1
|
Daddona PE and Kelley WN: Human adenosine
deaminase. Stoichiometry of the adenosine deaminase-binding protein
complex. Biochim Biophys Acta. 580:302–311. 1979. View Article : Google Scholar : PubMed/NCBI
|
2
|
Kameoka J, Tanaka T, Nojima Y, Schlossman
SF and Morimoto C: Direct association of adenosine deaminase with a
T cell activation antigen, CD26. Science. 261:466–469. 1993.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Morrison ME, Vijayasaradhi S, Engelstein
D, Albino AP and Houghton AN: A marker for neoplastic progression
of human melanocytes is a cell surface ectopeptidase. J Exp Med.
177:1135–1143. 1993. View Article : Google Scholar : PubMed/NCBI
|
4
|
Abbott CA, Baker E, Sutherland GR and
McCaughan GW: Genomic organization, exact localization, and tissue
expression of the human CD26 (dipeptidyl peptidase IV) gene.
Immunogenetics. 40:331–338. 1994. View Article : Google Scholar : PubMed/NCBI
|
5
|
Marguet D, Baggio L, Kobayashi T, Bernard
AM, Pierres M, Nielsen PF, Ribel U, Watanabe T, Drucker DJ and
Wagtmann N: Enhanced insulin secretion and improved glucose
tolerance in mice lacking CD26. Proc Natl Acad Sci USA.
97:6874–6879. 2000. View Article : Google Scholar : PubMed/NCBI
|
6
|
Conarello SL, Li Z, Ronan J, Roy RS, Zhu
L, Jiang G, Liu F, Woods J, Zycband E, Moller DE, et al: Mice
lacking dipeptidyl peptidase IV are protected against obesity and
insulin resistance. Proc Natl Acad Sci USA. 100:6825–6830. 2003.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Klemann C, Wagner L, Stephan M and von
Horsten S: Cut to the chase: A review of CD26/dipeptidyl
peptidase-4′s (DPP4) entanglement in the immune system. Clin Exp
Immunol. 185:1–21. 2016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Vankadari N and Wilce JA: Emerging WuHan
(COVID-19) coronavirus: Glycan shield and structure prediction of
spike glycoprotein and its interaction with human CD26. Emerg
Microbes Infect. 9:601–604. 2020. View Article : Google Scholar : PubMed/NCBI
|
9
|
Ohnuma K, Uchiyama M, Yamochi T,
Nishibashi K, Hosono O, Takahashi N, Kina S, Tanaka H, Lin X, Dang
NH and Morimoto C: Caveolin-1 triggers T-cell activation via CD26
in association with CARMA1. J Biol Chem. 282:10117–10131. 2007.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Gines S, Marino M, Mallol J, Canela EI,
Morimoto C, Callebaut C, Hovanessian A, Casadó V, Lluis C and
Franco R: Regulation of epithelial and lymphocyte cell adhesion by
adenosine deaminase-CD26 interaction. Biochem J. 361:203–209. 2002.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Ohnuma K, Hatano R, Komiya E, Otsuka H,
Itoh T, Iwao N, Kaneko Y, Yamada T, Dang NH and Morimoto C: A novel
role for CD26/dipeptidyl peptidase IV as a therapeutic target.
Front Biosci (Landmark Ed). 23:1754–1779. 2018. View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhang T, Tong X, Zhang S, Wang D, Wang L,
Wang Q and Fan H: The roles of dipeptidyl peptidase 4 (DPP4) and
DPP4 inhibitors in different lung diseases: New evidence. Front
Pharmacol. 12:7314532021. View Article : Google Scholar : PubMed/NCBI
|
13
|
da Cruz Freire JE, Junior JEM, Pinheiro
DP, da Cruz Paiva Lima GE, do Amaral CL, Veras VR, Madeira MP,
Freire EBL, Ozório RG, Fernandes VO, et al: Evaluation of the
anti-diabetic drug sitagliptin as a novel attenuate to SARS-CoV-2
evidence-based in silico: Molecular docking and molecular dynamics.
3 Biotech. 12:3442022. View Article : Google Scholar : PubMed/NCBI
|
14
|
Scheen AJ: Cardiovascular effects of
dipeptidyl peptidase-4 inhibitors: From risk factors to clinical
outcomes. Postgrad Med. 125:7–20. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Hu X, Wang X and Xue X: Therapeutic
perspectives of CD26 inhibitors in imune-mediated diseases.
