Presence and prospects of exosomal circRNAs in cancer (Review)
- Authors:
- Junjie Cui
- Jiaqi Wang
- Lianyu Liu
- Changwen Zou
- Ying Zhao
- Zhenyu Xue
- Xiaoxiong Sun
- Tao Jiang
- Jun Song
-
Affiliations: Department of Radiation Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China, Department of Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China, Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China - Published online on: February 28, 2023 https://doi.org/10.3892/ijo.2023.5495
- Article Number: 47
This article is mentioned in:
Abstract
Vestad B, Llorente A, Neurauter A, Phuyal S, Kierulf B, Kierulf P, Skotland T, Sandvig K, Haug KBF and Øvstebø R: Size and concentration analyses of extracellular vesicles by nanoparticle tracking analysis: A variation study. J Extracell Vesicles. 6:13440872017. View Article : Google Scholar : PubMed/NCBI | |
Mathieu M, Martin-Jaular L, Lavieu G and Théry C: Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol. 21:9–17. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wortzel I, Dror S, Kenific CM and Lyden D: Exosome-mediated metastasis: Communication from a distance. Dev Cell. 49:347–360. 2019. View Article : Google Scholar : PubMed/NCBI | |
Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, et al: Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 495:333–338. 2013. View Article : Google Scholar : PubMed/NCBI | |
Meng X, Li X, Zhang P, Wang J, Zhou Y and Chen M: Circular RNA: An emerging key player in RNA world. Brief Bioinform. 18:547–557. 2017.PubMed/NCBI | |
Peng F, Gong W, Li S, Yin B, Zhao C, Liu W, Chen X, Luo C, Huang Q, Chen T, et al: circRNA_010383 acts as a sponge for miR-135a, and its downregulated expression contributes to renal fibrosis in diabetic nephropathy. Diabetes. 70:603–615. 2021. View Article : Google Scholar : PubMed/NCBI | |
Pamudurti NR, Bartok O, Jens M, Ashwal-Fluss R, Stottmeister C, Ruhe L, Hanan M, Wyler E, Perez-Hernandez D, Ramberger E, et al: Translation of CircRNAs. Mol Cell. 66:9–21.e7. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gao X, Xia X, Li F, Zhang M, Zhou H, Wu X, Zhong J, Zhao Z, Zhao K, Liu D, et al: Circular RNA-encoded oncogenic E-cadherin variant promotes glioblastoma tumorigenicity through activation of EGFR-STAT3 signalling. Nat Cell Biol. 23:278–291. 2021. View Article : Google Scholar : PubMed/NCBI | |
Vo JN, Cieslik M, Zhang Y, Shukla S, Xiao L, Zhang Y, Wu YM, Dhanasekaran SM, Engelke CG, Cao X, et al: The landscape of circular RNA in cancer. Cell. 176:869–881.e13. 2019. View Article : Google Scholar : PubMed/NCBI | |
Su C, Han Y, Zhang H, Li Y, Yi L, Wang X, Zhou S, Yu D, Song X, Xiao N, et al: CiRS-7 targeting miR-7 modulates the progression of non-small cell lung cancer in a manner dependent on NF-κB signalling. J Cell Mol Med. 22:3097–3107. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J, Chen D, Gu J, He X and Huang S: Circular RNA is enriched and stable in exosomes: A promising biomarker for cancer diagnosis. Cell Res. 25:981–984. 2015. View Article : Google Scholar : PubMed/NCBI | |
Johnstone RM, Adam M, Hammond JR, Orr L and Turbide C: Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem. 262:9412–9420. 1987. View Article : Google Scholar : PubMed/NCBI | |
Cocucci E, Racchetti G and Meldolesi J: Shedding microvesicles: Artefacts no more. Trends Cell Biol. 19:43–51. 2009. View Article : Google Scholar : PubMed/NCBI | |
Bronson DL, Fraley EE, Fogh J and Kalter SS: Induction of retrovirus particles in human testicular tumor (Tera-1) cell cultures: An electron microscopic study. J Natl Cancer Inst. 63:337–339. 1979.PubMed/NCBI | |
