Combined PARP inhibitors and small molecular inhibitors in solid tumor treatment (Review)
- Authors:
- Ning Jin
- Yu Xia
- Qinglei Gao
-
Affiliations: Key Laboratory of The Ministry of Education, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China - Published online on: January 4, 2023 https://doi.org/10.3892/ijo.2023.5476
- Article Number: 28
-
Copyright: © Jin et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Pilié PG, Tang C, Mills GB and Yap TA: State-of-the-art strategies for targeting the DNA damage response in cancer. Nat Rev Clin Oncol. 16:81–104. 2019. View Article : Google Scholar | |
Ali SO, Khan FA, Galindo-Campos MA and Yelamos J: Understanding specific functions of PARP-2: New lessons for cancer therapy. Am J Cancer Res. 6:1842–1863. 2016.PubMed/NCBI | |
Ma W, Halweg CJ, Menendez D and Resnick MA: Differential effects of poly(ADP-ribose) polymerase inhibition on DNA break repair in human cells are revealed with Epstein-Barr virus. Proc Natl Acad Sci USA. 109:6590–6595. 2012. View Article : Google Scholar : PubMed/NCBI | |
Satoh MS and Lindahl T: Role of poly(ADP-ribose) formation in DNA repair. Nature. 356:356–358. 1992. View Article : Google Scholar : PubMed/NCBI | |
Ramakrishnan Geethakumari P, Schiewer MJ, Knudsen KE and Kelly WK: PARP inhibitors in prostate cancer. Curr Treat Options Oncol. 18:372017. View Article : Google Scholar : PubMed/NCBI | |
Park SH, Jang KY, Kim MJ, Yoon S, Jo Y, Kwon SM, Kim KM, Kwon KS, Kim CY and Woo HG: Tumor suppressive effect of PARP1 and FOXO3A in gastric cancers and its clinical implications. Oncotarget. 6:44819–44831. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mihailidou C, Karamouzis MV, Schizas D and Papavassiliou AG: Co-targeting c-Met and DNA double-strand breaks (DSBs): Therapeutic strategies in BRCA-mutated gastric carcinomas. Biochimie. 142:135–143. 2017. View Article : Google Scholar : PubMed/NCBI | |
Patel AG, Sarkaria JN and Kaufmann SH: Nonhomologous end joining drives poly(ADP-ribose) polymerase (PARP) inhibitor lethality in homologous recombination-deficient cells. Proc Natl Acad Sci USA. 108:3406–3411. 2011. View Article : Google Scholar : PubMed/NCBI | |
De Lorenzo SB, Patel AG, Hurley RM and Kaufmann SH: The elephant and the blind men: Making sense of PARP inhibitors in homologous recombination deficient tumor cells. Front Oncol. 3:2282013. View Article : Google Scholar : PubMed/NCBI | |
Lord CJ and Ashworth A: PARP inhibitors: Synthetic lethality in the clinic. Science. 355:1152–1158. 2017. View Article : Google Scholar : PubMed/NCBI | |
Francica P and Rottenberg S: Mechanisms of PARP inhibitor resistance in cancer and insights into the DNA damage response. Genome Med. 10:1012018. View Article : Google Scholar : PubMed/NCBI | |
Rouleau M, Patel A, Hendzel MJ, Kaufmann SH and Poirier GG: PARP inhibition: PARP1 and beyond. Nat Rev Cancer. 10:293–301. 2010. View Article : Google Scholar : PubMed/NCBI | |
Dellomo AJ, Baer MR and Rassool FV: Partnering with PARP inhibitors in acute myeloid leukemia with FLT3-ITD. Cancer Lett. 454:171–178. 2019. View Article : Google Scholar : PubMed/NCBI | |
D'Andrea AD: Mechanisms of PARP inhibitor sensitivity and resistance. DNA Repair (Amst). 71:172–176. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jackson SP and Bartek J: The DNA-damage response in human biology and disease. Nature. 461:1071–1078. 2009. View Article : Google Scholar : PubMed/NCBI | |
Huang F and Mazin AV: Targeting the homologous recombination pathway by small molecule modulators. Bioorg Med Chem Lett. 24:3006–3013. 2014. View Article : Google Scholar : PubMed/NCBI | |
Konstantinopoulos PA, Ceccaldi R, Shapiro GI and D'Andrea AD: Homologous recombination deficiency: Exploiting the fundamental vulnerability of ovarian cancer. Cancer Discov. 5:1137–1154. 2015. View Article : Google Scholar : PubMed/NCBI | |
Byrum AK, Vindigni A and Mosammaparast N: Defining and modulating 'BRCAness'. Trends Cell Biol. 29:740–751. 2019. View Article : Google Scholar : PubMed/NCBI | |
Quigley D, Alumkal JJ, Wyatt AW, Kothari V, Foye A, Lloyd P, Aggarwal R, Kim W, Lu E, Schwartzman J, et al: Analysis of circulating cell-free DNA identifies multiclonal heterogeneity of BRCA2 reversion mutations associated with resistance to PARP inhibitors. Cancer Discov. 7:999–1005. 2017. View Article : Google Scholar : PubMed/NCBI | |
Drost R, Bouwman P, Rottenberg S, Boon U, Schut E, Klarenbeek S, Klijn C, van der Heijden I, van der Gulden H, Wientjens E, et al: BRCA1 RING function is essential for tumor suppression but dispensable for therapy resistance. Cancer Cell. 20:797–809. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pettitt SJ, Krastev DB, Brandsma I, Dréan A, Song F, Aleksandrov R, Harrell MI, Menon M, Brough R, Campbell J, et al: Genome-wide and high-density CRISPR-Cas9 screens identify point mutations in PARP1 causing PARP inhibitor resistance. Nat Commun. 9:18492018. View Article : Google Scholar : PubMed/NCBI | |
Boersma V, Moatti N, Segura-Bayona S, Peuscher MH, van der Torre J, Wevers BA, Orthwein A, Durocher D and Jacobs JJL: MAD2L2 controls DNA repair at telomeres and DNA breaks by inhibiting 5′ end resection. Nature. 521:537–540. 2015. View Article : Google Scholar : PubMed/NCBI | |
Xu GT, Chapman JR, Brandsma I, Yuan J, Mistrik M, Bouwman P, Bartkova J, Gogola E, Warmerdam D, Barazas M, et al: REV7 counteracts DNA double-strand break resection and affects PARP inhibition. Nature. 521:541–544. 2015. View Article : Google Scholar : PubMed/NCBI | |
McNerney MP and Styczynski MP: Small molecule signaling, regulation, and potential applications in cellular therapeutics. Wiley Interdiscip Rev Syst Biol Med. 10. View Article : Google Scholar : 2018 | |
Zhu HF and Li Y: Small-molecule targets in tumor immunotherapy. Nat Prod Bioprospect. 8:297–301. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cheng B, Yuan WE, Su J, Liu Y and Chen J: Recent advances in small molecule based cancer immunotherapy. Eur J Med Chem. 157:582–598. 2018. View Article : Google Scholar : PubMed/NCBI | |
