1
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2018. CA Cancer J Clin. 68:7–30. 2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Li D, Xie K, Wolff R and Abbruzzese JL:
Pancreatic cancer. Lancet. 363:1049–1057. 2004. View Article : Google Scholar : PubMed/NCBI
|
3
|
Neoptolemos JP, Kleeff J, Michl P,
Costello E, Greenhalf W and Palmer DH: Therapeutic developments in
pancreatic cancer: Current and future perspectives. Nat Rev
Gastroenterol Hepatol. 15:333–348. 2018. View Article : Google Scholar : PubMed/NCBI
|
4
|
Conroy T, Desseigne F, Ychou M, Bouché O,
Guimbaud R, Bécouarn Y, Adenis A, Raoul JL, Gourgou-Bourgade S, de
la Fouchardière C, et al: FOLFIRINOX versus gemcitabine for
metastatic pancreatic cancer. N Engl J Med. 364:1817–1825. 2011.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Sohal DPS, Kennedy EB, Khorana A, Copur
MS, Crane CH, Garrido-Laguna I, Krishnamurthi S, Moravek C,
O'Reilly EM, Philip PA, et al: Metastatic pancreatic cancer: ASCO
clinical practice guideline update. J Clin Oncol. 36:2545–2556.
2018. View Article : Google Scholar : PubMed/NCBI
|
6
|
Wattenberg MM, Asch D, Yu S, O'Dwyer PJ,
Domchek SM, Nathanson KL, Rosen MA, Beatty GL, Siegelman ES and
Reiss KA: Platinum response characteristics of patients with
pancreatic ductal adenocarcinoma and a germline BRCA1, BRCA2 or
PALB2 mutation. Br J Cancer. 122:333–339. 2020. View Article : Google Scholar :
|
7
|
Iwabuchi K, Bartel PL, Li B, Marraccino R
and Fields S: Two cellular proteins that bind to wild-type but not
mutant p53. Proc Natl Acad Sci USA. 91:6098–6102. 1994. View Article : Google Scholar : PubMed/NCBI
|
8
|
Pontoglio M: Hepatocyte nuclear factor 1,
a transcription factor at the crossroads of glucose homeostasis. J
Am Soc Nephrol. 11(Suppl 16): S140–S143. 2000. View Article : Google Scholar : PubMed/NCBI
|
9
|
Odom DT, Zizlsperger N, Gordon DB, Bell
GW, Rinaldi NJ, Murray HL, Volkert TL, Schreiber J, Rolfe PA,
Gifford DK, et al: Control of pancreas and liver gene expression by
HNF transcription factors. Science. 303:1378–1381. 2004. View Article : Google Scholar : PubMed/NCBI
|
10
|
Servitja JM, Pignatelli M, Maestro MA,
Cardalda C, Boj SF, Lozano J, Blanco E, Lafuente A, McCarthy MI,
Sumoy L, et al: Hnf1alpha (MODY3) controls tissue-specific
transcriptional programs and exerts opposed effects on cell growth
in pancreatic islets and liver. Mol Cell Biol. 29:2945–2959. 2009.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Li D, Duell EJ, Yu K, Risch HA, Olson SH,
Kooperberg C, Wolpin BM, Jiao L, Dong X, Wheeler B, et al: Pathway
analysis of genome-wide association study data highlights
pancreatic development genes as susceptibility factors for
pancreatic cancer. Carcinogenesis. 33:1384–1390. 2012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Firdous P, Nissar K, Ali S, Ganai BA,
Shabir U, Hassan T and Masoodi SR: Genetic testing of
maturity-onset diabetes of the young current status and future
perspectives. Front Endocrinol (Lausanne). 9:2532018. View Article : Google Scholar : PubMed/NCBI
|
13
|
Luo Z, Li Y, Wang H, Fleming J, Li M, Kang
Y, Zhang R and Li D: Hepatocyte nuclear factor 1A (HNF1A) as a
possible tumor suppressor in pancreatic cancer. PloS One.