Akers JC, Gonda D, Kim R, Carter BS and Chen CC: Biogenesis of extracellular vesicles (EV): Exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol. 113:1–11. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ihara T, Yamamoto T, Sugamata M, Okumura H and Ueno Y: The process of ultrastructural changes from nuclei to apoptotic body. Virchows Arch. 433:443–447. 1998. View Article : Google Scholar : PubMed/NCBI | |
Milane L, Singh A, Mattheolabakis G, Suresh M and Amiji MM: Exosome mediated communication within the tumor microenvironment. J Control Release. 219:278–294. 2015. View Article : Google Scholar : PubMed/NCBI | |
Pols MS and Klumperman J: Trafficking and function of the tetraspanin CD63. Exp Cell Res. 315:1584–1592. 2009. View Article : Google Scholar : PubMed/NCBI | |
Janas T, Janas MM, Sapoń K and Janas T: Mechanisms of RNA loading into exosomes. FEBS Lett. 589:1391–1398. 2015. View Article : Google Scholar : PubMed/NCBI | |
D'Souza-Schorey C and Schorey JS: Regulation and mechanisms of extracellular vesicle biogenesis and secretion. Essays Biochem. 62:125–133. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hessvik NP and Llorente A: Current knowledge on exosome biogenesis and release. Cell Mol Life Sci. 75:193–208. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sotelo JR and Porter KR: An electron microscope study of the rat ovum. J Biophys Biochem Cytol. 5:327–342. 1959. View Article : Google Scholar : PubMed/NCBI | |
Kowal J, Tkach M and Théry C: Biogenesis and secretion of exosomes. Curr Opin Cell Biol. 29:116–125. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wollert T and Hurley JH: Molecular mechanism of multivesicular body biogenesis by ESCRT complexes. Nature. 464:864–869. 2010. View Article : Google Scholar : PubMed/NCBI | |
Frankel EB and Audhya A: ESCRT-dependent cargo sorting at multivesicular endosomes. Semin Cell Dev Biol. 74:4–10. 2018. View Article : Google Scholar : PubMed/NCBI | |
Teo H, Perisic O, González B and Williams RL: ESCRT-II, an endosome-associated complex required for protein sorting: Crystal structure and interactions with ESCRT-III and membranes. Dev Cell. 7:559–569. 2004. View Article : Google Scholar : PubMed/NCBI | |
Schöneberg J, Pavlin MR, Yan S, Righini M, Lee IH, Carlson LA, Bahrami AH, Goldman DH, Ren X, Hummer G, et al: ATP-dependent force generation and membrane scission by ESCRT-III and Vps4. Science. 362:1423–1428. 2018. View Article : Google Scholar : PubMed/NCBI | |
Odorizzi G, Babst M and Emr SD: Fab1p PtdIns(3)P 5-kinase function essential for protein sorting in the multivesicular body. Cell. 95:847–858. 1998. View Article : Google Scholar : PubMed/NCBI | |
Hemler ME: Tetraspanin functions and associated microdomains. Nat Rev Mol Cell Biol. 6:801–811. 2005. View Article : Google Scholar : PubMed/NCBI | |
Jian X, He H, Zhu J, Zhang Q, Zheng Z, Liang X, Chen L, Yang M, Peng K, Zhang Z, et al: Hsa_circ_001680 affects the proliferation and migration of CRC and mediates its chemoresistance by regulating BMI1 through miR-340. Mol Cancer. 19:202020. View Article : Google Scholar : PubMed/NCBI | |
Villarroya-Beltri C, Baixauli F, Mittelbrunn M, Fernández-Delgado I, Torralba D, Moreno-Gonzalo O, Baldanta S, Enrich C, Guerra S and Sánchez-Madrid F: ISGylation controls exosome secretion by promoting lysosomal degradation of MVB proteins. Nat Commun. 7:135882016. View Article : Google Scholar : PubMed/NCBI | |
Cai H, Reinisch K and Ferro-Novick S: Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev Cell. 12:671–682. 2007. View Article : Google Scholar : PubMed/NCBI | |