Du Z and Lovly CM: Mechanisms of receptor tyrosine kinase activation in cancer. Mol Cancer. 17:582018. View Article : Google Scholar : PubMed/NCBI | |
Robinson DR, Wu YM and Lin SF: The protein tyrosine kinase family of the human genome. Oncogene. 19:5548–5557. 2000. View Article : Google Scholar : PubMed/NCBI | |
Gschwind A, Fischer OM and Ullrich A: The discovery of receptor tyrosine kinases: Targets for cancer therapy. Nat Rev Cancer. 4:361–370. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kinase Inhibitors: Methods and Protocols. Kinase Inhibitors: Methods and Protocols. 795:Kuster B: (Methods in Molecular Biology). 2012. View Article : Google Scholar | |
Bensimon A, Koch JP, Francica P, Roth SM, Riedo R, Glück AA, Orlando E, Blaukat A, Aebersold DM, Zimmer Y, et al: Deciphering MET-dependent modulation of global cellular responses to DNA damage by quantitative phosphoproteomics. Mol Oncol. 14:1185–1206. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bronte G, Rolfo C, Giovannetti E, Cicero G, Pauwels P, Passiglia F, Castiglia M, Rizzo S, Vullo FL, Fiorentino E, et al: Are erlotinib and gefitinib interchangeable, opposite or complementary for non-small cell lung cancer treatment? Biological, pharmacological and clinical aspects. Crit Rev Oncol Hematol. 89:300–313. 2014. View Article : Google Scholar | |
Hirsch FR, Varella-Garcia M, Bunn PA Jr, Di Maria MV, Veve R, Bremmes RM, Barón AE, Zeng C and Franklin WA: Epidermal growth factor receptor in non-small-cell lung carcinomas: Correlation between gene copy number and protein expression and impact on prognosis. J Clin Oncol. 21:3798–3807. 2003. View Article : Google Scholar : PubMed/NCBI | |
Bartlett JM, Langdon SP, Simpson BJ, Stewart M, Katsaros D, Sismondi P, Love S, Scott WN, Williams AR, Lessells AM, et al: The prognostic value of epidermal growth factor receptor mRNA expression in primary ovarian cancer. Br J Cancer. 73:301–306. 1996. View Article : Google Scholar : PubMed/NCBI | |
Blume-Jensen P and Hunter T: Oncogenic kinase signalling. Nature. 411:355–365. 2001. View Article : Google Scholar : PubMed/NCBI | |
Gordon AN, Finkler N, Edwards RP, Garcia AA, Crozier M, Irwin DH and Barrett E: Efficacy and safety of erlotinib HCl, an epidermal growth factor receptor (HER1/EGFR) tyrosine kinase inhibitor, in patients with advanced ovarian carcinoma: Results from a phase II multicenter study. Int J Gynecol Cancer. 15:785–792. 2005. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Gao Z, Hu R, Wang Y, Wang Y, Su Z, Zhang X, Yang J, Mei M, Ren Y, et al: PD-L2 glycosylation promotes immune evasion and predicts anti-EGFR efficacy. J Immunother Cancer. 9:e0026992021. View Article : Google Scholar : PubMed/NCBI | |
Tanaka K, Yu HA, Yang S, Han S, Selcuklu SD, Kim K, Ramani S, Ganesan YT, Moyer A, Sinha S, et al: Targeting Aurora B kinase prevents and overcomes resistance to EGFR inhibitors in lung cancer by enhancing BIM- and PUMA-mediated apoptosis. Cancer Cell. 39:1245–1261.e6. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wu S, Gao F, Zheng S, Zhang C, Martinez-Ledesma E, Ezhilarasan R, Ding J, Li X, Feng N, Multani A, et al: EGFR amplification induces increased DNA damage response and renders selective sensitivity to talazoparib (PARP inhibitor) in glioblastoma. Clin Cancer Res. 26:1395–1407. 2020. View Article : Google Scholar | |
Rodemann HP, Dittmann K and Toulany M: Radiation-induced EGFR-signaling and control of DNA-damage repair. Int J Radiat Biol. 83:781–791. 2007. View Article : Google Scholar : PubMed/NCBI | |
Volman Y, Hefetz R, Galun E and Rachmilewitz J: DNA damage alters EGFR signaling and reprograms cellular response via Mre-11. Sci Rep. 12:57602022. View Article : Google Scholar : PubMed/NCBI | |
Rajput M, Singh R, Singh N and Singh RP: EGFR-mediated Rad51 expression potentiates intrinsic resistance in prostate cancer via EMT and DNA repair pathways. Life Sci. 286:1200312021. View Article : Google Scholar : PubMed/NCBI | |
Rawluk J and Waller CF: Gefitinib. Recent Results Cancer Res. 211:235–246. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bokobza SM, Jiang Y, Weber AM, Devery AM and Ryan AJ: Short-course treatment with gefitinib enhances curative potential of radiation therapy in a mouse model of human non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 88:947–954. 2014. View Article : Google Scholar : PubMed/NCBI | |
de Silva HC, Lin MZ, Phillips L, Martin JL and Baxter RC: IGFBP-3 interacts with NONO and SFPQ in PARP-dependent DNA damage repair in triple-negative breast cancer. Cell Mol Life Sci. 76:2015–2030. 2019. View Article : Google Scholar : PubMed/NCBI | |
Garcia-Campelo R, Arrieta O, Massuti B, Rodriguez-Abreu D, Granados ALO, Majem M, Vicente D, Lianes P, Bosch-Barrera J, Insa A, et al: Combination of gefitinib and olaparib versus gefitinib alone in EGFR mutant non-small-cell lung cancer (NSCLC): A multicenter, randomized phase II study (GOAL). Lung Cancer. 150:62–69. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Wang J, Cui LZ, Wang K, Yuan MM, Chen RR and Zhang LK: Successful treatment of refractory lung adenocarcinoma harboring a germline BRCA2 mutation with olaparib: A case report. World J Clin Cases. 9:7498–7503. 2021. View Article : Google Scholar : PubMed/NCBI | |
Voigtlaender M, Schneider-Merck T and Trepel M: Lapatinib. Recent Results Cancer Res. 211:19–44. 2018. View Article : Google Scholar : PubMed/NCBI | |
Abo-Zeid MAM, Abo-Elfadl MT and Gamal-Eldeen AM: Evaluation of lapatinib cytotoxicity and genotoxicity on MDA-MB-231 breast cancer cell line. Environ Toxicol Pharmacol. 71:1032072019. View Article : Google Scholar : PubMed/NCBI | |
