties in vitro. Stem Cell Rev Rep. 12:156–161. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Weinberg RA: The hallmarks of cancer. Cell. 100:57–70. 2000. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D: Hallmarks of cancer: New dimensions. Cancer Discov. 12:31–46. 2022. View Article : Google Scholar : PubMed/NCBI | |
Franco OE, Shaw AK, Strand DW and Hayward SW: Cancer associated fibroblasts in cancer pathogenesis. Semin Cell Dev Biol. 21:33–39. 2010. View Article : Google Scholar : PubMed/NCBI | |
Spaeth EL, Dembinski JL, Sasser AK, Watson K, Klopp A, Hall B, Andreeff M and Marini F: Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS One. 4:e49922009. View Article : Google Scholar : PubMed/NCBI | |
Erez N, Truitt M, Olson P, Arron ST and Hanahan D: Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell. 17:135–147. 2010. View Article : Google Scholar : PubMed/NCBI | |
Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian ZR, Du J, Davis A, Mongare MM, Gould J, Frederick DT, et al: Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature. 487:500–504. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhou Z, Zhou Q, Wu X, Xu S, Hu X, Tao X, Li B, Peng J, Li D, Shen L, et al: VCAM-1 secreted from cancer-associated fibroblasts enhances the growth and invasion of lung cancer cells through AKT and MAPK signaling. Cancer Lett. 473:62–73. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li F, Zhao S, Guo T, Li J and Gu C: The nutritional cytokine leptin promotes NSCLC by activating the PI3K/AKT and MAPK/ERK pathways in NSCLC cells in a paracrine manner. Biomed Res Int. 2019:25857432019.PubMed/NCBI | |
Folkman J, Watson K, Ingber D and Hanahan D: Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature. 339:58–61. 1989. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Folkman J: Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 86:353–364. 1996. View Article : Google Scholar : PubMed/NCBI | |
Butler JM, Kobayashi H and Rafii S: Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors. Nat Rev Cancer. 10:138–146. 2010. View Article : Google Scholar : PubMed/NCBI | |
Balkwill F, Charles KA and Mantovani A: Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell. 7:211–217. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lu P, Takai K, Weaver VM and Werb Z: Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol. 3:a0050582011. View Article : Google Scholar : PubMed/NCBI | |
Pontiggia O, Sampayo R, Raffo D, Motter A, Xu R, Bissell MJ, Joffé EB and Simian M: The tumor microenvironment modulates tamoxifen resistance in breast cancer: A role for soluble stromal factors and fibronectin through β1 integrin. Breast Cancer Res Treat. 133:459–471. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mohamed MM and Sloane BF: Cysteine cathepsins: Multifunctional enzymes in cancer. Nat Rev Cancer. 6:764–775. 2006. View Article : Google Scholar : PubMed/NCBI | |
Xu R, Boudreau A and Bissell MJ: Tissue architecture and function: Dynamic reciprocity via extra- and intra-cellular matrices. Cancer Metastasis Rev. 28:167–176. 2009. View Article : Google Scholar : PubMed/NCBI | |
Goulet CR and Pouliot F: TGFβ signaling in the tumor microenvironment. Adv Exp Med Biol. 1270:89–105. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hou W, Kaczorowski A, Lantwin P, Kippenberger M, Schütz V, Franke D, Dieffenbacher SC, Hohenfellner M and Duensing S: Microenvironment-derived FGF-2 stimulates renal cell carcinoma cell proliferation through modulation of p27Kip1: Implications for spatial niche formation and functional intratumoral heterogeneity. Pathobiology. 87:114–124. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zou F, Zhang ZH, Zhang YT, Zhao JQ, Zhang XL, Wen CL, Song XY and Zhou WM: Cancer-associated-fibroblasts regulate the chemoresistance of lung cancer cell line A549 via SDF-1 secretion. Zhonghua Zhong Liu Za Zhi. 39:339–343. 2017.(In Chinese). PubMed/NCBI | |
Wang H, Huang H, Wang L, Liu Y, Wang M, Zhao S, Lu G and Kang X: Cancer-associated fibroblasts secreted miR-103a-3p suppresses apoptosis and promotes cisplatin resistance in non-small cell lung cancer. Aging (Albany NY). 13:14456–14468. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sun X and Chen Z: Cancer-associated fibroblast-derived CCL5 contributes to cisplatin resistance in A549 NSCLC cells partially through upregulation of lncRNA HOTAIR expression. Oncol Lett. 22:6962021. View Article : Google Scholar : PubMed/NCBI | |
Tao L, Huang G, Wang R, Pan Y, He Z, Chu X, Song H and Chen L: Cancer-associated fibroblasts treated with cisplatin facilitates chemoresistance of lung adenocarcinoma through IL-11/IL-11R/STAT3 signaling pathway. Sci Rep. 6:384082016. View Article : Google Scholar : PubMed/NCBI | |
Bian L, Sun X, Jin K and He Y: Oral cancer-associated fibroblasts inhibit heat-induced apoptosis in Tca8113 cells through upregulated expression of Bcl-2 through the Mig/CXCR3 axis. Oncol Rep. 28:2063–2068. 2012. View Article : Google Scholar : PubMed/NCBI | |
Daenen LG, Shaked Y, Man S, Xu P, Voest EE, Hoffman RM, Chaplin DJ and Kerbel RS: Low-dose metronomic cyclophosphamide combined with vascular disrupting therapy induces potent antitumor activity in preclinical human tumor xenograft models. Mol Cancer Ther. 8:2872–2881. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chen Q, Zhang XHF and Massagué J: Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs. Cancer Cell. 20:538–549. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yang C, He L, He P, Liu Y, Wang W, He Y, Du Y and Gao F: Increased drug resistance in breast cancer by tumor-associated macrophages through IL-10/STAT3/bcl-2 signaling pathway. Med Oncol. 32:3522015. View Article : Google Scholar : PubMed/NCBI | |
Harley CB, Kim NW, Prowse KR, Weinrich SL, Hirsch KS, West MD, Bacchetti S, Hirte HW, Counter CM, Greider CW, et al: Telomerase, cell immortality, and cancer. Cold Spring Harb Symp Quant Biol. 59:307–315. 1994. View Article : Google Scholar : PubMed/NCBI | |
Jäger K and Walter M: Therapeutic targeting of telomerase. Genes (Basel). 7:392016. View Article : Google Scholar : PubMed/NCBI | |
