1
|
Siegel RL, Miller KD, Fuchs HE and Jemal
A: Cancer statistics, 2022. CA Cancer J Clin. 72:7–33. 2022.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Akimoto N, Ugai T, Zhong R, Hamada T,
Fujiyoshi K, Giannakis M, Wu K, Cao Y, Ng K and Ogino S: Rising
incidence of early-onset colorectal cancer-a call to action. Nat
Rev Clin Oncol. 18:230–243. 2021. View Article : Google Scholar
|
4
|
Pandurangan AK, Divya T, Kumar K,
Dineshbabu V, Velavan B and Sudhandiran G: Colorectal
carcinogenesis: Insights into the cell death and signal
transduction pathways: A review. World J Gastrointest Oncol.
10:244–259. 2018. View Article : Google Scholar
|
5
|
Xia C, Dong X, Li H, Cao M, Sun D, He S,
Yang F, Yan X, Zhang S, Li N and Chen W: Cancer statistics in China
and United States, 2022: Profiles, trends, and determinants. Chin
Med J (Engl). 135:584–590. 2022. View Article : Google Scholar : PubMed/NCBI
|
6
|
Huang H, He Y, Li Y, Gu M, Wu M and Ji L:
Eriodictyol suppresses the malignant progression of colorectal
cancer by downregulating tissue specific transplantation antigen
P35B (TSTA3) expression to restrain fucosylation. Bioengineered.
13:5551–5563. 2022. View Article : Google Scholar :
|
7
|
Schjoldager KT, Narimatsu Y, Joshi HJ and
Clausen H: Global view of human protein glycosylation pathways and
functions. Nat Rev Mol Cell Biol. 21:729–749. 2020. View Article : Google Scholar
|
8
|
Costa AF, Campos D, Reis CA and Gomes C:
Targeting glycosylation: A new road for cancer drug discovery.
Trends Cancer. 6:757–766. 2020. View Article : Google Scholar
|
9
|
Rini JM, Moremen KW, Davis BG, Esko JD,
Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al:
Glycosyltransferases and glycan-processing enzymes. Essentials of
Glycobiology [Internet]. 4th edition. Cold Spring Harbor Laboratory
Press; Cold Spring Harbor, NY: Chapter 47. 2022
|
10
|
Dos Reis JS, da Costa Santos MA, Mendonça
DP, do Nascimento SIM, Barcelos PM, de Lima RG, da Costa KM,
Freire-de-Lima CG, Morrot A, Previato JO, et al: Glycobiology of
cancer: Sugar drives the show. Medicines (Basel). 9:342022.
View Article : Google Scholar
|
11
|
Munkley J and Elliott DJ: Hallmarks of
glycosylation in cancer. Oncotarget. 7:35478–35489. 2016.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Mereiter S, Balmaña M, Campos D, Gomes J
and Reis CA: Glycosylation in the era of cancer-targeted therapy:
Where are we heading? Cancer Cell. 36:6–16. 2019. View Article : Google Scholar
|
13
|
Blanas A, Sahasrabudhe NM, Rodríguez E,
van Kooyk Y and van Vliet SJ: Fucosylated antigens in cancer: An
alliance toward tumor progression, metastasis, and resistance to
chemotherapy. Front Oncol. 8:392018. View Article : Google Scholar : PubMed/NCBI
|
14
|
Gao Z, Wu Z, Han Y, Zhang X, Hao P, Xu M,
Huang S, Li S, Xia J, Jiang J and Yang S: Aberrant fucosylation of
saliva glycoprotein defining lung adenocarcinomas malignancy. ACS
Omega. 7:17894–17906. 2022. View Article : Google Scholar
|
15
|
Liang JX, Gao W and Cai L:
Fucosyltransferase VII promotes proliferation via the EGFR/AKT/mTOR
pathway in A549 cells. Onco Targets Ther. 10:3971–3978. 2017.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Liu C, Li Z, Wang S, Fan Y, Zhang S, Yang
X, Hou K, Tong J, Hu X, Shi X, et al: FUT4 is involved in
PD-1-related immunosuppression and leads to worse survival in
patients with operable lung adenocarcinoma. J Cancer Res Clin
Oncol. 145:65–76. 2019. View Article : Google Scholar
|
17
|
Shah P, Wang X, Yang W, Eshghi ST, Sun S,
Hoti N, Chen L, Yang S, Pasay J, Rubin A and Zhang H: Integrated
proteomic and glycoproteomic analyses of prostate cancer cells
reveal glycoprotein alteration in protein abundance and
glycosylation. Mol Cell Proteomics. 14:2753–2763. 2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Deng G, Chen L, Zhang Y, Fan S, Li W, Lu J
and Chen X: Fucosyltransferase 2 induced epithelial-mesenchymal
transition via TGF-β/Smad signaling pathway in lung
adenocarcinaoma. Exp Cell Res. 370:613–622. 2018. View Article : Google Scholar
|
19
|
Lai TY, Chen IJ, Lin RJ, Liao GS, Yeo HL,
Ho CL, Wu JC, Chang NC, Lee AC and Yu AL: Fucosyltransferase 1 and
2 play pivotal roles in breast cancer cells. Cell Death Discov.
5:742019. View Article : Google Scholar :
|
20
|
Kramer N, Schmöllerl J, Unger C, Nivarthi
H, Rudisch A, Unterleuthner D, Scherzer M, Riedl A, Artaker M,
Crncec I, et al: Autocrine WNT2 signaling in fibroblasts promotes
colorectal cancer progression. Oncogene. 36:5460–5472. 2017.