Li YT, Qian XJ, Yu Y, Li ZH, Wu RY, Ji J, Jiao L, Li X, Kong PF, Chen WD, et al: EGFR tyrosine kinase inhibitors promote pro-caspase-8 dimerization that sensitizes cancer cells to DNA-damaging therapy. Oncotarget. 6:17491–17500. 2015. View Article : Google Scholar : PubMed/NCBI | |
Nowsheen S, Cooper T, Stanley JA and Yang ES: Synthetic lethal interactions between EGFR and PARP inhibition in human triple negative breast cancer cells. PLoS One. 7:e466142012. View Article : Google Scholar : PubMed/NCBI | |
Abdelgalil AA, Al-Kahtani HM and Al-Jenoobi FI: Erlotinib. Profiles Drug Subst Excip Relat Methodol. 45:93–117. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tsai YC, Ho PY, Tzen KY, Tuan TF, Liu WL, Cheng AL, Pu YS and Cheng JC: Synergistic blockade of EGFR and HER2 by new-generation EGFR tyrosine kinase inhibitor enhances radiation effect in bladder cancer cells. Mol Cancer Ther. 14:810–820. 2015. View Article : Google Scholar : PubMed/NCBI | |
Keta O, Bulat T, Golić I, Incerti S, Korać A, Petrović I and Ristić-Fira A: The impact of autophagy on cell death modalities in CRL-5876 lung adenocarcinoma cells after their exposure to γ-rays and/or erlotinib. Cell Biol Toxicol. 32:83–101. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li L, Wang H, Yang ES, Arteaga CL and Xia F: Erlotinib attenuates homologous recombinational repair of chromosomal breaks in human breast cancer cells. Cancer Res. 68:9141–9146. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sui H, Shi C, Yan Z and Li H: Combination of erlotinib and a PARP inhibitor inhibits growth of A2780 tumor xenografts due to increased autophagy. Drug Des Devel Ther. 9:3183–3190. 2015. View Article : Google Scholar : PubMed/NCBI | |
Dong Q, Liu M, Chen B, Zhao Z, Chen T, Wang C, Zhuang S, Li Y, Wang Y, Ai L, et al: Revealing biomarkers associated with PARP inhibitors based on genetic interactions in cancer genome. Comput Struct Biotechnol J. 19:4435–4446. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wecker H and Waller CF: Afatinib. Small Molecules in Oncology. Springer; New York, NY, USA: pp. 199–215. 2018, View Article : Google Scholar | |
Miller VA, Hirsh V, Cadranel J, Chen YM, Park K, Kim SW, Zhou C, Su WC, Wang M, Sun Y, et al: Afatinib versus placebo for patients with advanced, metastatic non-small-cell lung cancer after failure of erlotinib, gefitinib, or both, and one or two lines of chemotherapy (LUX-Lung 1): A phase 2b/3 randomised trial. Lancet Oncol. 13:528–538. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Zheng X, Huang H, Wu K, Wang B, Chen X and Ma S: Afatinib increases sensitivity to radiation in non-small cell lung cancer cells with acquired EGFR T790M mutation. Oncotarget. 6:5832–5845. 2015. View Article : Google Scholar : PubMed/NCBI | |
Doan HQ, Hu MI, Goldstein J, Piha-Paul SA, Subbiah V and Patel AB: Vandetanib photoinduced cutaneous toxicities. Cutis. 103:E24–E29. 2019.PubMed/NCBI | |
Chu PL, Shihabuddeen WA, Low KP, Poon DJJ, Ramaswamy B, Liang ZG, Nei WL, Chua KLM, Thong PSP, Soo KC, et al: Vandetanib sensitizes head and neck squamous cell carcinoma to photodynamic therapy through modulation of EGFR-dependent DNA repair and the tumour microenvironment. Photodiagnosis Photodyn Ther. 27:367–374. 2019. View Article : Google Scholar : PubMed/NCBI | |
Macy ME, DeRyckere D and Gore L: Vandetanib mediates anti-leukemia activity by multiple mechanisms and interacts synergistically with DNA damaging agents. Invest New Drugs. 30:468–479. 2012. View Article : Google Scholar | |
Deeks ED: Neratinib: First global approval. Drugs. 77:1695–1704. 2017. View Article : Google Scholar : PubMed/NCBI | |
Conlon NT, Kooijman JJ, van Gerwen SJC, Mulder WR, Zaman GJR, Diala I, Eli LD, Lalani AS, Crown J and Collins DM: Comparative analysis of drug response and gene profiling of HER2-targeted tyrosine kinase inhibitors. Br J Cancer. 124:1249–1259. 2021. View Article : Google Scholar : PubMed/NCBI | |
Booth L, Roberts JL, Samuel P, Avogadri-Connors F, Cutler RE, Lalani AS, Poklepovic A and Dent P: The irreversible ERBB1/2/4 inhibitor neratinib interacts with the PARP1 inhibitor niraparib to kill ovarian cancer cells. Cancer Biol Ther. 19:525–533. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lazzari C, Gregorc V, Karachaliou N, Rosell R and Santarpia M: Mechanisms of resistance to osimertinib. J Thorac Dis. 12:2851–2858. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang N, Wang L, Meng X, Wang J, Zhu L, Liu C, Li S, Zheng L, Yang Z, Xing L and Yu J: Osimertinib (AZD9291) increases radio-sensitivity in EGFR T790M non-small cell lung cancer. Oncol Rep. 41:77–86. 2019. | |
Tian S, Quan H, Xie C, Guo H, Lü F, Xu Y, Li J and Lou L: YN968D1 is a novel and selective inhibitor of vascular endothelial growth factor receptor-2 tyrosine kinase with potent activity in vitro and in vivo. Cancer Sci. 102:1374–1380. 2011. View Article : Google Scholar : PubMed/NCBI | |
Aoyama T and Yoshikawa T: Apatinib-new third-line option for refractory gastric or GEJ cancer. Nat Rev Clin Oncol. 13:268–270. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liao J, Jin H, Li S, Xu L, Peng Z, Wei G, Long J, Guo Y, Kuang M, Zhou Q and Peng S: Apatinib potentiates irradiation effect via suppressing PI3K/AKT signaling pathway in hepatocellular carcinoma. J Exp Clin Cancer Res. 38:4542019. View Article : Google Scholar : PubMed/NCBI | |
Tang W, McCormick A, Li J and Masson E: Clinical pharmacokinetics and pharmacodynamics of cediranib. Clin Pharmacokinet. 56:689–702. 2017. View Article : Google Scholar | |
Kaplan AR, Gueble SE, Liu YF, Oeck S, Kim H, Yun Z and Glazer PM: Cediranib suppresses homology-directed DNA repair through down-regulation of BRCA1/2 and RAD51. Sci Transl Med. 11:eaav45082019. View Article : Google Scholar : PubMed/NCBI | |
Lin ZP, Zhu YL, Lo YC, Moscarelli J, Xiong A, Korayem Y, Huang PH, Giri S, LoRusso P and Ratner ES: Combination of triapine, olaparib, and cediranib suppresses progression of BRCA-wild type and PARP inhibitor-resistant epithelial ovarian cancer. PLoS One. 13:e02073992018. View Article : Google Scholar : PubMed/NCBI | |