Molecules. 27:44982022. View Article : Google Scholar : PubMed/NCBI
|
16
|
Thompson MA, Ohnuma K, Abe M, Morimoto C
and Dang NH: CD26/dipeptidyl peptidase IV as a novel therapeutic
target for cancer and immune disorders. Mini Rev Med Chem.
7:253–273. 2007. View Article : Google Scholar : PubMed/NCBI
|
17
|
Alkharsah KR, Aljaroodi SA, Rahman JU,
Alnafie AN, Al Dossary R, Aljindan RY, Alnimr AM and Hussen J: Low
levels of soluble DPP4 among Saudis may have constituted a risk
factor for MERS endemicity. PLoS One. 17:e02666032022. View Article : Google Scholar : PubMed/NCBI
|
18
|
Wang N, Shi X, Jiang L, Zhang S, Wang D,
Tong P, Guo D, Fu L, Cui Y, Liu X, et al: Structure of MERS-CoV
spike receptor-binding domain complexed with human receptor DPP4.
Cell Res. 23:986–993. 2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Sedo A, Krepela E, Kasafirek E, Kraml J
and Kadlecova L: Dipeptidyl peptidase IV in the human lung and
spinocellular lung cancer. Physiol Res. 40:359–362. 1991.PubMed/NCBI
|
20
|
Bishnoi R, Hong YR, Shah C, Ali A, Skelton
WP IV, Huo J, Dang NH and Dang LH: Dipeptidyl peptidase 4
inhibitors as novel agents in improving survival in diabetic
patients with colorectal cancer and lung cancer: A surveillance
epidemiology and endpoint research medicare study. Cancer Med.
8:3918–3927. 2019. View Article : Google Scholar : PubMed/NCBI
|
21
|
Colice G, Price D, Gerhardsson de Verdier
M, Rabon-Stith K, Ambrose C, Cappell K, Irwin DE, Juneau P and
Vlahiotis A: The effect of DPP-4 inhibitors on asthma control: An
administrative database study to evaluate a potential
pathophysiological relationship. Pragmat Obs Res. 8:231–240. 2017.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Raj VS, Smits SL, Provacia LB, van den
Brand JM, Wiersma L, Ouwendijk WJ, Bestebroer TM, Spronken MI, van
Amerongen G, Rottier PJ, et al: Adenosine deaminase acts as a
natural antagonist for dipeptidyl peptidase 4-mediated entry of the
Middle East respiratory syndrome coronavirus. J Virol.
88:1834–1838. 2014. View Article : Google Scholar :
|
23
|
deKay JT, May TL, Riker RR, Rud J, Gagnon
DJ, Sawyer DB, Seder DB and Ryzhov S: The number of circulating
CD26 expressing cells is decreased in critical COVID-19 illness.
Cytometry A. Mar 16–2022.Epub ahead of print.
|
24
|
Cameron K, Rozano L, Falasca M and Mancera
RL: Does the SARS-CoV-2 spike protein receptor binding domain
interact effectively with the DPP4 (CD26) Receptor? A Molecular
Docking Study. Int J Mol Sci. 22:70012021. View Article : Google Scholar : PubMed/NCBI
|
25
|
Govender Y, Shalekoff S, Ebrahim O, Waja
Z, Chaisson RE, Martinson N and Tiemessen CT: Systemic DPP4/CD26 is
associated with natural HIV-1 control: Implications for COVID-19
susceptibility. Clin Immunol. 230:1088242021. View Article : Google Scholar : PubMed/NCBI
|
26
|
Nadasdi A, Sinkovits G, Bobek I, Lakatos
B, Förhécz Z, Prohászka ZZ, Réti M, Arató M, Cseh G, Masszi T, et
al: Decreased circulating dipeptidyl peptidase-4 enzyme activity is
prognostic for severe outcomes in COVID-19 inpatients. Biomark Med.
16:317–330. 2022. View Article : Google Scholar : PubMed/NCBI
|
27
|
Radzikowska U, Ding M, Tan G, Zhakparov D,
Peng Y, Wawrzyniak P, Wang M, Li S, Morita H, Altunbulakli C, et
al: Distribution of ACE2, CD147, CD26, and other SARS-CoV-2
associated molecules in tissues and immune cells in health and in
asthma, COPD, obesity, hypertension, and COVID-19 risk factors.