Ge Y, Wu S, Xue Y, Tao J, Li F, Chen Y, Liu H, Ma W, Huang J and Zhao Y: Preferential extension of short telomeres induced by low extracellular pH. Nucleic Acids Res. 44:8086–8096. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li S, Jiang Y, Li A, Liu X, Xing X, Guo Y, Xu Y, Hao Y and Zheng C: Telomere length is positively associated with the expression of IL-6 and MIP-1α in bone marrow mesenchymal stem cells of multiple myeloma. Mol Med Rep. 16:2497–2504. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lin EY, Li JF, Bricard G, Wang W, Deng Y, Sellers R, Porcelli SA and Pollard JW: Vascular endothelial growth factor restores delayed tumor progression in tumors depleted of macrophages. Mol Oncol. 1:288–302. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, Tanzawa K, Thorpe P, Itohara S, Werb Z and Hanahan D: Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol. 2:737–744. 2000. View Article : Google Scholar : PubMed/NCBI | |
Coussens LM, Raymond WW, Bergers G, Laig-Webster M, Behrendtsen O, Werb Z, Caughey GH and Hanahan D: Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev. 13:1382–1397. 1999. View Article : Google Scholar : PubMed/NCBI | |
Khazaie K, Blatner NR, Khan MW, Gounari F, Gounaris E, Dennis K, Bonertz A, Tsai FN, Strouch MJ, Cheon E, et al: The significant role of mast cells in cancer. Cancer Metastasis Rev. 30:45–60. 2011. View Article : Google Scholar : PubMed/NCBI | |
Huang B, Huang M and Li Q: Cancer-associated fibroblasts promote angiogenesis of hepatocellular carcinoma by VEGF-mediated EZH2/VASH1 pathway. Technol Cancer Res Treat. 18:15330338198799052019. View Article : Google Scholar : PubMed/NCBI | |
Räsänen K and Vaheri A: Activation of fibroblasts in cancer stroma. Exp Cell Res. 316:2713–2722. 2010. View Article : Google Scholar : PubMed/NCBI | |
Huizer K, Zhu C, Chirifi I, Krist B, Zorgman D, van der Weiden M, van den Bosch TPP, Dumas J, Cheng C, Kros JM and Mustafa DA: Periostin is expressed by pericytes and is crucial for angiogenesis in glioma. J Neuropathol Exp Neurol. 79:863–872. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xian X, Håkansson J, Ståhlberg A, Lindblom P, Betsholtz C, Gerhardt H and Semb H: Pericytes limit tumor cell metastasis. J Clin Invest. 116:642–651. 2006. View Article : Google Scholar : PubMed/NCBI | |
Branco-Price C, Zhang N, Schnelle M, Evans C, Katschinski DM, Liao D, Ellies L and Johnson RS: Endothelial cell HIF-1α and HIF-2α differentially regulate metastatic success. Cancer Cell. 21:52–65. 2012. View Article : Google Scholar : PubMed/NCBI | |
Navarro R, Tapia-Galisteo A, Martín-García L, Tarín C, Corbacho C, Gómez-López G, Sánchez-Tirado E, Campuzano S, González-Cortés A, Yáñez-Sedeño P, et al: TGF-β-induced IGFBP-3 is a key paracrine factor from activated pericytes that promotes colorectal cancer cell migration and invasion. Mol Oncol. 14:2609–2628. 2020. View Article : Google Scholar : PubMed/NCBI | |
Pirilä E, Ramamurthy NS, Sorsa T, Salo T, Hietanen J and Maisi P: Gelatinase A (MMP-2), collagenase-2 (MMP-8), and laminin-5 gamma2-chain expression in murine inflammatory bowel disease (ulcerative colitis). Dig Dis Sci. 48:93–98. 2003. View Article : Google Scholar : PubMed/NCBI | |
Vasiljeva O, Papazoglou A, Krüger A, Brodoefel H, Korovin M, Deussing J, Augustin N, Nielsen BS, Almholt K, Bogyo M, et al: Tumor cell-derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer. Cancer Res. 66:5242–5250. 2006. View Article : Google Scholar : PubMed/NCBI | |
Balkwill F: Tumour necrosis factor and cancer. Nat Rev Cancer. 9:361–371. 2009. View Article : Google Scholar : PubMed/NCBI | |
Abraham S, Zhang W, Greenberg N and Zhang M: Maspin functions as tumor suppressor by increasing cell adhesion to extracellular matrix in prostate tumor cells. J Urol. 169:1157–1161. 2003. View Article : Google Scholar : PubMed/NCBI | |
Gorden DL, Fingleton B, Crawford HC, Jansen DE, Lepage M and Matrisian LM: Resident stromal cell-derived MMP-9 promotes the growth of colorectal metastases in the liver microenvironment. Int J Cancer. 121:495–500. 2007. View Article : Google Scholar : PubMed/NCBI | |
Labelle M, Begum S and Hynes RO: Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell. 20:576–590. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chaffer CL and Weinberg RA: A perspective on cancer cell metastasis. Science. 331:1559–1564. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhang XHF, Jin X, Malladi S, Zou Y, Wen YH, Brogi E, Smid M, Foekens JA and Massagué J: Selection of bone metastasis seeds by mesenchymal signals in the primary tumor stroma. Cell. 154:1060–1073. 2013. View Article : Google Scholar : PubMed/NCBI | |
Duda DG, Duyverman AMMJ, Kohno M, Snuderl M, Steller EJA, Fukumura D and Jain RK: Malignant cells facilitate lung metastasis by bringing their own soil. Proc Natl Acad Sci USA. 107:21677–21682. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lappano R, Rigiracciolo DC, Belfiore A, Maggiolini M and De Francesco EM: Cancer associated fibroblasts: Role in breast cancer and potential as therapeutic targets. Expert Opin Ther Targets. 24:559–572. 2020. View Article : Google Scholar : PubMed/NCBI | |
Onrust SV, Hartl PM, Rosen SD and Hanahan D: Modulation of L-selectin ligand expression during an immune response accompanying tumorigenesis in transgenic mice. J Clin Invest. 97:54–64. 1996. View Article : Google Scholar : PubMed/NCBI | |
Fisher DT, Chen Q, Skitzki JJ, Muhitch JB, Zhou L, Appenheimer MM, Vardam TD, Weis EL, Passanese J, Wang WC, et al: IL-6 trans-signaling licenses mouse and human tumor microvascular gateways for trafficking of cytotoxic T cells. J Clin Invest. 121:3846–3859. 2011. View Article : Google Scholar : PubMed/NCBI | |
Manzur M, Hamzah J and Ganss R: Modulation of the ‘blood-tumor’ barrier improves immunotherapy. Cell Cycle. 7:2452–2455. 2008. View Article : Google Scholar : PubMed/NCBI | |
Turley SJ, Cremasco V and Astarita JL: Immunological hallmarks of stromal cells in the tumour microenvironment. Nat Rev Immunol. 15:669–682. 2015. View Article : Google Scholar : PubMed/NCBI | |