Liu JF, Tolaney SM, Birrer M, Fleming GF, Buss MK, Dahlberg SE, Lee H, Whalen C, Tyburski K, Winer E, et al: A Phase 1 trial of the poly(ADP-ribose) polymerase inhibitor olaparib (AZD2281) in combination with the anti-angiogenic cediranib (AZD2171) in recurrent epithelial ovarian or triple-negative breast cancer. Eur J Cancer. 49:2972–2978. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liu JF, Barry WT, Birrer M, Lee JM, Buckanovich RJ, Fleming GF, Rimel B, Buss MK, Nattam S, Hurteau J, et al: Combination cediranib and olaparib versus olaparib alone for women with recurrent platinum-sensitive ovarian cancer: A randomised phase 2 study. Lancet Oncol. 15:1207–1214. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu JF, Barry WT, Birrer M, Lee JM, Buckanovich RJ, Fleming GF, Rimel BJ, Buss MK, Nattam SR, Hurteau J, et al: Overall survival and updated progression-free survival outcomes in a randomized phase II study of combination cediranib and olaparib versus olaparib in relapsed platinum-sensitive ovarian cancer. Ann Oncol. 30:551–557. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zimmer AS, Nichols E, Cimino-Mathews A, Peer C, Cao L, Lee MJ, Kohn EC, Annunziata CM, Lipkowitz S, Trepel JB, et al: A phase I study of the PD-L1 inhibitor, durvalumab, in combination with a PARP inhibitor, olaparib, and a VEGFR1-3 inhibitor, cediranib, in recurrent women's cancers with biomarker analyses. J Immunother Cancer. 7:1972019. View Article : Google Scholar : PubMed/NCBI | |
Thomas A, Vilimas R, Trindade C, Erwin-Cohen R, Roper N, Xi L, Krishnasamy V, Levy E, Mammen A, Nichols S, et al: Durvalumab in combination with olaparib in patients with relapsed SCLC: Results from a phase II Study. J Thorac Oncol. 14:1447–1457. 2019. View Article : Google Scholar : PubMed/NCBI | |
Karzai F, VanderWeele D, Madan RA, Owens H, Cordes LM, Hankin A, Couvillon A, Nichols E, Bilusic M, Beshiri ML, et al: Activity of durvalumab plus olaparib in metastatic castration-resistant prostate cancer in men with and without DNA damage repair mutations. J Immunother Cancer. 6:1412018. View Article : Google Scholar : PubMed/NCBI | |
Tattersall A, Ryan N, Wiggans AJ, Rogozińska E and Morrison J: Poly(ADP-ribose) polymerase (PARP) inhibitors for the treatment of ovarian cancer. Cochrane Database Syst Rev. 2:CD0079292022.PubMed/NCBI | |
Lheureux S, Oaknin A, Garg S, Bruce JP, Madariaga A, Dhani NC, Bowering V, White J, Accardi S, Tan Q, et al: EVOLVE: A multicenter open-label single-arm clinical and translational phase II trial of cediranib plus olaparib for ovarian cancer after PARP inhibition progression. Clin Cancer Res. 26:4206–4215. 2020. View Article : Google Scholar : PubMed/NCBI | |
Waller CF: Imatinib mesylate. Recent Results Cancer Res. 212:1–27. 2018. View Article : Google Scholar : PubMed/NCBI | |
Choudhury A, Zhao H, Jalali F, Al Rashid S, Ran J, Supiot S, Kiltie AE and Bristow RG: Targeting homologous recombination using imatinib results in enhanced tumor cell chemosensitivity and radiosensitivity. Mol Cancer Ther. 8:203–213. 2009. View Article : Google Scholar : PubMed/NCBI | |
Morii M, Fukumoto Y, Kubota S and Yamaguchi N, Nakayama Y and Yamaguchi N: Imatinib inhibits inactivation of the ATM/ATR signaling pathway and recovery from adriamycin/doxorubicin-induced DNA damage checkpoint arrest. Cell Biol Int. 39:923–932. 2015. View Article : Google Scholar : PubMed/NCBI | |
Benito R, Lumbreras E, Abáigar M, Gutiérrez NC, Delgado M, Robledo C, García JL, Rodríguez-Vicente AE, Cañizo MC and Rivas JM: Imatinib therapy of chronic myeloid leukemia restores the expression levels of key genes for DNA damage and cell-cycle progression. Pharmacogenet Genomics. 22:381–388. 2012. View Article : Google Scholar : PubMed/NCBI | |
Rink L, Slupianek A, Stoklosa T, Nieborowska-Skorska M, Urbanska K, Seferynska I, Reiss K and Skorski T: Enhanced phosphorylation of Nbs1, a member of DNA repair/checkpoint complex Mre11-RAD50-Nbs1, can be targeted to increase the efficacy of imatinib mesylate against BCR/ABL-positive leukemia cells. Blood. 110:651–660. 2007. View Article : Google Scholar : PubMed/NCBI | |
Mukhopadhyay A, Drew Y, Matheson E, Salehan M, Gentles L, Pachter JA and Curtin NJ: Evaluating the potential of kinase inhibitors to suppress DNA repair and sensitise ovarian cancer cells to PARP inhibitors. Biochem Pharmacol. 167:125–132. 2019. View Article : Google Scholar | |
Ettrich TJ and Seufferlein T: Regorafenib. Recent Results Cancer Res. 211:45–56. 2018. View Article : Google Scholar : PubMed/NCBI | |
Daudigeos-Dubus E, Le Dret L, Lanvers-Kaminsky C, Bawa O, Opolon P, Vievard A, Villa I, Pagès M, Bosq J, Vassal G, et al: Regorafenib: Antitumor activity upon mono and combination therapy in preclinical pediatric malignancy models. PLoS One. 10:e01426122015. View Article : Google Scholar : PubMed/NCBI | |
Mehta M, Griffith J, Panneerselvam J, Babu A, Mani J, Herman T, Ramesh R and Munshi A: Regorafenib sensitizes human breast cancer cells to radiation by inhibiting multiple kinases and inducing DNA damage. Int J Radiat Biol. 97:1109–1120. 2021. View Article : Google Scholar : | |
Cai B, Cai JP, Luo YL, Chen C and Zhang S: The specific roles of JAK/STAT signaling pathway in sepsis. Inflammation. 38:1599–1608. 2015. View Article : Google Scholar : PubMed/NCBI | |
O'Shea JJ, Pesu M, Borie DC and Changelian PS: A new modality for immunosuppression: Targeting the JAK/STAT pathway. Nat Rev Drug Discov. 3:555–564. 2004. View Article : Google Scholar : PubMed/NCBI | |
Jaime-Figueroa S, De Vicente J, Hermann J, Jahangir A, Jin S, Kuglstatter A, Lynch SM, Menke J, Niu L, Patel V, et al: Discovery of a series of novel 5H-pyrrolo[2,3-b]pyrazine-2-phenyl ethers, as potent JAK3 kinase inhibitors. Bioorg Med Chem Lett. 23:2522–2526. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yu H, Pardoll D and Jove R: STATs in cancer inflammation and immunity: A leading role for STAT3. Nat Rev Cancer. 9:798–809. 2009. View Article : Google Scholar : PubMed/NCBI | |