Allergy. 75:2829–2845. 2020. View Article : Google Scholar : PubMed/NCBI
|
28
|
Kawasaki T, Chen W, Htwe YM, Tatsumi K and
Dudek SM: DPP4 inhibition by sitagliptin attenuates LPS-induced
lung injury in mice. Am J Physiol Lung Cell Mol Physiol.
315:L834–L845. 2018. View Article : Google Scholar : PubMed/NCBI
|
29
|
Kifle ZD, Woldeyohanin AE and Demeke CA:
SARS-CoV-2 and diabetes: A potential therapeutic effect of
dipeptidyl peptidase 4 inhibitors in diabetic patients diagnosed
with COVID-19. Metabol Open. 12:1001342021. View Article : Google Scholar : PubMed/NCBI
|
30
|
Nitulescu GM, Paunescu H, Moschos SA,
Petrakis D, Nitulescu G, Ion GND, Spandidos DA, Nikolouzakis TK,
Drakoulis N and Tsatsakis A: Comprehensive analysis of drugs to
treat SARSCoV2 infection: Mechanistic insights into current COVID19
therapies (Review). Int J Mol Med. 46:467–488. 2020. View Article : Google Scholar : PubMed/NCBI
|
31
|
Gordon DE, Jang GM, Bouhaddou M, Xu J,
Obernier K, White KM, O'Meara MJ, Rezelj VV, Guo JZ, Swaney DL, et
al: A SARS-CoV-2 protein interaction map reveals targets for drug
repurposing. Nature. 583:459–468. 2020. View Article : Google Scholar : PubMed/NCBI
|
32
|
Pal R, Banerjee M, Mukherjee S, Bhogal RS,
Kaur A and Bhadada SK: Dipeptidyl peptidase-4 inhibitor use and
mortality in COVID-19 patients with diabetes mellitus: An updated
systematic review and meta-analysis. Ther Adv Endocrinol Metab.
12:20420188219964822021. View Article : Google Scholar : PubMed/NCBI
|
33
|
Han T, Ma S, Sun C, Zhang H, Qu G, Chen Y,
Cheng C, Chen EL, Ayaz Ahmed M, Kim KY, et al: Association between
anti-diabetic agents and clinical outcomes of COVID-19 in patients
with diabetes: A systematic review and meta-analysis. Arch Med Res.
53:186–195. 2022. View Article : Google Scholar
|
34
|
Zein A and Raffaello WM: Dipeptidyl
peptidase-4 (DPP-IV) inhibitor was associated with mortality
reduction in COVID-19-A systematic review and meta-analysis. Prim
Care Diabetes. 16:162–167. 2022. View Article : Google Scholar
|
35
|
Rakhmat II, Kusmala YY, Handayani DR,
Juliastuti H, Nawangsih EN, Wibowo A, Lim MA and Pranata R:
Dipeptidyl peptidase-4 (DPP-4) inhibitor and mortality in
coronavirus disease 2019 (COVID-19)-A systematic review,
meta-analysis, and meta-regression. Diabetes Metab Syndr.
15:777–782. 2021. View Article : Google Scholar : PubMed/NCBI
|
36
|
Carrasco-Sanchez FJ, Carretero-Anibarro E,
Gargallo MÁ, Gómez-Huelgas R, Merino-Torres JF, Orozco-Beltrán D,
Pines Corrales PJ and Ruiz Quintero MA: Executive Summary from
Expert consensus on effectiveness and safety of iDPP-4 in the
treatment of patients with diabetes and COVID-19. Endocrinol
Diabetes Nutr (Engl Ed). 69:209–218. 2022.PubMed/NCBI
|
37
|
Shestakova MV, Vikulova OK, Elfimova AR,
Deviatkin AA, Dedov II and Mokrysheva NG: Risk factors for COVID-19
case fatality rate in people with type 1 and type 2 diabetes
mellitus: A nationwide retrospective cohort study of 235,248
patients in the Russian Federation. Front Endocrinol (Lausanne).
13:9098742022. View Article : Google Scholar : PubMed/NCBI
|
38
|
Solerte SB, Di Sabatino A, Galli M and
Fiorina P: Dipeptidyl peptidase-4 (DPP4) inhibition in COVID-19.