Stover DG, Bierie B and Moses HL: A delicate balance: TGF-beta and the tumor microenvironment. J Cell Biochem. 101:851–861. 2007. View Article : Google Scholar : PubMed/NCBI | |
DeNardo DG, Brennan DJ, Rexhepaj E, Ruffell B, Shiao SL, Madden SF, Gallagher WM, Wadhwani N, Keil SD, Junaid SA, et al: Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov. 1:54–67. 2011. View Article : Google Scholar : PubMed/NCBI | |
Qian BZ and Pollard JW: Macrophage diversity enhances tumor progression and metastasis. Cell. 141:39–51. 2010. View Article : Google Scholar : PubMed/NCBI | |
Topalian SL, Drake CG and Pardoll DM: Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr Opin Immunol. 24:207–212. 2012. View Article : Google Scholar : PubMed/NCBI | |
Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, et al: Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 10:942–949. 2004. View Article : Google Scholar : PubMed/NCBI | |
van der Vliet HJJ, Koon HB, Atkins MB, Balk SP and Exley MA: Exploiting regulatory T-cell populations for the immunotherapy of cancer. J Immunother. 30:591–595. 2007. View Article : Google Scholar : PubMed/NCBI | |
Schmidt A, Oberle N and Krammer P: Molecular mechanisms of treg-mediated T cell suppression. Front Immunol. 3:512012. View Article : Google Scholar : PubMed/NCBI | |
Kalyanaraman B: Teaching the basics of cancer metabolism: Developing antitumor strategies by exploiting the differences between normal and cancer cell metabolism. Redox Biol. 12:833–842. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hensley CT, Faubert B, Yuan Q, Lev-Cohain N, Jin E, Kim J, Jiang L, Ko B, Skelton R, Loudat L, et al: Metabolic heterogeneity in human lung tumors. Cell. 164:681–694. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yu TJ, Ma D, Liu YY, Xiao Y, Gong Y, Jiang YZ, Shao ZM, Hu X and Di GH: Bulk and single-cell transcriptome profiling reveal the metabolic heterogeneity in human breast cancers. Mol Ther. 29:2350–2365. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hao X, Ren Y, Feng M, Wang Q and Wang Y: Metabolic reprogramming due to hypoxia in pancreatic cancer: Implications for tumor formation, immunity, and more. Biomed Pharmacother. 141:1117982021. View Article : Google Scholar : PubMed/NCBI | |
Kim J and DeBerardinis RJ: Mechanisms and implications of metabolic heterogeneity in cancer. Cell Metab. 30:434–446. 2019. View Article : Google Scholar : PubMed/NCBI | |
Xiao Z, Dai Z and Locasale JW: Metabolic landscape of the tumor microenvironment at single cell resolution. Nat Commun. 10:37632019. View Article : Google Scholar : PubMed/NCBI | |
Stadlbauer A, Oberndorfer S, Zimmermann M, Renner B, Buchfelder M, Heinz G, Doerfler A, Kleindienst A and Roessler K: Physiologic MR imaging of the tumor microenvironment revealed switching of metabolic phenotype upon recurrence of glioblastoma in humans. J Cereb Blood Flow Metab. 40:528–538. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gupta S, Roy A and Dwarakanath BS: Metabolic cooperation and competition in the tumor microenvironment: Implications for therapy. Front Oncol. 7:682017. View Article : Google Scholar : PubMed/NCBI | |
Martinez-Outschoorn U, Sotgia F and Lisanti MP: Tumor microenvironment and metabolic synergy in breast cancers: Critical importance of mitochondrial fuels and function. Semin Oncol. 41:1952014. View Article : Google Scholar : PubMed/NCBI | |
Ocaña MC, Martínez-Poveda B, Quesada AR and Medina MÁ: Metabolism within the tumor microenvironment and its implication on cancer progression: An ongoing therapeutic target. Med Res Rev. 39:70–113. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang YA, Li XL, Mo YZ, Fan CM, Tang L, Xiong F, Guo C, Xiang B, Zhou M, Ma J, et al: Effects of tumor metabolic microenvironment on regulatory T cells. Mol Cancer. 17:1682018. View Article : Google Scholar : PubMed/NCBI | |
Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Witkiewicz AK, Frank PG, Casimiro MC, Wang C, Fortina P, Addya S, et al: The reverse Warburg effect: Aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle. 8:3984–4001. 2009. View Article : Google Scholar : PubMed/NCBI | |
Reina-Campos M, Moscat J and Diaz-Meco M: Metabolism shapes the tumor microenvironment. Curr Opin Cell Biol. 48:47–53. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dietl K, Renner K, Dettmer K, Timischl B, Eberhart K, Dorn C, Hellerbrand C, Kastenberger M, Kunz-Schughart LA, Oefner PJ, et al: Lactic acid and acidification inhibit TNF secretion and glycolysis of human monocytes. J Immunol. 184:1200–1209. 2010. View Article : Google Scholar : PubMed/NCBI | |
Whitaker-Menezes D, Martinez-Outschoorn UE, Lin Z, Ertel A, Flomenberg N, Witkiewicz AK, Birbe RC, Howell A, Pavlides S, Gandara R, et al: Evidence for a stromal-epithelial ‘lactate shuttle’ in human tumors: MCT4 is a marker of oxidative stress in cancer-associated fibroblasts. Cell Cycle. 10:1772–1783. 2011. View Article : Google Scholar : PubMed/NCBI | |
Alberts B, Johnson A, Lewis J, Raff M, Roberts K and Walter P: Molecular biology of the cell. 4th edition. New York: Garland Science; 2002 | |
Deberardinis RJ, Sayed N, Ditsworth D and Thompson CB: Brick by brick: Metabolism and tumor cell growth. Curr Opin Genet Dev. 18:54–61. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yoshida GJ: Metabolic reprogramming: the emerging concept and associated therapeutic strategies. J Exp Clin Cancer Res. 34:1112015. View Article : Google Scholar : PubMed/NCBI | |
Koundouros N and Poulogiannis G: Reprogramming of fatty acid metabolism in cancer. Br J Cancer. 122:4–22. 2020. View Article : Google Scholar : PubMed/NCBI | |
Michalopoulou E, Bulusu V and Kamphorst JJ: Metabolic scavenging by cancer cells: When the going gets tough, the tough keep eating. Br J Cancer. 115:635–640. 2016. View Article : Google Scholar : PubMed/NCBI | |
Pavlova NN and Thompson CB: The emerging hallmarks of cancer metabolism. Cell Metab. 23:27–47. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dey P, Kimmelman AC and DePinho RA: Metabolic codependencies in the tumor microenvironment. Cancer Discov. 11:1067–1081. 2021. View Article : Google Scholar : PubMed/NCBI | |