Boengler K, Hilfiker-Kleiner D, Drexler H, Heusch G and Schulz R: The myocardial JAK/STAT pathway: From protection to failure. Pharmacol Ther. 120:172–185. 2008. View Article : Google Scholar : PubMed/NCBI | |
Abroun S, Saki N, Ahmadvand M, Asghari F, Salari F and Rahim F: STATs: An old story, Yet mesmerizing. Cell J. 17:395–411. 2015.PubMed/NCBI | |
Stark GR and Darnell JE Jr: The JAK-STAT pathway at twenty. Immunity. 36:503–514. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bolli R, Dawn B and Xuan YT: Role of the JAK-STAT pathway in protection against myocardial ischemia/reperfusion injury. Trends Cardiovasc Med. 13:72–79. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ferguson LR, Han DY, Fraser AG, Huebner C, Lam WJ, Morgan AR, Duan H and Karunasinghe N: Genetic factors in chronic inflammation: Single nucleotide polymorphisms in the STAT-JAK pathway, susceptibility to DNA damage and Crohn's disease in a New Zealand population. Mutat Res. 690:108–115. 2010. View Article : Google Scholar : PubMed/NCBI | |
Peng LQ, Li CH and Mao B: Activation of the JAK/STAT signal pathway may be involved in DNA damage of A549 cells induced by X-ray. Sheng Li Xue Bao. 71:698–704. 2019.In Chinese. PubMed/NCBI | |
Xin P, Xu X, Deng C, Liu S, Wang Y, Zhou X, Ma H, Wei D and Sun S: The role of JAK/STAT signaling pathway and its inhibitors in diseases. Int Immunopharmacol. 80:1062102020. View Article : Google Scholar : PubMed/NCBI | |
Schwartz DM, Kanno Y, Villarino A, Ward M, Gadina M and O'Shea JJ: JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat Rev Drug Discov. 16:843–862. 2017. View Article : Google Scholar : PubMed/NCBI | |
Karantanos T and Moliterno AR: The roles of JAK2 in DNA damage and repair in the myeloproliferative neoplasms: Opportunities for targeted therapy. Blood Rev. 32:426–432. 2018. View Article : Google Scholar : PubMed/NCBI | |
Khashab F, Al-Saleh F, Al-Kandari N, Fadel F and Al-Maghrebi M: JAK inhibition prevents DNA damage and apoptosis in testicular ischemia-reperfusion injury via modulation of the ATM/ATR/Chk pathway. Int J Mol Sci. 22:133902021. View Article : Google Scholar : PubMed/NCBI | |
Reddig A, Voss L, Guttek K, Roggenbuck D, Feist E and Reinhold D: Impact of different JAK inhibitors and methotrexate on lymphocyte proliferation and DNA damage. J Clin Med. 10:14312021. View Article : Google Scholar : PubMed/NCBI | |
Becker H, Engelhardt M, von Bubnoff N and Wäsch R: Ruxolitinib. Martens UM: Small Molecules in Oncology. Recent Results in Cancer Research. 201. Springer; Berlin, Heidelberg: pp. 249–257. 2014, View Article : Google Scholar | |
Ahn JS, Li J, Chen E, Kent DG, Park HJ and Green AR: JAK2V617F mediates resistance to DNA damage-induced apoptosis by modulating FOXO3A localization and Bcl-xL deamidation. Oncogene. 35:2235–2246. 2016. View Article : Google Scholar | |
Kagoya Y, Yoshimi A, Tsuruta-Kishino T, Arai S, Satoh T, Akira S and Kurokawa M: JAK2V617F+ myeloproliferative neoplasm clones evoke paracrine DNA damage to adjacent normal cells through secretion of lipocalin-2. Blood. 124:2996–3006. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chen E, Ahn JS, Massie CE, Clynes D, Godfrey AL, Li J, Park HJ, Nangalia J, Silber Y, Mullally A, et al: JAK2V617F promotes replication fork stalling with disease-restricted impairment of the intra-S checkpoint response. Proc Natl Acad Sci USA. 111:15190–15195. 2014. View Article : Google Scholar : PubMed/NCBI | |
Nakatake M, Monte-Mor B, Debili N, Casadevall N, Ribrag V, Solary E, Vainchenker W and Plo I: JAK2(V617F) negatively regulates p53 stabilization by enhancing MDM2 via La expression in myeloproliferative neoplasms. Oncogene. 31:1323–1333. 2012. View Article : Google Scholar | |
Nieborowska-Skorska M, Maifrede S, Dasgupta Y, Sullivan K, Flis S, Le BV, Solecka M, Belyaeva EA, Kubovcakova L, Nawrocki M, et al: Ruxolitinib-induced defects in DNA repair cause sensitivity to PARP inhibitors in myeloproliferative neoplasms. Blood. 130:2848–2859. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kandhaya-Pillai R, Miro-Mur F, Alijotas-Reig J, Tchkonia T, Kirkland JL and Schwartz S: TNFα-senescence initiates a STAT-dependent positive feedback loop, leading to a sustained interferon signature, DNA damage, and cytokine secretion. Aging (Albany NY). 9:2411–2435. 2017. View Article : Google Scholar : PubMed/NCBI | |
Katso R, Okkenhaug K, Ahmadi K, White S, Timms J and Waterfield MD: Cellular function of phosphoinositide 3-kinases: Implications for development, homeostasis, and cancer. Annu Rev Cell Dev Biol. 17:615–675. 2001. View Article : Google Scholar : PubMed/NCBI | |
Liu PX, Cheng HL, Roberts TM and Zhao JJ: Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov. 8:627–644. 2009. View Article : Google Scholar : PubMed/NCBI | |
Guertin DA and Sabatini DM: The pharmacology of mTOR inhibition. Sci Signal. 2:pe242009. View Article : Google Scholar : PubMed/NCBI | |
Datta SR, Brunet A and Greenberg ME: Cellular survival: A play in three Akts. Genes Dev. 13:2905–2927. 1999. View Article : Google Scholar : PubMed/NCBI | |
Xu Z, Han X, Ou D, Liu T, Li Z, Jiang G, Liu J and Zhang J: Targeting PI3K/AKT/mTOR-mediated autophagy for tumor therapy. Appl Microbiol Biotechnol. 104:575–587. 2020. View Article : Google Scholar | |
Porta C and Figlin RA: Phosphatidylinositol-3-kinase/Akt signaling pathway and kidney cancer, and the therapeutic potential of phosphatidylinositol-3-kinase/Akt inhibitors. J Urol. 182:2569–2577. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Xie C, Li A, Liu X, Xing Y, Shen J, Huo Z, Zhou S, Liu X, Xie Y, et al: PKI-587 enhances chemosensitivity of oxaliplatin in hepatocellular carcinoma through suppressing DNA damage repair pathway (NHEJ and HR) and PI3K/AKT/mTOR pathway. Am J Transl Res. 11:5134–5149. 2019.PubMed/NCBI | |