Acta Diabetol. 57:779–783. 2020. View Article : Google Scholar : PubMed/NCBI
|
39
|
Sebastian-Martin A, Sanchez BG,
Mora-Rodriguez JM, Bort A and Diaz-Laviada I: Role of dipeptidyl
Peptidase-4 (DPP4) on COVID-19 physiopathology. Biomedicines.
10:20262022. View Article : Google Scholar : PubMed/NCBI
|
40
|
Ojha R, Gurjar K, Ratnakar TS, Mishra A
and Prajapati VK: Designing of a bispecific antibody against
SARS-CoV-2 spike glycoprotein targeting human entry receptors DPP4
and ACE2. Hum Immunol. 83:346–355. 2022. View Article : Google Scholar : PubMed/NCBI
|
41
|
Elkrief A, Hennessy C, Kuderer NM,
Rubinstein SM, Wulff-Burchfield E, Rosovsky RP, Vega-Luna K,
Thompson MA, Panagiotou OA, Desai A, et al: Geriatric risk factors
for serious COVID-19 outcomes among older adults with cancer: A
cohort study from the COVID-19 and Cancer Consortium. Lancet
Healthy Longev. 3:e143–e152. 2022. View Article : Google Scholar : PubMed/NCBI
|
42
|
Desai A, Gupta R, Advani S, Ouellette L,
Kuderer NM, Lyman GH and Li A: Mortality in hospitalized patients
with cancer and coronavirus disease 2019: A systematic review and
meta-analysis of cohort studies. Cancer. 127:1459–1468. 2021.
View Article : Google Scholar
|
43
|
Grivas P, Khaki AR, Wise-Draper TM, French
B, Hennessy C, Hsu CY, Shyr Y, Li X, Choueiri TK, Painter CA, et
al: Association of clinical factors and recent anticancer therapy
with COVID-19 severity among patients with cancer: A report from
the COVID-19 and Cancer Consortium. Ann Oncol. 32:787–800. 2021.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Fu C, Stoeckle JH, Masri L, Pandey A, Cao
M, Littman D, Rybstein M, Saith SE, Yarta K, Rohatgi A, et al:
COVID-19 outcomes in hospitalized patients with active cancer:
Experiences from a major New York City health care system. Cancer.
127:3466–3475. 2021. View Article : Google Scholar : PubMed/NCBI
|
45
|
Beckenkamp A, Davies S, Willig JB and
Buffon A: DPPIV/CD26: A tumor suppressor or a marker of malignancy?
Tumour Biol. 37:7059–7073. 2016. View Article : Google Scholar : PubMed/NCBI
|
46
|
Fu J, Liao L, Balaji KS, Wei C, Kim J and
Peng J: Epigenetic modification and a role for the E3 ligase RNF40
in cancer development and metastasis. Oncogene. 40:465–474. 2021.
View Article : Google Scholar :
|
47
|
Li D, Liu X, Zhang L, He J, Chen X, Liu S,
Fu J, Fu S, Chen H, Fu J and Cheng J: COVID-19 disease and
malignant cancers: The impact for the furin gene expression in
susceptibility to SARS-CoV-2. Int J Biol Sci. 17:3954–3967. 2021.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Uhlen M, Fagerberg L, Hallstrom BM,
Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å, Kampf C,
Sjöstedt E, Asplund A, et al: Proteomics. Tissue-based map of the
human proteome. Science. 347:12604192015. View Article : Google Scholar : PubMed/NCBI
|
49
|
Uhlen M, Zhang C, Lee S, Sjöstedt E,
Fagerberg L, Bidkhori G, Benfeitas R, Arif M, Liu Z, Edfors F, et
al: A pathology atlas of the human cancer transcriptome. Science.
357:eaan25072017. View Article : Google Scholar : PubMed/NCBI
|
50
|
Tang Z, Li C, Kang B, Gao G, Li C and
Zhang Z: GEPIA: A web server for cancer and normal gene expression
profiling and interactive analyses. Nucleic Acids Res. 45:W98–W102.
2017. View Article : Google Scholar : PubMed/NCBI
|
51
|
Tang Z, Kang B, Li C, Chen T and Zhang Z:
GEPIA2: An enhanced web server for large-scale expression profiling
and interactive analysis. Nucleic Acids Res. 47:W556–W560. 2019.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Ding W, Chen J, Feng G, Chen G, Wu J, Guo
Y, Ni X and Shi T: DNMIVD: DNA methylation interactive
visualization database. Nucleic Acids Res. 48:D856–D862. 2020.