Bailey KM, Wojtkowiak JW, Hashim AI and Gillies RJ: Targeting the metabolic microenvironment of tumors. Adv Pharmacol. 65:63–107. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sormendi S and Wielockx B: Hypoxia pathway proteins as central mediators of metabolism in the tumor cells and their microenvironment. Front Immunol. 9:402018. View Article : Google Scholar : PubMed/NCBI | |
Devic S: Warburg effect-a consequence or the cause of carcinogenesis? J Cancer. 7:817–822. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cairns RA: Drivers of the Warburg phenotype. Cancer J. 21:56–61. 2015. View Article : Google Scholar : PubMed/NCBI | |
El Hassouni B, Granchi C, Vallés-Martí A, Supadmanaba IGP, Bononi G, Tuccinardi T, Funel N, Jimenez CR, Peters GJ, Giovannetti E and Minutolo F: The dichotomous role of the glycolytic metabolism pathway in cancer metastasis: Interplay with the complex tumor microenvironment and novel therapeutic strategies. Semin Cancer Biol. 60:238–248. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chang CH, Qiu J, O'Sullivan D, Buck MD, Noguchi T, Curtis JD, Chen Q, Gindin M, Gubin MM, van der Windt GJ, et al: Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell. 162:1229–1241. 2015. View Article : Google Scholar : PubMed/NCBI | |
DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S and Thompson CB: Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA. 104:19345–19350. 2007. View Article : Google Scholar : PubMed/NCBI | |
Carito V, Bonuccelli G, Martinez-Outschoorn UE, Whitaker-Menezes D, Caroleo MC, Cione E, Howell A, Pestell RG, Lisanti MP and Sotgia F: Metabolic remodeling of the tumor microenvironment: Migration factor (MSF) reprograms myofibroblasts toward lactate production, fueling anabolic tumor growthstimulating. Cell Cycle. 11:3403–3414. 2012. View Article : Google Scholar : PubMed/NCBI | |
Manning BD and Toker A: AKT/PKB signaling: Navigating the network. Cell. 169:381–405. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dang CV: MYC on the path to cancer. Cell. 149:22–35. 2012. View Article : Google Scholar : PubMed/NCBI | |
Stine ZE, Walton ZE, Altman BJ, Hsieh AL and Dang CV: MYC, metabolism, and cancer. Cancer Discov. 5:1024–1039. 2015. View Article : Google Scholar : PubMed/NCBI | |
Osthus RC, Shim H, Kim S, Li Q, Reddy R, Mukherjee M, Xu Y, Wonsey D, Lee LA and Dang CV: Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J Biol Chem. 275:21797–21800. 2000. View Article : Google Scholar : PubMed/NCBI | |
Zhao X, Petrashen AP, Sanders JA, Peterson AL and Sedivy JM: SLC1A5 glutamine transporter is a target of MYC and mediates reduced mTORC1 signaling and increased fatty acid oxidation in long-lived Myc hypomorphic mice. Aging Cell. 18:e129472019. View Article : Google Scholar : PubMed/NCBI | |
Sasaki H, Shitara M, Yokota K, Hikosaka Y, Moriyama S, Yano M and Fujii Y: Overexpression of GLUT1 correlates with Kras mutations in lung carcinomas. Mol Med Rep. 5:599–602. 2012.PubMed/NCBI | |
Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC, Fletcher-Sananikone E, Locasale JW, Son J, Zhang H, Coloff JL, et al: Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell. 149:656–670. 2012. View Article : Google Scholar : PubMed/NCBI | |
Son J, Lyssiotis CA, Ying H, Wang X, Hua S, Ligorio M, Perera RM, Ferrone CR, Mullarky E, Shyh-Chang N, et al: Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature. 496:101–105. 2013. View Article : Google Scholar : PubMed/NCBI | |
Baek G, Tse YF, Hu Z, Cox D, Buboltz N, McCue P, Yeo CJ, White MA, DeBerardinis RJ, Knudsen ES and Witkiewicz AK: MCT4 defines a glycolytic subtype of pancreatic cancer with poor prognosis and unique metabolic dependencies. Cell Rep. 9:2233–2249. 2014. View Article : Google Scholar : PubMed/NCBI | |
Dey P, Li J, Zhang J, Chaurasiya S, Strom A, Wang H, Liao WT, Cavallaro F, Denz P, Bernard V, et al: Oncogenic KRAS-driven metabolic reprogramming in pancreatic cancer cells utilizes cytokines from the tumor microenvironment. Cancer Discov. 10:608–625. 2020. View Article : Google Scholar : PubMed/NCBI | |
Amendola CR, Mahaffey JP, Parker SJ, Ahearn IM, Chen WC, Zhou M, Court H, Shi J, Mendoza SL, Morten MJ, et al: KRAS4A directly regulates hexokinase 1. Nature. 576:482–486. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y and Commisso C: Macropinocytosis in cancer: A complex signaling network. Trends Cancer. 5:332–334. 2019. View Article : Google Scholar : PubMed/NCBI | |
Commisso C, Davidson SM, Soydaner-Azeloglu RG, Parker SJ, Kamphorst JJ, Hackett S, Grabocka E, Nofal M, Drebin JA, Thompson CB, et al: Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature. 497:633–637. 2013. View Article : Google Scholar : PubMed/NCBI | |
Schwartzenberg-Bar-Yoseph F, Armoni M and Karnieli E: The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res. 64:2627–2633. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Xiong H, Wu F, Zhang Y, Wang J, Zhao L, Guo X, Chang LJ, Zhang Y, You MJ, et al: Hexokinase 2-mediated Warburg effect is required for PTEN- and p53-deficiency-driven prostate cancer growth. Cell Rep. 8:1461–1474. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yahagi N, Shimano H, Matsuzaka T, Najima Y, Sekiya M, Nakagawa Y, Ide T, Tomita S, Okazaki H, Tamura Y, et al: p53 activation in adipocytes of obese mice. J Biol Chem. 278:25395–25400. 2003. View Article : Google Scholar : PubMed/NCBI | |
Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R, Gottlieb E and Vousden KH: TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell. 126:107–120. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sonugür FG and Akbulut H: The role of tumor microenvironment in genomic instability of malignant tumors. Front Genet. 10:10632019. View Article : Google Scholar : PubMed/NCBI | |
Nakamura H, Tanimoto K, Hiyama K, Yunokawa M, Kawamoto T, Kato Y, Yoshiga K, Poellinger L, Hiyama E and Nishiyama M: Human mismatch repair gene, MLH1, is transcriptionally repressed by the hypoxia-inducible transcription factors, DEC1 and DEC2. Oncogene. 27:4200–4209. 2008. View Article : Google Scholar : PubMed/NCBI | |