Huang TT, Lampert EJ, Coots C and Lee JM: Targeting the PI3K pathway and DNA damage response as a therapeutic strategy in ovarian cancer. Cancer Treat Rev. 86:1020212020. View Article : Google Scholar : PubMed/NCBI | |
Pal S, Kozono D, Yang X, Fendler W, Fitts W, Ni J, Alberta JA, Zhao J, Liu KX, Bian J, et al: Dual HDAC and PI3K inhibition abrogates NFκB- and FOXM1-mediated DNA damage response to radiosensitize pediatric high-grade gliomas. Cancer Res. 78:4007–4021. 2018. View Article : Google Scholar : PubMed/NCBI | |
Glauer J, Pletz N, Schön M, Schneider P, Liu N, Ziegelbauer K, Emmert S, Wulf GG and Schön MP: A novel selective small-molecule PI3K inhibitor is effective against human multiple myeloma in vitro and in vivo. Blood Cancer J. 3:e1412013. View Article : Google Scholar : PubMed/NCBI | |
Markham A: Copanlisib: First global approval. Drugs. 77:2057–2062. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sun C, Fang Y, Labrie M, Li X and Mills GB: Systems approach to rational combination therapy: PARP inhibitors. Biochem Soc Trans. 48:1101–1108. 2020. View Article : Google Scholar : PubMed/NCBI | |
Juvekar A, Hu H, Yadegarynia S, Lyssiotis CA, Ullas S, Lien EC, Bellinger G, Son J, Hok RC, Seth P, et al: Phosphoinositide 3-kinase inhibitors induce DNA damage through nucleoside depletion. Proc Natl Acad Sci USA. 113:E4338–E4347. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bian X, Gao J, Luo F, Rui C, Zheng T, Wang D, Wang Y, Roberts TM, Liu P, Zhao JJ and Cheng H: PTEN deficiency sensitizes endometrioid endometrial cancer to compound PARP-PI3K inhibition but not PARP inhibition as monotherapy. Oncogene. 37:341–351. 2018. View Article : Google Scholar : | |
DuRoss AN, Neufeld MJ, Landry MR, Rosch JG, Eaton CT, Sahay G, Thomas CR Jr and Sun C: Micellar formulation of talazoparib and buparlisib for enhanced DNA damage in breast cancer chemoradiotherapy. ACS Appl Mater Interfaces. 11:12342–12356. 2019. View Article : Google Scholar : PubMed/NCBI | |
Juvekar A, Burga LN, Hu H, Lunsford EP, Ibrahim YH, Balmañà J, Rajendran A, Papa A, Spencer K, Lyssiotis CA, et al: Combining a PI3K inhibitor with a PARP inhibitor provides an effective therapy for BRCA1-related breast cancer. Cancer Discov. 2:1048–1063. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang D, Wang M, Jiang N, Zhang Y, Bian X, Wang X, Roberts TM, Zhao JJ, Liu P and Cheng H: Effective use of PI3K inhibitor BKM120 and PARP inhibitor olaparib to treat PIK3CA mutant ovarian cancer. Oncotarget. 7:13153–13166. 2016. View Article : Google Scholar : PubMed/NCBI | |
Matulonis UA, Wulf GM, Barry WT, Birrer M, Westin SN, Farooq S, Bell-McGuinn KM, Obermayer E, Whalen C, Spagnoletti T, et al: Phase I dose escalation study of the PI3kinase pathway inhibitor BKM120 and the oral poly (ADP ribose) polymerase (PARP) inhibitor olaparib for the treatment of high-grade serous ovarian and breast cancer. Ann Oncol. 28:512–518. 2017. View Article : Google Scholar | |
Zumsteg ZS, Morse N, Krigsfeld G, Gupta G, Higginson DS, Lee NY, Morris L, Ganly I, Shiao SL, Powell SN, et al: Taselisib (GDC-0032), a potent β-sparing small molecule inhibitor of PI3K, radiosensitizes head and neck squamous carcinomas containing activating PIK3CA alterations. Clin Cancer Res. 22:2009–2019. 2016. View Article : Google Scholar | |
Ndubaku CO, Heffron TP, Staben ST, Baumgardner M, Blaquiere N, Bradley E, Bull R, Do S, Dotson J, Dudley D, et al: Discovery of 2-{3-[2-(1-isopropyl-3-methyl-1H-1,2-4-triazol- 5-yl)-5,6-dihydrobenzo[f]imidazo[1,2-d][1,4]oxazepin-9-yl]- 1H-pyrazol-1-yl}-2-methylpropanamide (GDC-0032): A β-sparing phosphoinositide 3-kinase inhibitor with high unbound exposure and robust in vivo antitumor activity. J Med Chem. 56:4597–4610. 2013. View Article : Google Scholar : PubMed/NCBI | |
Juric D, Rodon J, Tabernero J, Janku F, Burris HA, Schellens JHM, Middleton MR, Berlin J, Schuler M, Gil-Martin M, et al: Phosphatidylinositol 3-kinase α-selective inhibition with alpelisib (BYL719) in PIK3CA-altered solid tumors: Results from the first-in-human study. J Clin Oncol. 36:1291–1299. 2018. View Article : Google Scholar : PubMed/NCBI | |
Pereira B, Chin SF, Rueda OM, Vollan HK, Provenzano E, Bardwell HA, Pugh M, Jones L, Russell R, Sammut SJ, et al: The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nat Commun. 7:114792016. View Article : Google Scholar : PubMed/NCBI | |
Markham A: Alpelisib: First global approval. Drugs. 79:1249–1253. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kim KJ, Kim JW, Sung JH, Suh KJ, Lee JY, Kim SH, Lee JO, Kim JW, Kim YJ, Kim JH, et al: PI3K-targeting strategy using alpelisib to enhance the antitumor effect of paclitaxel in human gastric cancer. Sci Rep. 10:123082020. View Article : Google Scholar : PubMed/NCBI | |
Konstantinopoulos PA, Barry WT, Birrer M, Westin SN, Cadoo KA, Shapiro GI, Mayer EL, O'Cearbhaill RE, Coleman RL, Kochupurakkal B, et al: Olaparib and α-specific PI3K inhibitor alpelisib for patients with epithelial ovarian cancer: A dose-escalation and dose-expansion phase 1b trial. Lancet Oncol. 20:570–580. 2019. View Article : Google Scholar : PubMed/NCBI | |
Conduit SE, Davies EM, Ooms LM, Gurung R, McGrath MJ, Hakim S, Cottle DL, Smyth IM, Dyson JM and Mitchell CA: AKT signaling promotes DNA damage accumulation and proliferation in polycystic kidney disease. Hum Mol Genet. 29:31–48. 2020. | |
Han C, Savage S, Al-Sayah M, Yajima H, Remarchuk T, Reents R, Wirz B, Iding H, Bachmann S, Fantasia SM, et al: Asymmetric synthesis of Akt kinase inhibitor ipatasertib. Org Lett. 19:4806–4809. 2017. View Article : Google Scholar : PubMed/NCBI | |