Barlowe C, Orci L, Yeung T, Hosobuchi M, Hamamoto S, Salama N, Rexach MF, Ravazzola M, Amherdt M and Schekman R: COPII: A membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell. 77:895–907. 1994. View Article : Google Scholar : PubMed/NCBI | |
Béthune J, Wieland F and Moelleken J: COPI-mediated transport. J Membr Biol. 211:65–79. 2006. View Article : Google Scholar : PubMed/NCBI | |
Stenmark H: Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol. 10:513–525. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hsu C, Morohashi Y, Yoshimura S, Manrique-Hoyos N, Jung S, Lauterbach MA, Bakhti M, Grønborg M, Möbius W, Rhee J, et al: Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C. J Cell Biol. 189:223–232. 2010. View Article : Google Scholar : PubMed/NCBI | |
Rothman JE: Mechanisms of intracellular protein transport. Nature. 372:55–63. 1994. View Article : Google Scholar : PubMed/NCBI | |
Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, Molina H, Kohsaka S, Di Giannatale A, Ceder S, et al: Tumour exosome integrins determine organotropic metastasis. Nature. 527:329–335. 2015. View Article : Google Scholar : PubMed/NCBI | |
Su N, Hao Y, Wang F, Hou W, Chen H and Luo Y: Mesenchymal stromal exosome-functionalized scaffolds induce innate and adaptive immunomodulatory responses toward tissue repair. Sci Adv. 7:eabf72072021. View Article : Google Scholar : PubMed/NCBI | |
Yamashita T, Takahashi Y, Nishikawa M and Takakura Y: Effect of exosome isolation methods on physicochemical properties of exosomes and clearance of exosomes from the blood circulation. Eur J Pharm Biopharm. 98:1–8. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shin S, Park YH, Jung SH, Jang SH, Kim MY, Lee JY and Chung YJ: Urinary exosome microRNA signatures as a noninvasive prognostic biomarker for prostate cancer. NPJ Genom Med. 6:452021. View Article : Google Scholar : PubMed/NCBI | |
Sun J, Lu Z, Fu W, Lu K, Gu X, Xu F, Dai J, Yang Y and Jiang J: Exosome-derived ADAM17 promotes liver metastasis in colorectal cancer. Front Pharmacol. 12:7343512021. View Article : Google Scholar : PubMed/NCBI | |
Pastushenko I and Blanpain C: EMT transition states during tumor progression and metastasis. Trends Cell Biol. 29:212–226. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hu JL, Wang W, Lan XL, Zeng ZC, Liang YS, Yan YR, Song FY, Wang FF, Zhu XH, Liao WJ, et al: CAFs secreted exosomes promote metastasis and chemotherapy resistance by enhancing cell stemness and epithelial-mesenchymal transition in colorectal cancer. Mol Cancer. 18:912019. View Article : Google Scholar : PubMed/NCBI | |
Li X, Li K, Li M, Lin X, Mei Y, Huang X and Yang H: Chemoresistance transmission via exosome-transferred MMP14 in pancreatic cancer. Front Oncol. 12:8446482022. View Article : Google Scholar : PubMed/NCBI | |
Hisakane K, Seike M, Sugano T, Yoshikawa A, Matsuda K, Takano N, Takahashi S, Noro R and Gemma A: Exosome-derived miR-210 involved in resistance to osimertinib and epithelial-mesenchymal transition in EGFR mutant non-small cell lung cancer cells. Thorac Cancer. 12:1690–1698. 2021. View Article : Google Scholar : PubMed/NCBI | |
Dong H, Wang W, Chen R, Zhang Y, Zou K, Ye M, He X, Zhang F and Han J: Exosome-mediated transfer of lncRNA-SNHG14 promotes trastuzumab chemoresistance in breast cancer. Int J Oncol. 53:1013–1026. 2018.PubMed/NCBI | |
Zhang Z, Xing T, Chen Y and Xiao J: Exosome-mediated miR-200b promotes colorectal cancer proliferation upon TGF-β1 exposure. Biomed Pharmacother. 106:1135–1143. 2018. View Article : Google Scholar : PubMed/NCBI | |