Rodríguez-Jiménez FJ, Moreno-Manzano V, Lucas-Dominguez R and Sánchez-Puelles JM: Hypoxia causes downregulation of mismatch repair system and genomic instability in stem cells. Stem Cells. 26:2052–2062. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ren Z, Wang Z, Gu D, Ma H, Zhu Y, Cai M and Zhang J: Genome instability and long noncoding RNA reveal biomarkers for immunotherapy and prognosis and novel competing endogenous RNA mechanism in colon adenocarcinoma. Front Cell Dev Biol. 9:7404552021. View Article : Google Scholar : PubMed/NCBI | |
Guo JN, Xia TY, Deng SH, Xue WN, Cui BB and Liu YL: Prognostic immunity and therapeutic sensitivity analyses based on differential genomic instability-associated LncRNAs in left- and right-sided colon adenocarcinoma. Front Mol Biosci. 8:6688882021. View Article : Google Scholar : PubMed/NCBI | |
Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS and Albelda SM: Polarization of tumor-associated neutrophil phenotype by TGF-beta: ‘N1’ versus ‘N2’ TAN. Cancer Cell. 16:183–194. 2009. View Article : Google Scholar : PubMed/NCBI | |
DeNardo DG, Barreto JB, Andreu P, Vasquez L, Tawfik D, Kolhatkar N and Coussens LM: CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell. 16:91–102. 2009. View Article : Google Scholar : PubMed/NCBI | |
Schoppmann SF, Birner P, Stöckl J, Kalt R, Ullrich R, Caucig C, Kriehuber E, Nagy K, Alitalo K and Kerjaschki D: Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am J Pathol. 161:947–956. 2002. View Article : Google Scholar : PubMed/NCBI | |
Celis JE, Gromov P, Cabezón T, Moreira JM, Ambartsumian N, Sandelin K, Rank F and Gromova I: Proteomic characterization of the interstitial fluid perfusing the breast tumor microenvironment: A novel resource for biomarker and therapeutic target discovery. Mol Cell Proteomics. 3:327–344. 2004. View Article : Google Scholar : PubMed/NCBI | |
Dirat B, Bochet L, Dabek M, Daviaud D, Dauvillier S, Majed B, Wang YY, Meulle A, Salles B, Le Gonidec S, et al: Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res. 71:2455–2465. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ershaid N, Sharon Y, Doron H, Raz Y, Shani O, Cohen N, Monteran L, Leider-Trejo L, Ben-Shmuel A, Yassin M, et al: NLRP3 inflammasome in fibroblasts links tissue damage with inflammation in breast cancer progression and metastasis. Nat Commun. 10:43752019. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Tao P, Zhou Q, Li J, Yu Z, Wang X, Li J, Li C, Yan M, Zhu Z, et al: IL-6 secreted by cancer-associated fibroblasts promotes epithelial-mesenchymal transition and metastasis of gastric cancer via JAK2/STAT3 signaling pathway. Oncotarget. 8:20741–20750. 2017. View Article : Google Scholar : PubMed/NCBI | |
Davidson S, Efremova M, Riedel A, Mahata B, Pramanik J, Huuhtanen J, Kar G, Vento-Tormo R, Hagai T, Chen X, et al: Single-cell RNA sequencing reveals a dynamic stromal niche that supports tumor growth. Cell Rep. 31:1076282020. View Article : Google Scholar : PubMed/NCBI | |
Erez N, Glanz S, Raz Y, Avivi C and Barshack I: Cancer associated fibroblasts express pro-inflammatory factors in human breast and ovarian tumors. Biochem Biophys Res Commun. 437:397–402. 2013. View Article : Google Scholar : PubMed/NCBI | |
De Monte L, Reni M, Tassi E, Clavenna D, Papa I, Recalde H, Braga M, Di Carlo V, Doglioni C and Protti MP: Intratumor T helper type 2 cell infiltrate correlates with cancer-associated fibroblast thymic stromal lymphopoietin production and reduced survival in pancreatic cancer. J Exp Med. 208:469–478. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bejarano L, Jordāo MJC and Joyce JA: Therapeutic targeting of the tumor microenvironment. Cancer Discov. 11:933–959. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lieu CH, Tan AC, Leong S, Diamond JR and Eckhardt SG: From bench to bedside: Lessons learned in translating preclinical studies in cancer drug development. J Natl Cancer Inst. 105:1441–1456. 2013. View Article : Google Scholar : PubMed/NCBI | |
Syed M, Flechsig P, Liermann J, Windisch P, Staudinger F, Akbaba S, Koerber SA, Freudlsperger C, Plinkert PK, Debus J, et al: Fibroblast activation protein inhibitor (FAPI) PET for diagnostics and advanced targeted radiotherapy in head and neck cancers. Eur J Nucl Med Mol Imaging. 47:2836–2845. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Pang Y, Wu J, Zhao L, Hao B, Wu J, Wei J, Wu S, Zhao L, Luo Z, et al: Comparison of [68Ga]Ga-DOTA-FAPI-04 and [18F] FDG PET/CT for the diagnosis of primary and metastatic lesions in patients with various types of cancer. Eur J Nucl Med Mol Imaging. 47:1820–1832. 2020. View Article : Google Scholar : PubMed/NCBI | |
Melero I, Sanmamed MF, Calvo E, Moreno I, Moreno V, Hernandez Guerrero TC, Martinez-Garcia M, Rodriguez-Vida A, Tabernero J, Azaro Pedrazzoli AB, et al: 1025MO first-in-human (FIH) phase I study of RO7122290 (RO), a novel FAP-targeted 4-1BB agonist, administered as single agent and in combination with atezolizumab (ATZ) to patients with advanced solid tumours. Ann Oncol. 31 (Suppl 4):S7072020. View Article : Google Scholar | |
Sounni NE and Noel A: Targeting the tumor microenvironment for cancer therapy. Clin Chem. 59:85–93. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lamberts LE, Koch M, de Jong JS, Adams ALL, Glatz J, Kranendonk MEG, Terwisscha van Scheltinga AGT, Jansen L, de Vries J, Lub-de Hooge MN, et al: Tumor-specific uptake of fluorescent bevacizumab-IRDye800CW microdosing in patients with primary breast cancer: A phase I feasibility study. Clin Cancer Res. 23:2730–2741. 2017. View Article : Google Scholar : PubMed/NCBI | |
Harlaar NJ, Koller M, de Jongh SJ, van Leeuwen BL, Hemmer PH, Kruijff S, van Ginkel RJ, Been LB, de Jong JS, Kats-Ugurlu G, et al: Molecular fluorescence-guided surgery of peritoneal carcinomatosis of colorectal origin: A single-centre feasibility study. Lancet Gastroenterol Hepatol. 1:283–290. 2016. View Article : Google Scholar : PubMed/NCBI | |
Nakano K, Funauchi Y, Hayakawa K, Tanizawa T, Ae K, Matsumoto S and Takahashi S: Relative dose intensity of induction-phase pazopanib treatment of soft tissue sarcoma: Its relationship with prognoses of pazopanib responders. J Clin Med. 8:602019. View Article : Google Scholar : PubMed/NCBI | |