Saura C, Roda D, Roselló S, Oliveira M, Macarulla T, Pérez-Fidalgo JA, Morales-Barrera R, Sanchis-García JM, Musib L, Budha N, et al: A first-in-human phase I study of the ATP-competitive AKT inhibitor ipatasertib demonstrates robust and safe targeting of AKT in patients with solid tumors. Cancer Discov. 7:102–113. 2017. View Article : Google Scholar : | |
Oeck S, Al-Refae K, Riffkin H, Wiel G, Handrick R, Klein D, Iliakis G and Jendrossek V: Activating Akt1 mutations alter DNA double strand break repair and radiosensitivity. Sci Rep. 7:427002017. View Article : Google Scholar : PubMed/NCBI | |
Yu L, Liu Z, Qiu L, Hao L and Guo J: Ipatasertib sensitizes colon cancer cells to TRAIL-induced apoptosis through ROS-mediated caspase activation. Biochem Biophys Res Commun. 519:812–818. 2019. View Article : Google Scholar : PubMed/NCBI | |
Capivasertib active against AKT1-mutated cancers. Cancer Discov. 9:OF72019. View Article : Google Scholar | |
Nasrazadani A and Brufsky AM: Capivasertib inhibits a key pathway in metastatic breast cancer. Lancet Oncol. 21:318–319. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yap TA, Kristeleit R, Michalarea V, Pettitt SJ, Lim JSJ, Carreira S, Roda D, Miller R, Riisnaes R, Miranda S, et al: Phase I trial of the PARP inhibitor olaparib and AKT inhibitor capivasertib in patients with BRCA1/2- and Non-BRCA1/2-mutant cancers. Cancer Discov. 10:1528–1543. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gills JJ and Dennis PA: Perifosine: Update on a novel Akt inhibitor. Curr Oncol Rep. 11:102–110. 2009. View Article : Google Scholar : PubMed/NCBI | |
Fei HR, Chen G, Wang JM and Wang FZ: Perifosine induces cell cycle arrest and apoptosis in human hepatocellular carcinoma cell lines by blockade of Akt phosphorylation. Cytotechnology. 62:449–460. 2010. View Article : Google Scholar : PubMed/NCBI | |
Song Z, Tu X, Zhou Q, Huang J, Chen Y, Liu J, Lee S, Kim W, Nowsheen S, Luo K, et al: A novel UCHL3 inhibitor, perifosine, enhances PARP inhibitor cytotoxicity through inhibition of homologous recombination-mediated DNA double strand break repair. Cell Death Dis. 10:3982019. View Article : Google Scholar | |
Hirai H, Sootome H, Nakatsuru Y, Miyama K, Taguchi S, Tsujioka K, Ueno Y, Hatch H, Majumder PK, Pan BS and Kotani H: MK-2206, an allosteric Akt inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or molecular targeted drugs in vitro and in vivo. Mol Cancer Ther. 9:1956–1967. 2010. View Article : Google Scholar : PubMed/NCBI | |
Whicker ME, Lin ZP, Hanna R, Sartorelli AC and Ratner ES: MK-2206 sensitizes BRCA-deficient epithelial ovarian adenocarcinoma to cisplatin and olaparib. BMC Cancer. 16:5502016. View Article : Google Scholar : PubMed/NCBI | |
Ma Y, Vassetzky Y and Dokudovskaya S: mTORC1 pathway in DNA damage response. Biochim Biophys Acta Mol Cell Res. 1865:1293–1311. 2018. View Article : Google Scholar : PubMed/NCBI | |
Danesh Pazhooh R, Rahnamay Farnood P, Asemi Z, Mirsafaei L, Yousefi B and Mirzaei H: mTOR pathway and DNA damage response: A therapeutic strategy in cancer therapy. DNA Repair (Amst). 104:1031422021. View Article : Google Scholar : PubMed/NCBI | |
Lamming DW, Ye L, Katajisto P, Goncalves MD, Saitoh M, Stevens DM, Davis JG, Salmon AB, Richardson A, Ahima RS, et al: Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science. 335:1638–1643. 2012. View Article : Google Scholar : PubMed/NCBI | |
Arriola Apelo SI and Lamming DW: Rapamycin: An InhibiTOR of aging emerges from the soil of Easter Island. J Gerontol A Biol Sci Med Sci. 71:841–849. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chebel A, Catallo R, Mabon C, Bachy E, Wenner T, Salles G, Pouteil-Noble C and Ffrench M: Rapamycin safeguards lymphocytes from DNA damage accumulation in vivo. Eur J Cell Biol. 95:331–341. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mahran AM, Mosad E, Abdel-Raheem MA, Ahmed EH, Abdel Motaleb AA and Hofny ER: The correlation between mammalian target of rapamycin (mTOR) gene expression and sperm DNA damage among infertile patients with and without varicocele. Andrologia. 51:e133412019. View Article : Google Scholar : PubMed/NCBI | |
Hasskarl J: Everolimus. RecRecent Results Cancer Res. 211:101–123. 2018. View Article : Google Scholar | |
Beider K, Bitner H, Voevoda-Dimenshtein V, Rosenberg E, Sirovsky Y, Magen H, Canaani J, Ostrovsky O, Shilo N, Shimoni A, et al: The mTOR inhibitor everolimus overcomes CXCR4-mediated resistance to histone deacetylase inhibitor panobinostat through inhibition of p21 and mitotic regulators. Biochem Pharmacol. 168:412–428. 2019. View Article : Google Scholar : PubMed/NCBI | |
Buitrago-Molina LE, Pothiraju D, Lamlé J, Marhenke S, Kossatz U, Breuhahn K, Manns MP, Malek N and Vogel A: Rapamycin delays tumor development in murine livers by inhibiting proliferation of hepatocytes with DNA damage. Hepatology. 50:500–509. 2009. View Article : Google Scholar : PubMed/NCBI | |
Beuvink I, Boulay A, Fumagalli S, Zilbermann F, Ruetz S, O'Reilly T, Natt F, Hall J, Lane HA and Thomas G: The mTOR inhibitor RAD001 sensitizes tumor cells to DNA-damaged induced apoptosis through inhibition of p21 translation. Cell. 120:747–759. 2005. View Article : Google Scholar : PubMed/NCBI | |
El Botty R, Coussy F, Hatem R, Assayag F, Chateau-Joubert S, Servely JL, Leboucher S, Fouillade C, Vacher S, Ouine B, et al: Inhibition of mTOR downregulates expression of DNA repair proteins and is highly efficient against BRCA2-mutated breast cancer in combination to PARP inhibition. Oncotarget. 9:29587–29600. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mattoo AR, Joun A and Jessup JM: Repurposing of mTOR complex inhibitors attenuates MCL-1 and sensitizes to PARP inhibition. Mol Cancer Res. 17:42–53. 2019. View Article : Google Scholar | |
Kamata T and Feramisco JR: Epidermal growth factor stimulates guanine nucleotide binding activity and phosphorylation of ras oncogene proteins. Nature. 310:147–150. 1984. View Article : Google Scholar : PubMed/NCBI | |