View Article : Google Scholar :
|
53
|
Cerami E, Gao J, Dogrusoz U, Gross BE,
Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, et
al: The cBio cancer genomics portal: An open platform for exploring
multidimensional cancer genomics data. Cancer Discov. 2:401–404.
2012. View Article : Google Scholar : PubMed/NCBI
|
54
|
Ru B, Wong CN, Tong Y, Zhong JY, Zhong
SSW, Wu WC, Chu KC, Wong CY, Lau CY, Chen I, et al: TISIDB: An
integrated repository portal for tumor-immune system interactions.
Bioinformatics. 35:4200–4202. 2019. View Article : Google Scholar : PubMed/NCBI
|
55
|
Fu J, Li L and Lu G: Relationship between
microdeletion on Y chromosome and patients with idiopathic
azoospermia and severe oligozoospermia in the Chinese. Chin Med J
(Engl). 115:72–75. 2002.PubMed/NCBI
|
56
|
Zhang L, Yang M, Gan L, He T, Xiao X,
Stewart MD, Liu X, Yang L, Zhang T, Zhao Y and Fu J: DLX4
upregulates TWIST and enhances tumor migration, invasion and
metastasis. Int J Biol Sci. 8:1178–1187. 2012. View Article : Google Scholar : PubMed/NCBI
|
57
|
Zhang L, Wei C, Li D, He J, Liu S, Deng H,
Cheng J, Du J, Liu X, Chen H, et al: COVID-19 receptor and
malignant cancers: Association of CTSL expression with
susceptibility to SARS-CoV-2. Int J Biol Sci. 18:2362–2371. 2022.
View Article : Google Scholar : PubMed/NCBI
|
58
|
Wang K, Deng H, Song B, He J, Liu S, Fu J,
Zhang L, Li D, Balaji KS, Mei Z, et al: The correlation between
immune invasion and SARS-COV-2 entry protein ADAM17 in cancer
patients by bioinformatic analysis. Front Immunol. 13:9235162022.
View Article : Google Scholar : PubMed/NCBI
|
59
|
Wei C, Liu Y, Liu X, Cheng J and Fu J,
Xiao X, Moses RE, Li X and Fu J: The speckle-type POZ protein
(SPOP) inhibits breast cancer malignancy by destabilizing TWIST1.
Cell Death Discov. 8:3892022. View Article : Google Scholar : PubMed/NCBI
|
60
|
Fu J, Song B, Du J, Liu S, He J, Xiao T,
Zhou B, Li D, Liu X, He T, et al: Impact of BSG/CD147 gene
expression on diagnostic, prognostic and therapeutic strategies
towards malignant cancers and possible susceptibility to
SARS-CoV-2. Mol Biol Rep. 1–13. 2022. View Article : Google Scholar : Epub ahead of
print. PubMed/NCBI
|
61
|
Liu G, Du W, Sang X, Tong Q, Wang Y, Chen
G, Yuan Y, Jiang L, Cheng W, Liu D, et al: RNA G-quadruplex in
TMPRSS2 reduces SARS-CoV-2 infection. Nat Commun. 13:14442022.
View Article : Google Scholar : PubMed/NCBI
|
62
|
Jocher G, Grass V, Tschirner SK, Riepler
L, Breimann S, Kaya T, Oelsner M, Hamad MS, Hofmann LI, Blobel CP,
et al: ADAM10 and ADAM17 promote SARS-CoV-2 cell entry and spike
protein-mediated lung cell fusion. EMBO Rep. 23:e543052022.
View Article : Google Scholar : PubMed/NCBI
|
63
|
Fu J, Zhou B, Zhang L, Balaji KS, Wei C,
Liu X, Chen H, Peng J and Fu J: Expressions and significances of
the angiotensin-converting enzyme 2 gene, the receptor of
SARS-CoV-2 for COVID-19. Mol Biol Rep. 47:4383–4392. 2020.