Noda S, Yoshida T, Hira D, Murai R, Tomita K, Tsuru T, Kageyama S, Kawauchi A, Ikeda Y, Morita SY and Terada T: Exploratory investigation of target pazopanib concentration range for patients with renal cell carcinoma. Clin Genitourin Cancer. 17:e306–e313. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Lu J, You Q, Huang H, Chen Y and Liu K: The mTOR/AP-1/VEGF signaling pathway regulates vascular endothelial cell growth. Oncotarget. 7:53269–53276. 2016. View Article : Google Scholar : PubMed/NCBI | |
Komohara Y, Fujiwara Y, Ohnishi K and Takeya M: Tumor-associated macrophages: Potential therapeutic targets for anti-cancer therapy. Adv Drug Deliv Rev. 99:180–185. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bak SP, Walters JJ, Takeya M, Conejo-Garcia JR and Berwin BL: Scavenger receptor-A-targeted leukocyte depletion inhibits peritoneal ovarian tumor progression. Cancer Res. 67:4783–4789. 2007. View Article : Google Scholar : PubMed/NCBI | |
Nagai T, Tanaka M, Tsuneyoshi Y, Xu B, Michie SA, Hasui K, Hirano H, Arita K and Matsuyama T: Targeting tumor-associated macrophages in an experimental glioma model with a recombinant immunotoxin to folate receptor beta. Cancer Immunol Immunother. 58:1577–1586. 2009. View Article : Google Scholar : PubMed/NCBI | |
Naser R, Dilabazian H, Bahr H, Barakat A and El-Sibai M: A guide through conventional and modern cancer treatment modalities: A specific focus on glioblastoma cancer therapy (review). Oncol Rep. 48:1902022. View Article : Google Scholar : PubMed/NCBI | |
Liu Y and Zheng P: Preserving the CTLA-4 checkpoint for safer and more effective cancer immunotherapy. Trends Pharmacol Sci. 41:4–12. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tauriello DVF, Palomo-Ponce S, Stork D, Berenguer-Llergo A, Badia-Ramentol J, Iglesias M, Sevillano M, Ibiza S, Cañellas A, Hernando-Momblona X, et al: TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature. 554:538–543. 2018. View Article : Google Scholar : PubMed/NCBI | |
Greten FR, Arkan MC, Bollrath J, Hsu LC, Goode J, Miething C, Göktuna SI, Neuenhahn M, Fierer J, Paxian S, et al: NF-kappaB is a negative regulator of IL-1beta secretion as revealed by genetic and pharmacological inhibition of IKKbeta. Cell. 130:918–931. 2007. View Article : Google Scholar : PubMed/NCBI | |
Marsh JL, Jackman CP, Tang SN, Shankar S and Srivastava RK: Embelin suppresses pancreatic cancer growth by modulating tumor immune microenvironment. Front Biosci (Landmark Ed). 19:113–125. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xu CL, Zheng B, Pei JH, Shen SJ and Wang JZ: Embelin induces apoptosis of human gastric carcinoma through inhibition of p38 MAPK and NF-κB signaling pathways. Mol Med Rep. 14:307–312. 2016. View Article : Google Scholar : PubMed/NCBI | |
Waldmann TA: Cytokines in cancer immunotherapy. Cold Spring Harb Perspect Biol. 10:a0284722018. View Article : Google Scholar : PubMed/NCBI | |
Rosenberg SA, Restifo NP, Yang JC, Morgan RA and Dudley ME: Adoptive cell transfer: A clinical path to effective cancer immunotherapy. Nat Rev Cancer. 8:299–308. 2008. View Article : Google Scholar : PubMed/NCBI | |
Redeker A and Arens R: Improving adoptive T cell therapy: The particular role of T cell costimulation, cytokines, and post-transfer vaccination. Front Immunol. 7:3452016. View Article : Google Scholar : PubMed/NCBI | |
Chruściel E, Urban-Wójciuk Z, Arcimowicz Ł, Kurkowiak M, Kowalski J, Gliwiński M, Marjański T, Rzyman W, Biernat W, Dziadziuszko R, et al: Adoptive cell therapy-harnessing antigen-specific T cells to target solid tumours. Cancers (Basel). 12:6832020. View Article : Google Scholar : PubMed/NCBI | |
Benmebarek MR, Karches CH, Cadilha BL, Lesch S, Endres S and Kobold S: Killing mechanisms of chimeric antigen receptor (CAR) T cells. Int J Mol Sci. 20:12832019. View Article : Google Scholar : PubMed/NCBI | |
Brown CE, Badie B, Barish ME, Weng L, Ostberg JR, Chang WC, Naranjo A, Starr R, Wagner J, Wright C, et al: Bioactivity and safety of IL13Rα2-redirected chimeric antigen receptor CD8+ T cells in patients with recurrent glioblastoma. Clin Cancer Res. 21:4062–4072. 2015. View Article : Google Scholar : PubMed/NCBI | |
Xu S, Tang L, Li X, Fan F and Liu Z: Immunotherapy for glioma: Current management and future application. Cancer Lett. 476:1–12. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Fu M, Wang M, Wan D, Wei Y and Wei X: Cancer vaccines as promising immuno-therapeutics: Platforms and current progress. J Hematol Oncol. 15:282022. View Article : Google Scholar : PubMed/NCBI | |
Keskin DB, Anandappa AJ, Sun J, Tirosh I, Mathewson ND, Li S, Oliveira G, Giobbie-Hurder A, Felt K, Gjini E, et al: Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature. 565:234–239. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hilf N, Kuttruff-Coqui S, Frenzel K, Bukur V, Stevanović S, Gouttefangeas C, Platten M, Tabatabai G, Dutoit V, van der Burg SH, et al: Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature. 565:240–245. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hollingsworth RE and Jansen K: Turning the corner on therapeutic cancer vaccines. NPJ Vaccines. 4:72019. View Article : Google Scholar : PubMed/NCBI | |
Rüttinger D, Winter H, van den Engel NK, Hatz R, Jauch KW, Fox BA and Weber JS: Immunotherapy of cancer: Key findings and commentary on the third tegernsee conference. Oncologist. 15:112–118. 2010. View Article : Google Scholar : PubMed/NCBI | |
AIVITA, Biomedical Inc., . AIVITA biomedical's phase 2 glioblastoma trial shows improved progression free survival. 2021. | |
Busby J, McMenamin Ú, Spence A, Johnston BT, Hughes C and Cardwell CR: Angiotensin receptor blocker use and gastro-oesophageal cancer survival: A population-based cohort study. Aliment Pharmacol Ther. 47:279–288. 2018. View Article : Google Scholar : PubMed/NCBI | |