Degirmenci U, Wang M and Hu J: Targeting aberrant RAS/RAF/MEK/ERK signaling for cancer therapy. Cells. 9:1982020. View Article : Google Scholar : PubMed/NCBI | |
Crews CM and Erikson RL: Purification of a murine protein-tyro-sine/threonine kinase that phosphorylates and activates the Erk-1 gene product: Relationship to the fission yeast byr1 gene product. Proc Natl Acad Sci USA. 89:8205–8209. 1992. View Article : Google Scholar | |
Dai Y, Chen S, Pei XY, Almenara JA, Kramer LB, Venditti CA, Dent P and Grant S: Interruption of the Ras/MEK/ERK signaling cascade enhances Chk1 inhibitor-induced DNA damage in vitro and in vivo in human multiple myeloma cells. Blood. 112:2439–2449. 2008. View Article : Google Scholar : PubMed/NCBI | |
Karoulia Z, Gavathiotis E and Poulikakos PI: New perspectives for targeting RAF kinase in human cancer. Nat Rev Cancer. 17:676–691. 2017. View Article : Google Scholar : PubMed/NCBI | |
Puszkiel A, Noé G, Bellesoeur A, Kramkimel N, Paludetto MN, Thomas-Schoemann A, Vidal M, Goldwasser F, Chatelut E and Blanchet B: Clinical pharmacokinetics and pharmacodynamics of dabrafenib. Clin Pharmacokinet. 58:451–467. 2019. View Article : Google Scholar | |
Jiang Z, Wang H, Li L, Hou Z, Liu W, Zhou T, Li Y and Chen S: Analysis of TGCA data reveals genetic and epigenetic changes and biological function of MUC family genes in colorectal cancer. Future Oncol. 15:4031–4043. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yuan L, Mishra R, Patel H, Alanazi S, Wei X, Ma Z and Garrett JT: BRAF mutant melanoma adjusts to BRAF/MEK inhibitors via dependence on increased antioxidant SOD2 and increased reactive oxygen species levels. Cancers (Basel). 12:16612020. View Article : Google Scholar : PubMed/NCBI | |
Garbe C and Eigentler TK: Vemurafenib. Recent Results Cancer Res. 211:77–89. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kimeswenger S, Mann U, Hoeller C, Foedinger D and Jantschitsch C: Vemurafenib impairs the repair of ultraviolet radiation-induced DNA damage. Melanoma Res. 29:134–144. 2019. View Article : Google Scholar : PubMed/NCBI | |
Peacock M, Brem R, Macpherson P and Karran P: DNA repair inhibition by UVA photoactivated fluoroquinolones and vemurafenib. Nucleic Acids Res. 42:13714–13722. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kim C and Giaccone G: MEK inhibitors under development for treatment of non-small-cell lung cancer. Expert Opin Investig Drugs. 27:17–30. 2018. View Article : Google Scholar | |
Sarkisian S and Davar D: MEK inhibitors for the treatment of NRAS mutant melanoma. Drug Des Devel Ther. 12:2553–2565. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jin J, Guo Q, Xie J, Jin D and Zhu Y: Combination of MEK inhibitor and the JAK2-STAT3 pathway inhibition for the therapy of colon cancer. Pathol Oncol Res. 25:769–775. 2019. View Article : Google Scholar : PubMed/NCBI | |
Arend RC, Davis AM, Chimiczewski P, O'Malley DM, Provencher D, Vergote I, Ghamande S and Birrer MJ: EMR 20006-012: A phase II randomized double-blind placebo controlled trial comparing the combination of pimasertib (MEK inhibitor) with SAR245409 (PI3K inhibitor) to pimasertib alone in patients with previously treated unresectable borderline or low grade ovarian cancer. Gynecol Oncol. 156:301–307. 2020. View Article : Google Scholar | |
Markham A and Keam SJ: Selumetinib: First approval. Drugs. 80:931–937. 2020. View Article : Google Scholar : PubMed/NCBI | |
Holt SV, Logié A, Odedra R, Heier A, Heaton SP, Alferez D, Davies BR, Wilkinson RW and Smith PD: The MEK1/2 inhibitor, selumetinib (AZD6244; ARRY-142886), enhances anti-tumour efficacy when combined with conventional chemotherapeutic agents in human tumour xenograft models. Br J Cancer. 106:858–866. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zeiser R, Andrlová H and Meiss F: Trametinib (GSK1120212). Recent Results Cancer Res. 211:91–100. 2018. View Article : Google Scholar : PubMed/NCBI | |
Estrada-Bernal A, Chatterjee M, Haque SJ, Yang L, Morgan MA, Kotian S, Morrell D, Chakravarti A and Williams TM: MEK inhibitor GSK1120212-mediated radiosensitization of pancreatic cancer cells involves inhibition of DNA double-strand break repair pathways. Cell Cycle. 14:3713–3724. 2015. View Article : Google Scholar : PubMed/NCBI | |
Roskoski R Jr: Src protein-tyrosine kinase structure, mechanism, and small molecule inhibitors. Pharmacol Res. 94:9–25. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chakraborty G, Patail NK, Hirani R, Nandakumar S, Mazzu YZ, Yoshikawa Y, Atiq M, Jehane LE, Stopsack KH, Lee GM, et al: Attenuation of SRC kinase activity augments PARP inhibitor-mediated synthetic lethality in BRCA2-altered prostate tumors. Clin Cancer Res. 27:1792–1806. 2021. View Article : Google Scholar | |
Lindauer M and Hochhaus A: Dasatinib. Recent Results Cancer Res. 212:29–68. 2018. View Article : Google Scholar : PubMed/NCBI | |
Peng S, Sen B, Mazumdar T, Byers LA, Diao L, Wang J, Tong P, Giri U, Heymach JV, Kadara HN and Johnson FM: Dasatinib induces DNA damage and activates DNA repair pathways leading to senescence in non-small cell lung cancer cell lines with kinase-inactivating BRAF mutations. Oncotarget. 7:565–579. 2016. View Article : Google Scholar : | |
Raju U, Riesterer O, Wang ZQ, Molkentine DP, Molkentine JM, Johnson FM, Glisson B, Milas L and Ang KK: Dasatinib, a multi-kinase inhibitor increased radiation sensitivity by interfering with nuclear localization of epidermal growth factor receptor and by blocking DNA repair pathways. Radiother Oncol. 105:241–249. 2012. View Article : Google Scholar : PubMed/NCBI | |
Corrales-Sánchez V, Noblejas-López MDM, Nieto-Jiménez C, Pérez-Peña J, Montero JC, Burgos M, Galán-Moya EM, Pandiella A and Ocaña A: Pharmacological screening and transcriptomic functional analyses identify a synergistic interaction between dasatinib and olaparib in triple-negative breast cancer. J Cell Mol Med. 24:3117–3127. 2020. View Article : Google Scholar : PubMed/NCBI |