10:e01210822015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Lu Y, Xu D, Peng J, Luo Z, Chen C, Chen Y,
Chen H, Zheng M, Yin P and Wang Z: HNF1A inhibition induces the
resistance of pancreatic cancer cells to gemcitabine by targeting
ABCB1. EBioMedicine. 44:403–418. 2019. View Article : Google Scholar : PubMed/NCBI
|
15
|
Hoskins JW, Jia J, Flandez M, Parikh H,
Xiao W, Collins I, Emmanuel MA, Ibrahim A, Powell J, Zhang L, et
al: Transcriptome analysis of pancreatic cancer reveals a tumor
suppressor function for HNF1A. Carcinogenesis. 35:2670–2678. 2014.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Fujino S, Miyoshi N, Ito A, Yasui M,
Matsuda C, Ohue M, Uemura M, Mizushima T, Doki Y and Eguchi H:
HNF1A regulates colorectal cancer progression and drug resistance
as a downstream of POU5F1. Sci Rep. 11:103632021. View Article : Google Scholar : PubMed/NCBI
|
17
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
18
|
Clarke MF, Dick JE, Dirks PB, Eaves CJ,
Jamieson CH, Jones DL, Visvader J, Weissman IL and Wahl GM: Cancer
stem cells-perspectives on current status and future directions:
AACR Workshop on cancer stem cells. Cancer Res. 66:9339–9344. 2006.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Ceccaldi R, Rondinelli B and D'Andrea AD:
Repair pathway choices and consequences at the double-strand break.
Trends Cell Biol. 26:52–64. 2016. View Article : Google Scholar :
|
20
|
Rahib L, Smith BD, Aizenberg R, Rosenzweig
AB, Fleshman JM and Matrisian LM: Projecting cancer incidence and
deaths to 2030: The unexpected burden of thyroid, liver, and
pancreas cancers in the United States. Cancer Res. 74:2913–2921.
2014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Meneses-Medina MI, Gervaso L, Cella CA,
Pellicori S, Gandini S, Sousa MJ and Fazio N: Chemotherapy in
pancreatic ductal adenocarcinoma: When cytoreduction is the aim. A
systematic review and meta-analysis. Cancer Treat Rev.
104:1023382022. View Article : Google Scholar : PubMed/NCBI
|
22
|
Zhang X, Zheng S, Hu C, Li G, Lin H, Xia
R, Ye Y, He R, Li Z, Lin Q, et al: Cancer-associated
fibroblast-induced lncRNA UPK1A-AS1 confers platinum resistance in
pancreatic cancer via efficient double-strand break repair.
Oncogene. 41:2372–2389. 2022. View Article : Google Scholar : PubMed/NCBI
|
23
|
Chiu CF, Park JM, Chen HH, Mau CZ, Chen
PS, Su YH, Chen HA, Liu YR, Hsieh TH, Chiu CC, et al: Organic
cation transporter 2 activation enhances sensitivity to oxaliplatin
in human pancreatic ductal adenocarcinoma. Biomed Pharmacother.
153:1135202022. View Article : Google Scholar : PubMed/NCBI
|
24
|
Wang J, Huang H and Liu F: DNAJC12
activated by HNF1A enhances aerobic glycolysis and drug resistance
in non-small cell lung cancer. Ann Transl Med. 10:4922022.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Collisson EA, Bailey P, Chang DK and
Biankin AV: Molecular subtypes of pancreatic cancer. Nat Rev
Gastroenterol Hepatol. 16:207–220. 2019. View Article : Google Scholar : PubMed/NCBI
|
26
|
Farrelly AM, Wobser H, Bonner C,
Anguissola S, Rehm M, Concannon CG, Prehn JH and Byrne MM: Early
loss of mammalian target of rapamycin complex 1 (mTORC1) signalling
and reduction in cell size during dominant-negative suppression of
hepatic nuclear factor 1-alpha (HNF1A) function in INS-1 insulinoma
cells. Diabetologia. 52:136–144. 2009. View Article : Google Scholar
|
27
|
Klein AP, Wolpin BM, Risch HA,
Stolzenberg-Solomon RZ, Mocci E, Zhang M, Canzian F, Childs EJ,
Hoskins JW, Jermusyk A, et al: Genome-wide meta-analysis identifies
five new susceptibility loci for pancreatic cancer. Nat Commun.