Murphy JE, Wo JY, Ryan DP, Clark JW, Jiang W, Yeap BY, Drapek LC, Ly L, Baglini CV, Blaszkowsky LS, et al: Total neoadjuvant therapy with FOLFIRINOX in combination with losartan followed by chemoradiotherapy for locally advanced pancreatic cancer: A phase 2 clinical trial. JAMA Oncol. 5:1020–1027. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fennell DA, Baas P, Taylor P, Nowak AK, Gilligan D, Nakano T, Pachter JA, Weaver DT, Scherpereel A, Pavlakis N, et al: Maintenance defactinib versus placebo after first-line chemotherapy in patients with merlin-stratified pleural mesothelioma: COMMAND-A double-blind, randomized, phase II study. J Clin Oncol. 37:790–798. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang-Gillam A: Targeting stroma: A tale of caution. J Clin Oncol. 37:1041–1043. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ulisse S, Baldini E, Sorrenti S and D'Armiento M: The urokinase plasminogen activator system: A target for anti-cancer therapy. Curr Cancer Drug Targets. 9:32–71. 2009. View Article : Google Scholar : PubMed/NCBI | |
Feng S, Agoulnik IU, Bogatcheva NV, Kamat AA, Kwabi-Addo B, Li R, Ayala G, Ittmann MM and Agoulnik AI: Relaxin promotes prostate cancer progression. Clin Cancer Res. 13:1695–1702. 2007. View Article : Google Scholar : PubMed/NCBI | |
Raue R, Frank AC, Syed SN and Brüne B: Therapeutic targeting of MicroRNAs in the tumor microenvironment. Int J Mol Sci. 22:22102021. View Article : Google Scholar : PubMed/NCBI | |
Huang S, Zhang J, Lai X, Zhuang L and Wu J: Identification of novel tumor microenvironment-related long noncoding RNAs to determine the prognosis and response to immunotherapy of hepatocellular carcinoma patients. Front Mol Biosci. 8:7813072021. View Article : Google Scholar : PubMed/NCBI | |
Ting NLN, Lau HCH and Yu J: Cancer pharmacomicrobiomics: Targeting microbiota to optimise cancer therapy outcomes. Gut. 71:1412–1425. 2022. View Article : Google Scholar : PubMed/NCBI | |
Spanogiannopoulos P, Bess EN, Carmody RN and Turnbaugh PJ: The microbial pharmacists within us: A metagenomic view of xenobiotic metabolism. Nat Rev Microbiol. 14:273–287. 2016. View Article : Google Scholar : PubMed/NCBI | |
Imai H, Saijo K, Komine K, Otsuki Y, Ohuchi K, Sato Y, Okita A, Takahashi M, Takahashi S, Shirota H, et al: Antibiotic therapy augments the efficacy of gemcitabine-containing regimens for advanced cancer: A retrospective study. Cancer Manag Res. 11:7953–7965. 2019. View Article : Google Scholar : PubMed/NCBI | |
Nakano S, Komatsu Y, Kawamoto Y, Saito R, Ito K, Nakatsumi H, Yuki S and Sakamoto N: Association between the use of antibiotics and efficacy of gemcitabine plus nab-paclitaxel in advanced pancreatic cancer. Medicine (Baltimore). 99:e222502020. View Article : Google Scholar : PubMed/NCBI | |
Sunakawa Y, Arai H, Izawa N, Mizukami T, Horie Y, Doi A, Hirakawa M, Ogura T, Tsuda T and Nakajima TE: Antibiotics may enhance the efficacy of gemcitabine treatment for advanced pancreatic cancer. Ann Oncol. 29 (Suppl 8):viii251–viii252. 2018. View Article : Google Scholar | |
Frankel AE, Coughlin LA, Kim J, Froehlich TW, Xie Y, Frenkel EP and Koh AY: Metagenomic shotgun sequencing and unbiased metabolomic profiling identify specific human gut microbiota and metabolites associated with immune checkpoint therapy efficacy in melanoma patients. Neoplasia. 19:848–855. 2017. View Article : Google Scholar : PubMed/NCBI | |
Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillère R, Fluckiger A, Messaoudene M, Rauber C, Roberti MP, et al: Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 359:91–97. 2018. View Article : Google Scholar : PubMed/NCBI | |
Matson V, Fessler J, Bao R, Chongsuwat T, Zha Y, Alegre ML, Luke JJ and Gajewski TF: The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science. 359:104–108. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, Prieto PA, Vicente D, Hoffman K, Wei SC, et al: Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 359:97–103. 2018. View Article : Google Scholar : PubMed/NCBI | |
Vétizou M, Pitt JM, Daillère R, Lepage P, Waldschmitt N, Flament C, Rusakiewicz S, Routy B, Roberti MP, Duong CP, et al: Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 350:1079–1084. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, Benyamin FW, Lei YM, Jabri B, Alegre ML, et al: Commensal bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 350:1084–1089. 2015. View Article : Google Scholar : PubMed/NCBI | |
Khalesi S, Bellissimo N, Vandelanotte C, Williams S, Stanley D and Irwin C: A review of probiotic supplementation in healthy adults: Helpful or hype? Eur J Clin Nutr. 73:24–37. 2019. View Article : Google Scholar : PubMed/NCBI | |
Pushalkar S, Hundeyin M, Daley D, Zambirinis CP, Kurz E, Mishra A, Mohan N, Aykut B, Usyk M, Torres LE, et al: The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov. 8:403–416. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yu T, Guo F, Yu Y, Sun T, Ma D, Han J, Qian Y, Kryczek I, Sun D, Nagarsheth N, et al: Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell. 170:548–563.e16. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zheng JH, Nguyen VH, Jiang SN, Park SH, Tan W, Hong SH, Shin MG, Chung IJ, Hong Y, Bom HS, et al: Two-step enhanced cancer immunotherapy with engineered Salmonella typhimurium secreting heterologous flagellin. Sci Transl Med. 9:eaak95372017. View Article : Google Scholar : PubMed/NCBI | |
Juul FE, Garborg K, Bretthauer M, Skudal H, Øines MN, Wiig H, Rose Ø, Seip B, Lamont JT, Midtvedt T, et al: Fecal microbiota transplantation for primary clostridium difficile infection. N Engl J Med. 378:2535–2536. 2018. View Article : Google Scholar : PubMed/NCBI | |
van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG, de Vos WM, Visser CE, Kuijper EJ, Bartelsman JF, Tijssen JG, et al: Duodenal infusion of donor feces for recurrent clostridium difficile. N Engl J Med. 368:407–415. 2013. View Article : Google Scholar : PubMed/NCBI | |
Arbel LT, Hsu E and McNally K: Cost-effectiveness of fecal microbiota transplantation in the treatment of recurrent clostridium difficile infection: A literature review. Cureus. 9:e15992017.PubMed/NCBI | |
Bayat Mokhtari R, Homayouni TS, Baluch N, Morgatskaya E, Kumar S, Das B and Yeger H: Combination therapy in combating cancer. Oncotarget. 8:38022–38043. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lane D: Designer combination therapy for cancer. Nat Biotechnol. 24:163–164. 2006. View Article : Google Scholar : PubMed/NCBI | |