View Article : Google Scholar : PubMed/NCBI
|
64
|
Györffy B, Lanczky A, Eklund AC, Denkert
C, Budczies J, Li Q and Szallasi Z: An online survival analysis
tool to rapidly assess the effect of 22,277 genes on breast cancer
prognosis using microarray data of 1,809 patients. Breast Cancer
Res Treat. 123:725–731. 2010. View Article : Google Scholar
|
65
|
Blume C, Jackson CL, Spalluto CM, Legebeke
J, Nazlamova L, Conforti F, Perotin JM, Frank M, Butler J, Crispin
M, et al: A novel ACE2 isoform is expressed in human respiratory
epithelia and is upregulated in response to interferons and RNA
respiratory virus infection. Nat Genet. 53:205–214. 2021.
View Article : Google Scholar : PubMed/NCBI
|
66
|
Onabajo OO, Banday AR, Stanifer ML, Yan W,
Obajemu A, Santer DM, Florez-Vargas O, Piontkivska H, Vargas JM,
Ring TJ, et al: Interferons and viruses induce a novel truncated
ACE2 isoform and not the full-length SARS-CoV-2 receptor. Nat
Genet. 52:1283–1293. 2020. View Article : Google Scholar : PubMed/NCBI
|
67
|
Chen PJ, Lu HJ, Nassef Y, Lin CW, Chuang
CY, Lee CY, Chiu YW, Yang SF and Yang WE: Association of dipeptidyl
peptidase IV polymorphism with clinicopathological characters of
oral cancer. J Oral Pathol Med. 51:730–737. 2022. View Article : Google Scholar : PubMed/NCBI
|
68
|
Posadas-Sanchez R, Sanchez-Munoz F,
Guzman-Martin CA, Hernández-Díaz Couder A, Rojas-Velasco G, Fragoso
JM and Vargas-Alarcón G: Dipeptidylpeptidase-4 levels and DPP4 gene
polymorphisms in patients with COVID-19. Association with disease
and with severity. Life Sci. 276:1194102021. View Article : Google Scholar : PubMed/NCBI
|
69
|
Cekic C and Linden J: Purinergic
regulation of the immune system. Nat Rev Immunol. 16:177–192. 2016.
View Article : Google Scholar : PubMed/NCBI
|
70
|
Fong L, Hotson A, Powderly JD, Sznol M,
Heist RS, Choueiri TK, George S, Hughes BGM, Hellmann MD, Shepard
DR, et al: Adenosine 2A receptor blockade as an immunotherapy for
treatment-refractory renal cell cancer. Cancer Discov. 10:40–53.
2020. View Article : Google Scholar
|
71
|
Novitskiy SV, Ryzhov S, Zaynagetdinov R,
Goldstein AE, Huang Y, Tikhomirov OY, Blackburn MR, Biaggioni I,
Carbone DP, Feoktistov I and Dikov MM: Adenosine receptors in
regulation of dendritic cell differentiation and function. Blood.
112:1822–1831. 2008. View Article : Google Scholar : PubMed/NCBI
|
72
|
Liu J, Shi Y, Liu X, Zhang D, Bai Y, Xu Y
and Wang M: Blocking Adenosine/A2AR pathway for cancer therapy.
Zhongguo Fei Ai Za Zhi. 25:460–467. 2022.In Chinese. PubMed/NCBI
|
73
|
Braga L, Ali H, Secco I, Chiavacci E,
Neves G, Goldhill D, Penn R, Jimenez-Guardeño JM, Ortega-Prieto AM,
Bussani R, et al: Drugs that inhibit TMEM16 proteins block
SARS-CoV-2 spike-induced syncytia. Nature. 594:88–93. 2021.
View Article : Google Scholar :
|
74
|
Krejner-Bienias A, Grzela K and Grzela T:
DPP4 inhibitors and COVID-19-holy grail or another dead end? Arch
Immunol Ther Exp (Warsz). 69:12021. View Article : Google Scholar : PubMed/NCBI
|
75
|
Alomair BM, Al-Kuraishy HM, Al-Buhadily
AK, Al-Gareeb AI, De Waard M, Elekhnawy E and Batiha GE: Is
sitagliptin effective for SARS-CoV-2 infection: False or true
prophecy? Inflammopharmacology. 30:2411–2415. 2022. View Article : Google Scholar : PubMed/NCBI
|
76
|
Radhi M, Ashraf S, Lawrence S, Tranholm
AA, Wellham PAD, Hafeez A, Khamis AS, Thomas R, McWilliams D and de
Moor CH: A systematic review of the biological effects of
cordycepin. Molecules. 26:58862021. View Article : Google Scholar : PubMed/NCBI
|
77
|
Tima S, Tapingkae T, To-Anun C, Noireung
P, Intaparn P, Chaiyana W, Sirithunyalug J, Panyajai P,
Viriyaadhammaa N, Nirachonkul W, et al: Antileukaemic cell
proliferation and cytotoxic activity of edible golden cordyceps
(Cordyceps militaris) extracts. Evid Based Complement Alternat Med.