Deng M, Yuan H, Liu S, Hu Z and Xiao H: Exosome-transmitted LINC00461 promotes multiple myeloma cell proliferation and suppresses apoptosis by modulating microRNA/BCL-2 expression. Cytotherapy. 21:96–106. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang P, Zhou H, Lu K, Lu Y, Wang Y and Feng T: Exosome-mediated delivery of MALAT1 induces cell proliferation in breast cancer. Onco Targets Ther. 11:291–299. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li X, Chen C, Wang Z, Liu J, Sun W, Shen K, Lv Y, Zhu S, Zhan P, Lv T and Song Y: Elevated exosome-derived miRNAs predict osimertinib resistance in non-small cell lung cancer. Cancer Cell Int. 21:4282021. View Article : Google Scholar : PubMed/NCBI | |
Song Z, Mao J, Barrero RA, Wang P, Zhang F and Wang T: Development of a CD63 aptamer for efficient cancer immunochemistry and immunoaffinity-based exosome isolation. Molecules. 25:55852020. View Article : Google Scholar : PubMed/NCBI | |
Jing X, Xie M, Ding K, Xu T, Fang Y, Ma P and Shu Y: Exosome-transmitted miR-769-5p confers cisplatin resistance and progression in gastric cancer by targeting CASP9 and promoting the ubiquitination degradation of p53. Clin Transl Med. 12:e7802022. View Article : Google Scholar : PubMed/NCBI | |
Han L, Shi WJ, Xie YB and Zhang ZG: Diagnostic value of four serum exosome microRNAs panel for the detection of colorectal cancer. World J Gastrointest Oncol. 13:970–979. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sanger HL, Klotz G, Riesner D, Gross HJ and Kleinschmidt AK: Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci USA. 73:3852–3856. 1976. View Article : Google Scholar : PubMed/NCBI | |
Greene J, Baird AM, Casey O, Brady L, Blackshields G, Lim M, O'Brien O, Gray SG, McDermott R and Finn SP: Circular RNAs are differentially expressed in prostate cancer and are potentially associated with resistance to enzalutamide. Sci Rep. 9:107392019. View Article : Google Scholar : PubMed/NCBI | |
Patop IL, Wüst S and Kadener S: Past, present, and future of circRNAs. EMBO J. 38:e1008362019. View Article : Google Scholar : PubMed/NCBI | |
Wilusz JE: A 360° view of circular RNAs: From biogenesis to functions. Wiley Interdiscip Rev RNA. 9:e14782018. View Article : Google Scholar : PubMed/NCBI | |
Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF and Sharpless NE: Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 19:141–157. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, Zhu S, Yang L and Chen LL: Circular intronic long noncoding RNAs. Mol Cell. 51:792–806. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lu Z, Filonov GS, Noto JJ, Schmidt CA, Hatkevich TL, Wen Y, Jaffrey SR and Matera AG: Metazoan tRNA introns generate stable circular RNAs in vivo. RNA. 21:1554–1565. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kun-Peng Z, Xiao-Long M, Lei Z, Chun-Lin Z, Jian-Ping H and Tai-Cheng Z: Screening circular RNA related to chemotherapeutic resistance in osteosarcoma by RNA sequencing. Epigenomics. 10:1327–1346. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bach DH, Lee SK and Sood AK: Circular RNAs in Cancer. Mol Ther Nucleic Acids. 16:118–129. 2019. View Article : Google Scholar : PubMed/NCBI | |
Barrett SP and Salzman J: Circular RNAs: Analysis, expression and potential functions. Development. 143:1838–1847. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li X, Yang L and Chen LL: The biogenesis, functions, and challenges of circular RNAs. Mol Cell. 71:428–442. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhong Y, Du Y, Yang X, Mo Y, Fan C, Xiong F, Ren D, Ye X, Li C, Wang Y, et al: Circular RNAs function as ceRNAs to regulate and control human cancer progression. Mol Cancer. 17:792018. View Article : Google Scholar : PubMed/NCBI | |
Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function as efficient microRNA sponges. Nature. 495:384–388. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zang J, Lu D and Xu A: The interaction of circRNAs and RNA binding proteins: An important part of circRNA maintenance and function. J Neurosci Res. 98:87–97. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yu CY, Li TC, Wu YY, Yeh CH, Chiang W, Chuang CY and Kuo HC: The circular RNA circBIRC6 participates in the molecular circuitry controlling human pluripotency. Nat Commun. 8:11492017. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L, et al: Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 22:256–264. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lei M, Zheng G, Ning Q, Zheng J and Dong D: Translation and functional roles of circular RNAs in human cancer. Mol Cancer. 19:302020. View Article : Google Scholar : PubMed/NCBI | |
Wang Y and Wang Z: Efficient backsplicing produces translatable circular mRNAs. RNA. 21:172–179. 2015. View Article : Google Scholar : PubMed/NCBI | |
Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O, Fatica A, Santini T, Andronache A, Wade M, et al: Circ-ZNF609 Is a circular RNA that can be translated and functions in myogenesis. Mol Cell. 66:22–37.e9. 2017. View Article : Google Scholar : PubMed/NCBI | |
Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA, Elemento O, Pestova TV, Qian SB and Jaffrey SR: 5′ UTR m(6)A promotes cap-independent translation. Cell. 163:999–1010. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, Jin Y, Yang Y, Chen LL, Wang Y, et al: Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res. 27:626–641. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sun H, Wu Z, Liu M, Yu L, Li J, Ding X and Jin H: CircRNA may not be ‘circular’. bioRxiv. 2020.2009.2027.315275. 2020. | |
Patop IL and Kadener S: circRNAs in cancer. Curr Opin Genet Dev. 48:121–127. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bao C, Lyu D and Huang S: Circular RNA expands its territory. Mol Cell Oncol. 3:e10844432015. View Article : Google Scholar : PubMed/NCBI | |
Dou Y, Cha DJ, Franklin JL, Higginbotham JN, Jeppesen DK, Weaver AM, Prasad N, Levy S, Coffey RJ, Patton JG and Zhang B: Circular RNAs are down-regulated in KRAS mutant colon cancer cells and can be transferred to exosomes. Sci Rep. 6:379822016. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Zang H, Zhang X and Huang G: Exosomal Circ-ZNF652 promotes cell proliferation, migration, invasion and glycolysis in hepatocellular carcinoma via miR-29a-3p/GUCD1 axis. Cancer Manag Res. 12:7739–7751. 2020. View Article : Google Scholar : PubMed/NCBI | |
Villanueva A: Hepatocellular carcinoma. N Engl J Med. 380:1450–1462. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dai X, Chen C, Yang Q, Xue J, Chen X, Sun B, Luo F, Liu X, Xiao T, Xu H, et al: Exosomal circRNA_100284 from arsenite-transformed cells, via microRNA-217 regulation of EZH2, is involved in the malignant transformation of human hepatic cells by accelerating the cell cycle and promoting cell proliferation. Cell Death Dis. 9:4542018. View Article : Google Scholar : PubMed/NCBI | |
Lai Z, Wei T, Li Q, Wang X, Zhang Y and Zhang S: Exosomal circFBLIM1 promotes hepatocellular carcinoma progression and glycolysis by regulating the miR-338/LRP6 axis. Cancer Biother Radiopharm. Sep 9–2020.(Epub ahead of print). | |