Allen E, Jabouille A, Rivera LB, Lodewijckx I, Missiaen R, Steri V, Feyen K, Tawney J, Hanahan D, Michael IP and Bergers G: Combined antiangiogenic and anti-PD-L1 therapy stimulates tumor immunity through HEV formation. Sci Transl Med. 9:eaak96792017. View Article : Google Scholar : PubMed/NCBI | |
Aparicio LMA, Fernandez IP and Cassinello J: Tyrosine kinase inhibitors reprogramming immunity in renal cell carcinoma: Rethinking cancer immunotherapy. Clin Transl Oncol. 19:1175–1182. 2017. View Article : Google Scholar : PubMed/NCBI | |
Duchnowska R, Loibl S and Jassem J: Tyrosine kinase inhibitors for brain metastases in HER2-positive breast cancer. Cancer Treat Rev. 67:71–77. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ntanasis-Stathopoulos I, Fotopoulos G, Tzanninis IG and Kotteas EA: The emerging role of tyrosine kinase inhibitors in ovarian cancer treatment: A systematic review. Cancer Invest. 34:313–339. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bożyk A, Wojas-Krawczyk K, Krawczyk P and Milanowski J: Tumor microenvironment-a short review of cellular and interaction diversity. Biology (Basel). 11:9292022.PubMed/NCBI | |
Russo M and Nastasi C: Targeting the tumor microenvironment: A close up of tumor-associated macrophages and neutrophils. Front Oncol. 12:8715132022. View Article : Google Scholar : PubMed/NCBI | |
Mao D, Xu R, Chen H, Chen X, Li D, Song S, He Y, Wei Z and Zhang C: Cross-talk of focal adhesion-related gene defines prognosis and the immune microenvironment in gastric cancer. Front Cell Dev Biol. 9:7164612021. View Article : Google Scholar : PubMed/NCBI | |
Qian H, Li H, Xie J, Lu X, Li F, Wang W, Tang X, Shi M, Jiang L, Li H, et al: Immunity-related gene signature identifies subtypes benefitting from adjuvant chemotherapy or potentially responding to PD1/PD-L1 blockage in pancreatic cancer. Front Cell Dev Biol. 9:6822612021. View Article : Google Scholar : PubMed/NCBI | |
Zhou S, Sun Y, Chen T, Wang J, He J, Lyu J, Shen Y, Chen X and Yang R: The landscape of the tumor microenvironment in skin cutaneous melanoma reveals a prognostic and immunotherapeutically relevant gene signature. Front Cell Dev Biol. 9:7395942021. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Zhou J, Xu Q, Foley R..Guo J, Zhang X, Tian C, Mu M, Xing Y, Liu Y, et al: Identification of key genes driving tumor associated macrophage migration and polarization based on immune fingerprints of lung adenocarcinoma. Front Cell Dev Biol. 9:7518002021. View Article : Google Scholar : PubMed/NCBI | |
Haibe Y, Kreidieh M, El Hajj H, Khalifeh I, Mukherji D, Temraz S and Shamseddine A: Resistance mechanisms to anti-angiogenic therapies in cancer. Front Oncol. 10:2212020. View Article : Google Scholar : PubMed/NCBI | |
Navab R, Strumpf D, To C, Pasko E, Kim KS, Park CJ, Hai J, Liu J, Jonkman J, Barczyk M, et al: Integrin α11β1 regulates cancer stromal stiffness and promotes tumorigenicity and metastasis in non-small cell lung cancer. Oncogene. 35:1899–1908. 2016. View Article : Google Scholar : PubMed/NCBI | |
Junttila MR and de Sauvage FJ: Influence of tumour micro-environment heterogeneity on therapeutic response. Nature. 501:346–354. 2013. View Article : Google Scholar : PubMed/NCBI | |
Giuliano S and Pagès G: Mechanisms of resistance to anti-angiogenesis therapies. Biochimie. 95:1110–1119. 2013. View Article : Google Scholar : PubMed/NCBI | |
Flaherty KT, Manola JB, Pins M, McDermott DF, Atkins MB, Dutcher JJ, George DJ, Margolin KA and DiPaola RS: BEST: A randomized phase II study of vascular endothelial growth factor, RAF kinase, and mammalian target of rapamycin combination targeted therapy with bevacizumab, sorafenib, and temsirolimus in advanced renal cell carcinoma-a trial of the ECOG-ACRIN cancer research group (E2804). J Clin Oncol. 33:2384–2391. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Li Y, Nie G and Zhao Y: Precise design of nanomedicines: Perspectives for cancer treatment. Natl Sci Rev. 6:1107–1110. 2019. View Article : Google Scholar : PubMed/NCBI | |
Atat OE, Farzaneh Z, Pourhamzeh M, Taki F, Abi-Habib R, Vosough M and El-Sibai M: 3D modeling in cancer studies. Hum Cell. 35:23–36. 2022. View Article : Google Scholar : PubMed/NCBI | |
Selek L, Seigneuret E, Nugue G, Wion D, Nissou MF, Salon C, Seurin MJ, Carozzo C, Ponce F, Roger T and Berger F: Imaging and histological characterization of a human brain xenograft in pig: the first induced glioma model in a large animal. J Neurosci Methods. 221:159–165. 2014. View Article : Google Scholar : PubMed/NCBI | |
Khoshnevis M, Carozzo C, Bonnefont-Rebeix C, Belluco S, Leveneur O, Chuzel T, Pillet-Michelland E, Dreyfus M, Roger T, Berger F and Ponce F: Development of induced glioblastoma by implantation of a human xenograft in Yucatan minipig as a large animal model. J Neurosci Methods. 282:61–68. 2017. View Article : Google Scholar : PubMed/NCBI | |
Khoshnevis M, Carozzo C, Brown R, Bardiès M, Bonnefont-Rebeix C, Belluco S, Nennig C, Marcon L, Tillement O, Gehan H, et al: Feasibility of intratumoral 165Holmium siloxane delivery to induced U87 glioblastoma in a large animal model, the Yucatan minipig. PLoS One. 15:e02347722020. View Article : Google Scholar : PubMed/NCBI | |
Mackenzie NJ, Nicholls C, Templeton AR, Perera MP, Jeffery PL, Zimmermann K, Kulasinghe A, Kenna TJ, Vela I, Williams ED and Thomas PB: Modelling the tumor immune microenvironment for precision immunotherapy. Clin Transl Immunology. 11:e14002022. View Article : Google Scholar : PubMed/NCBI | |
Mendes N, Dias Carvalho P, Martins F, Mendonça S, Malheiro AR, Ribeiro A, Carvalho J and Velho S: Animal models to study cancer and its microenvironment. Adv Exp Med Biol. 1219:389–401. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hsu JF, Chu SM, Liao CC, Wang CJ, Wang YS, Lai MY, Wang HC, Huang HR and Tsai MH: Nanotechnology and nanocarrier-based drug delivery as the potential therapeutic strategy for glioblastoma multiforme: An update. Cancers (Basel). 13:1952021. View Article : Google Scholar : PubMed/NCBI |