View Article : Google Scholar
|
21
|
Zhan T, Rindtorff N and Boutros M: Wnt
signaling in cancer. Oncogene. 36:1461–1473. 2017. View Article : Google Scholar
|
22
|
Tang Z, Li C, Kang B, Gao G, Li C and
Zhang Z: GEPIA: A web server for cancer and normal gene expression
profiling and interactive analyses. Nucleic Acids Res. 45:W98–W102.
2017. View Article : Google Scholar :
|
23
|
Edge SB and Compton CC: The American joint
committee on cancer: The 7th edition of the AJCC cancer staging
manual and the future of TNM. Ann Surg Oncol. 17:1471–1474. 2010.
View Article : Google Scholar
|
24
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
25
|
Zhou W, Ma H, Deng G, Tang L, Lu J and
Chen X: Clinical significance and biological function of
fucosyltransferase 2 in lung adenocarcinoma. Oncotarget.
8:97246–97259. 2017. View Article : Google Scholar :
|
26
|
Mao Y, Zhang Y, Fan S, Chen L, Tang L,
Chen X and Lyu J: GALNT6 promotes tumorigenicity and metastasis of
breast cancer cell via β-catenin/MUC1-C signaling pathway. Int J
Biol Sci. 15:169–182. 2019. View Article : Google Scholar :
|
27
|
Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang
X, Zhou Z, Shu G and Yin G: Wnt/β-catenin signaling: Function,
biological mechanisms, and therapeutic opportunities. Signal
Transduct Target Ther. 7:32022. View Article : Google Scholar
|
28
|
Deschuyter M, Leger DY, Verboom A,
Chaunavel A, Maftah A and Petit JM: ST3GAL2 knock-down decreases
tumoral character of colorectal cancer cells in vitro and in vivo.
Am J Cancer Res. 12:280–302. 2022.PubMed/NCBI
|
29
|
Vajaria BN and Patel PS: Glycosylation: A
hallmark of cancer? Glycoconj J. 34:147–156. 2017. View Article : Google Scholar
|
30
|
Tvaroška I: Glycosyltransferases as
targets for therapeutic intervention in cancer and inflammation:
Molecular modeling insights. Chem Pap. 76:1953–1988. 2022.
View Article : Google Scholar
|
31
|
Vasconcelos-Dos-Santos A, Oliveira IA,
Lucena MC, Mantuano NR, Whelan SA, Dias WB and Todeschini AR:
Biosynthetic machinery involved in aberrant glycosylation:
Promising targets for developing of drugs against cancer. Front
Oncol. 5:1382015. View Article : Google Scholar :
|
32
|
Liang Y, Wang T, Gao R, Jia X, Ji T, Shi
P, Xue J, Yang A, Chen M and Han P: Fucosyltransferase 8 is
overexpressed and influences clinical outcomes in lung
adenocarcinoma patients. Pathol Oncol Res. 28:16101162022.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Blanas A, Zaal A, van der Haaràvila I,
Kempers M, Kruijssen L, de Kok M, Popovic MA, van der Horst JC and
van Vliet SJ: FUT9-driven programming of colon cancer cells towards
a stem cell-like state. Cancers (Basel). 12:25802020. View Article : Google Scholar : PubMed/NCBI
|
34
|
Stewart ZA, Westfall MD and Pietenpol JA:
Cell-cycle dysregulation and anticancer therapy. Trends Pharmacol
Sci. 24:139–145. 2003. View Article : Google Scholar : PubMed/NCBI
|
35
|
Tang H, Yang P, Yang X, Peng S, Hu X and
Bao G: Growth factor receptor bound protein-7 regulates
proliferation, cell cycle, and mitochondrial apoptosis of thyroid
cancer cells via MAPK/ERK signaling. Mol Cell Biochem. 472:209–218.
2020. View Article : Google Scholar : PubMed/NCBI
|
36
|
Hiremath IS, Goel A, Warrier S, Kumar AP,
Sethi G and Garg M: The multidimensional role of the Wnt/β-catenin
signaling pathway in human malignancies. J Cell Physiol.
237:199–238. 2022. View Article : Google Scholar
|
37
|
Cebrat M, Strzadala L and Kisielow P: Wnt
inhibitory factor-1: A candidate for a new player in tumorigenesis
of intestinal epithelial cells. Cancer Lett. 206:107–113. 2004.
View Article : Google Scholar
|
38
|
Huang HL, Tang GD, Liang ZH, Qin MB, Wang
XM, Chang RJ and Qin HP: Role of Wnt/β-catenin pathway agonist
SKL2001 in Caerulein-induced acute pancreatitis. Can J Physiol
Pharmacol. 97:15–22. 2019. View Article : Google Scholar
|
39
|
Shang S, Hua F and Hu ZW: The regulation
of β-catenin activity and function in cancer: Therapeutic
opportunities. Oncotarget. 8:33972–33989. 2017. View Article : Google Scholar : PubMed/NCBI
|
40
|
Stamos JL and Weis WI: The β-catenin
destruction complex. Cold Spring Harb Perspect Biol. 5:a0078982013.
View Article : Google Scholar
|
41
|
Jung YS, Jun S, Lee SH, Sharma A and Park
JI: Wnt2 complements Wnt/β-catenin signaling in colorectal cancer.
Oncotarget. 6:37257–37268. 2015. View Article : Google Scholar : PubMed/NCBI
|
42
|
Huang C, Ma R, Xu Y, Li N, Li Z, Yue J, Li
H, Guo Y and Qi D: Wnt2 promotes non-small cell lung cancer
progression by activating WNT/β-catenin pathway. Am J Cancer Res.
5:1032–1046. 2015.
|
43
|
Rahiminejad S, Maurya MR, Mukund K and
Subramaniam S: Modular and mechanistic changes across stages of
colorectal cancer. BMC Cancer. 22:4362022. View Article : Google Scholar
|