Zhang H, Deng T, Ge S, Liu Y, Bai M, Zhu K, Fan Q, Li J, Ning T, Tian F, et al: Exosome circRNA secreted from adipocytes promotes the growth of hepatocellular carcinoma by targeting deubiquitination-related USP7. Oncogene. 38:2844–2859. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen W, Quan Y, Fan S, Wang H, Liang J, Huang L, Chen L, Liu Q, He P and Ye Y: Exosome-transmitted circular RNA hsa_circ_0051443 suppresses hepatocellular carcinoma progression. Cancer Lett. 475:119–128. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Tang K, Chen L, Du M and Qu Z: Exosomal CircGDI2 suppresses oral squamous cell carcinoma progression through the regulation of MiR-424-5p/SCAI axis. Cancer Manag Res. 12:7501–7514. 2020. View Article : Google Scholar : PubMed/NCBI | |
Feng W, Gong H, Wang Y, Zhu G, Xue T, Wang Y and Cui G: circIFT80 functions as a ceRNA of miR-1236-3p to promote colorectal cancer progression. Mol Ther Nucleic Acids. 18:375–387. 2019. View Article : Google Scholar : PubMed/NCBI | |
Luo Y, Ma J, Liu F, Guo J and Gui R: Diagnostic value of exosomal circMYC in radioresistant nasopharyngeal carcinoma. Head Neck. 42:3702–3711. 2020. View Article : Google Scholar : PubMed/NCBI | |
Luo Y, Liu F, Guo J and Gui R: Upregulation of circ_0000199 in circulating exosomes is associated with survival outcome in OSCC. Sci Rep. 10:137392020. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Yanfang W, Li J, Jiang P, Peng T, Chen K, Zhao X, Zhang Y, Zhen P, Zhu J and Li X: Tumor-released exosomal circular RNA PDE8A promotes invasive growth via the miR-338/MACC1/MET pathway in pancreatic cancer. Cancer Lett. 432:237–250. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li J, Li Z, Jiang P, Peng M, Zhang X, Chen K, Liu H, Bi H, Liu X and Li X: Circular RNA IARS (circ-IARS) secreted by pancreatic cancer cells and located within exosomes regulates endothelial monolayer permeability to promote tumor metastasis. J Exp Clin Cancer Res. 37:1772018. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Chen RX, Wei WS, Li YH, Feng ZH, Tan L, Chen JW, Yuan GJ, Chen SL, Guo SJ, et al: PRMT5 circular RNA promotes metastasis of urothelial carcinoma of the bladder through sponging mir-30c to induce epithelial-mesenchymal transition. Clin Cancer Res. 24:6319–6330. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yang H, Zhang H, Yang Y, Wang X, Deng T, Liu R, Ning T, Bai M, Li H, Zhu K, et al: Hypoxia induced exosomal circRNA promotes metastasis of colorectal cancer via targeting GEF-H1/RhoA axis. Theranostics. 10:8211–8226. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhao H, Chen S and Fu Q: Exosomes from CD133+ cells carrying circ-ABCC1 mediate cell stemness and metastasis in colorectal cancer. J Cell Biochem. 121:3286–3297. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lu J, Wang YH, Yoon C, Huang XY, Xu Y, Xie JW, Wang JB, Lin JX, Chen QY, Cao LL, et al: Circular RNA circ-RanGAP1 regulates VEGFA expression by targeting miR-877-3p to facilitate gastric cancer invasion and metastasis. Cancer Lett. 471:38–48. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hui C, Tian L and He X: Circular RNA circNHSL1 contributes to gastric cancer progression through the miR-149-5p/YWHAZ axis. Cancer Manag Res. 12:7117–7130. 2020. View Article : Google Scholar : PubMed/NCBI | |
He F, Zhong X, Lin Z, Lin J, Qiu M, Li X and Hu Z: Plasma exo-hsa_circRNA_0056616: A potential biomarker for lymph node metastasis in lung adenocarcinoma. J Cancer. 11:4037–4046. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang N, Nan A, Chen L, Li X, Jia Y, Qiu M, Dai X, Zhou H, Zhu J, Zhang H and Jiang Y: Circular RNA circSATB2 promotes progression of non-small cell lung cancer cells. Mol Cancer. 19:1012020. View Article : Google Scholar : PubMed/NCBI | |
Wang G, Liu W, Zou Y, Wang G, Deng Y, Luo J, Zhang Y, Li H, Zhang Q, Yang Y and Chen G: Three isoforms of exosomal circPTGR1 promote hepatocellular carcinoma metastasis via the miR449a-MET pathway. EBioMedicine. 40:432–445. 2019. View Article : Google Scholar : PubMed/NCBI | |