2022:53477182022. View Article : Google Scholar : PubMed/NCBI
|
78
|
Wei C, Khan MA, Du J, Cheng J, Tania M,
Leung EL and Fu J: Cordycepin Inhibits triple-negative breast
cancer cell migration and invasion by regulating EMT-TFs SLUG,
TWIST1, SNAIL1, and ZEB1. Front Oncol. 12:8985832022. View Article : Google Scholar : PubMed/NCBI
|
79
|
Chan CT, Chionh YH, Ho CH, Lim KS, Babu
IR, Ang E, Wenwei L, Alonso S and Dedon PC: Identification of N6,
N6-dimethyladenosine in transfer RNA from Mycobacterium bovis
Bacille Calmette-Guerin. Molecules. 16:5168–5181. 2011. View Article : Google Scholar : PubMed/NCBI
|
80
|
Fu J, Liu S, Tan Q, Liu Z, Qian J, Li T,
Du J, Song B, Li D, Zhang L, et al: Impact of TMPRSS2 Expression,
Mutation Prognostics, and Small Molecule (CD, AD, TQ, and TQFL12)
Inhibition on Pan-Cancer Tumors and Susceptibility to SARS-CoV-2.
Molecules. 27:74132022. View Article : Google Scholar : PubMed/NCBI
|
81
|
Boison D and Yegutkin GG: Adenosine
metabolism: Emerging concepts for cancer therapy. Cancer Cell.
36:582–596. 2019. View Article : Google Scholar : PubMed/NCBI
|
82
|
Hammami A, Allard D, Allard B and Stagg J:
Targeting the adenosine pathway for cancer immunotherapy. Semin
Immunol. 42:1013042019. View Article : Google Scholar : PubMed/NCBI
|
83
|
Vijayan D, Young A, Teng MWL and Smyth MJ:
Targeting immunosuppressive adenosine in cancer. Nat Rev Cancer.
17:709–724. 2017. View Article : Google Scholar : PubMed/NCBI
|
84
|
Huo JL, Wang YT, Fu WJ, Lu N and Liu ZS:
The promising immune checkpoint LAG-3 in cancer immunotherapy: From
basic research to clinical application. Front Immunol.
13:9560902022. View Article : Google Scholar : PubMed/NCBI
|
85
|
Chocarro L, Blanco E, Zuazo M, Arasanz H,
Bocanegra A, Fernández-Rubio L, Morente P, Fernández-Hinojal G,
Echaide M, Garnica M, et al: Understanding LAG-3 Signaling. Int J
Mol Sci. 22:52822021. View Article : Google Scholar : PubMed/NCBI
|
86
|
Chocarro L, Bocanegra A, Blanco E,
Fernández-Rubio L, Arasanz H, Echaide M, Garnica M, Ramos P,
Piñeiro-Hermida S, Vera R, et al: Cutting-Edge: Preclinical and
clinical development of the first approved Lag-3 inhibitor. Cells.
11:23512022. View Article : Google Scholar : PubMed/NCBI
|
87
|
Robert C, Long GV, Brady B, Dutriaux C,
Maio M, Mortier L, Hassel JC, Rutkowski P, McNeil C,
Kalinka-Warzocha E, et al: Nivolumab in previously untreated
melanoma without BRAF mutation. N Engl J Med. 372:320–330. 2015.
View Article : Google Scholar
|
88
|
Ansell SM, Lesokhin AM, Borrello I,
Halwani A, Scott EC, Gutierrez M, Schuster SJ, Millenson MM, Cattry
D, Freeman GJ, et al: PD-1 blockade with nivolumab in relapsed or
refractory Hodgkin's lymphoma. N Engl J Med. 372:311–319. 2015.
View Article : Google Scholar :
|