9:5562018. View Article : Google Scholar : PubMed/NCBI
|
28
|
Kalisz M, Bernardo E, Beucher A, Maestro
MA, Del Pozo N, Millá I, Haeberle L, Schlensog M, Safi SA, Knoefel
WT, et al: HNF1A recruits KDM6A to activate differentiated acinar
cell programs that suppress pancreatic cancer. EMBO J.
39:e1028082020. View Article : Google Scholar : PubMed/NCBI
|
29
|
Laurini E, Marson D, Fermeglia A, Aulic S,
Fermeglia M and Pricl S: Role of Rad51 and DNA repair in cancer: A
molecular perspective. Pharmacol Ther. 208:1074922020. View Article : Google Scholar : PubMed/NCBI
|
30
|
Zhou J, Kang Y, Chen L, Wang H, Liu J,
Zeng S and Yu L: The drug-resistance mechanisms of five
platinum-based antitumor agents. Front Pharmacol. 11:3432020.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Brandsma I and Gent DC: Pathway choice in
DNA double strand break repair: Observations of a balancing act.
Genome Integr. 3:92012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Reiss KA, Mick R, O'Hara MH, Teitelbaum U,
Karasic TB, Schneider C, Cowden S, Southwell T, Romeo J, Izgur N,
et al: Phase II study of maintenance rucaparib in patients with
platinum-sensitive advanced pancreatic cancer and a pathogenic
germline or somatic variant in BRCA1, BRCA2, or PALB2. J Clin
Oncol. 39:2497–2505. 2021. View Article : Google Scholar : PubMed/NCBI
|
33
|
Zhao Y, Simon M, Seluanov A and Gorbunova
V: DNA damage and repair in age-related inflammation. Nat Rev
Immunol. 23:75–89. 2022. View Article : Google Scholar : PubMed/NCBI
|
34
|
Ray Chaudhuri A and Nussenzweig A: The
multifaceted roles of PARP1 in DNA repair and chromatin
remodelling. Nat Rev Mol Cell Biol. 18:610–621. 2017. View Article : Google Scholar : PubMed/NCBI
|
35
|
Cleary JM, Aguirre AJ, Shapiro GI and
D'Andrea AD: Biomarker-guided development of DNA repair inhibitors.
Mol Cell. 78:1070–1085. 2020. View Article : Google Scholar : PubMed/NCBI
|
36
|
Noordermeer SM, Adam S, Setiaputra D,
Barazas M, Pettitt SJ, Ling AK, Olivieri M, Aacute;lvarez-Quilón A,
Moatti N, Zimmermann M, et al: The shieldin complex mediates
53BP1-dependent DNA repair. Nature. 560:117–121. 2018. View Article : Google Scholar : PubMed/NCBI
|
37
|
Parnandi N, Rendo V, Cui G, Botuyan MV,
Remisova M, Nguyen H, Drané P, Beroukhim R, Altmeyer M, Mer G and
Chowdhury D: TIRR inhibits the 53BP1-p53 complex to alter cell-fate
programs. Mol Cell. 81:2583–2595.e2586. 2021. View Article : Google Scholar : PubMed/NCBI
|
38
|
Jiang Y, Dong Y, Luo Y, Jiang S, Meng FL,
Tan M, Li J and Zang Y: AMPK-mediated phosphorylation on 53BP1
promotes c-NHEJ. Cell Rep. 34:1087132021. View Article : Google Scholar : PubMed/NCBI
|