Huang XY, Huang ZL, Huang J, Xu B, Huang XY, Xu YH, Zhou J and Tang ZY: Exosomal circRNA-100338 promotes hepatocellular carcinoma metastasis via enhancing invasiveness and angiogenesis. J Exp Clin Cancer Res. 39:202020. View Article : Google Scholar : PubMed/NCBI | |
Guan X, Zong ZH, Liu Y, Chen S, Wang LL and Zhao Y: circPUM1 promotes tumorigenesis and progression of ovarian cancer by sponging miR-615-5p and miR-6753-5p. Mol Ther Nucleic Acids. 18:882–892. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zong ZH, Du YP, Guan X, Chen S and Zhao Y: CircWHSC1 promotes ovarian cancer progression by regulating MUC1 and hTERT through sponging miR-145 and miR-1182. J Exp Clin Cancer Res. 38:4372019. View Article : Google Scholar : PubMed/NCBI | |
Xie M, Yu T, Jing X, Ma L, Fan Y, Yang F, Ma P, Jiang H, Wu X, Shu Y and Xu T: Exosomal circSHKBP1 promotes gastric cancer progression via regulating the miR-582-3p/HUR/VEGF axis and suppressing HSP90 degradation. Mol Cancer. 19:1122020. View Article : Google Scholar : PubMed/NCBI | |
Shang A, Gu C, Wang W, Wang X, Sun J, Zeng B, Chen C, Chang W, Ping Y, Ji P, et al: Exosomal circPACRGL promotes progression of colorectal cancer via the miR-142-3p/miR-506-3p-TGF-β1 axis. Mol Cancer. 19:1172020. View Article : Google Scholar : PubMed/NCBI | |
Fang K, Chen X, Qiu F, Xu J, Xiong H and Zhang Z: Serum-derived exosomes-mediated circular RNA ARHGAP10 modulates the progression of non-small cell lung cancer through the miR-638/FAM83F axis. Cancer Biother Radiopharm. 37:96–110. 2020.PubMed/NCBI | |
Farrell N: Platinum formulations as anticancer drugs clinical and pre-clinical studies. Curr Top Med Chem. 11:2623–2631. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Zhang H, Yang H, Bai M, Ning T, Deng T, Liu R, Fan Q, Zhu K, Li J, et al: Exosome-delivered circRNA promotes glycolysis to induce chemoresistance through the miR-122-PKM2 axis in colorectal cancer. Mol Oncol. 14:539–555. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hon KW, Ab-Mutalib NS, Abdullah NMA, Jamal R and Abu N: Extracellular vesicle-derived circular RNAs confers chemoresistance in colorectal cancer. Sci Rep. 9:164972019. View Article : Google Scholar : PubMed/NCBI | |
Luo Y and Gui R: Circulating exosomal circFoxp1 confers cisplatin resistance in epithelial ovarian cancer cells. J Gynecol Oncol. 31:e752020. View Article : Google Scholar : PubMed/NCBI | |
Zhao Z, Ji M, Wang Q, He N and Li Y: Circular RNA Cdr1as upregulates SCAI to suppress cisplatin resistance in ovarian cancer via miR-1270 suppression. Mol Ther Nucleic Acids. 18:24–33. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yao W, Guo P, Mu Q and Wang Y: Exosome-derived Circ-PVT1 contributes to cisplatin resistance by regulating autophagy, invasion, and apoptosis via miR-30a-5p/YAP1 axis in gastric cancer cells. Cancer Biother Radiopharm. 36:347–359. 2021.PubMed/NCBI | |
Han C, Wang S, Wang H and Zhang J: Exosomal circ-HIPK3 facilitates tumor progression and temozolomide resistance by regulating miR-421/ZIC5 axis in glioma. Cancer Biother Radiopharm. 36:537–548. 2021.PubMed/NCBI | |
Ding C, Yi X, Wu X, Bu X, Wang D, Wu Z, Zhang G, Gu J and Kang D: Exosome-mediated transfer of circRNA CircNFIX enhances temozolomide resistance in glioma. Cancer Lett. 479:1–12. 2020. View Article : Google Scholar : PubMed/NCBI | |
Luo Y and Gui R: Circulating exosomal circMYC is associated with recurrence and bortezomib resistance in patients with multiple myeloma. Turk J Haematol. 37:248–262. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ma J, Qi G and Li L: A novel serum exosomes-based biomarker hsa_circ_0002130 facilitates osimertinib-resistance in non-small cell lung cancer by sponging miR-498. Onco Targets Ther. 13:5293–5307. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hu K, Liu X, Li Y, Li Q, Xu Y, Zeng W, Zhong G and Yu C: Exosomes mediated transfer of Circ_UBE2D2 enhances the resistance of breast cancer to tamoxifen by binding to MiR-200a-3p. Med Sci Monit. 26:e9222532020. View Article : Google Scholar : PubMed/NCBI | |
Zhang PF, Gao C, Huang XY, Lu JC, Guo XJ, Shi GM, Cai JB and Ke AW: Cancer cell-derived exosomal circUHRF1 induces natural killer cell exhaustion and may cause resistance to anti-PD1 therapy in hepatocellular carcinoma. Mol Cancer. 19:1102020. View Article : Google Scholar : PubMed/NCBI | |
Xia D and Gu X: Plasmatic exosome-derived circRNAs panel act as fingerprint for glioblastoma. Aging (Albany NY). 13:19575–19586. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yang B, Teng F, Chang L, Wang J, Liu DL, Cui YS and Li GH: Tumor-derived exosomal circRNA_102481 contributes to EGFR-TKIs resistance via the miR-30a-5p/ROR1 axis in non-small cell lung cancer. Aging (Albany NY). 13:13264–13286. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li P, Xu Z, Liu T, Liu Q, Zhou H, Meng S, Feng Z, Tang Y, Liu C, Feng J, et al: Circular RNA sequencing reveals serum exosome circular RNA panel for high-grade astrocytoma diagnosis. Clin Chem. 68:332–343. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Lin Z, Rao W, Zheng J, Xie Q, Lin Y, Lin X, Chen H, Chen Y and Hu Z: Upregulated expression of serum exosomal hsa_circ_0026611 is associated with lymph node metastasis and poor prognosis of esophageal squamous cell carcinoma. J Cancer. 12:918–926. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gao L, Tang X, He Q, Sun G, Wang C and Qu H: Exosome-transmitted circCOG2 promotes colorectal cancer progression via miR-1305/TGF-β2/SMAD3 pathway. Cell Death Discov. 7:2812021. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Zhu L, Bai M, Liu Y, Zhan Y, Deng T, Yang H, Sun W, Wang X, Zhu K, et al: Exosomal circRNA derived from gastric tumor promotes white adipose browning by targeting the miR-133/PRDM16 pathway. Int J Cancer. 144:2501–2515. 2019. View Article : Google Scholar : PubMed/NCBI | |
Luo Y, Liu F and Gui R: High expression of circulating exosomal circAKT3 is associated with higher recurrence in HCC patients undergoing surgical treatment. Surg Oncol. 33:276–281. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wu G, Sun Y, Xiang Z, Wang K, Liu B, Xiao G, Niu Y, Wu D and Chang C: Preclinical study using circular RNA 17 and micro RNA 181c-5p to suppress the enzalutamide-resistant prostate cancer progression. Cell Death Dis. 10:372019. View Article : Google Scholar : PubMed/NCBI | |
Pan B, Qin J, Liu X, He B, Wang X, Pan Y, Sun H, Xu T, Xu M, Chen X, et al: Identification of serum exosomal hsa-circ-0004771 as a novel diagnostic biomarker of colorectal cancer. Front Genet. 10:10962019. View Article : Google Scholar : PubMed/NCBI | |
Shao Y, Tao X, Lu R, Zhang H, Ge J, Xiao B, Ye G and Guo J: Hsa_circ_0065149 is an indicator for early gastric cancer screening and prognosis prediction. Pathol Oncol Res. 26:1475–1482. 2020. View Article : Google Scholar : PubMed/NCBI | |
Poulet G, Massias J and Taly V: Liquid biopsy: General concepts. Acta Cytol. 63:449–455. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mader S and Pantel K: Liquid biopsy: Current status and future perspectives. Oncol Res Treat. 40:404–408. 2017. View Article : Google Scholar : PubMed/NCBI |