1
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Hossain MS, Karuniawati H, Jairoun AA,
Urbi Z, Ooi DJ, John A, Lim YC, Kibria KMK, Mohiuddin AKM, Ming LC,
et al: Colorectal cancer: A review of carcinogenesis, global
epidemiology, current challenges, risk factors, preventive and
treatment strategies. Cancers (Basel). 14:17322022. View Article : Google Scholar : PubMed/NCBI
|
3
|
Sullivan BA, Noujaim M and Roper J: Cause,
epidemiology, and histology of polyps and pathways to colorectal
cancer. Gastrointest Endosc Clin N Am. 32:177–194. 2022. View Article : Google Scholar : PubMed/NCBI
|
4
|
Mattiuzzi C, Sanchis-Gomar F and Lippi G:
Concise update on colorectal cancer epidemiology. Ann Transl Med.
7:6092019. View Article : Google Scholar
|
5
|
Van Cutsem E, Cervantes A, Adam R, Sobrero
A, Van Krieken JH, Aderka D, Aguilar EA, Bardelli A, Benson A,
Bodoky G, et al: ESMO consensus guidelines for the management of
patients with metastatic colorectal cancer. Ann Oncol.
27:1386–1422. 2016. View Article : Google Scholar : PubMed/NCBI
|
6
|
Bijelic L, Ramos I and Goeré D: The
landmark series: Surgical treatment of colorectal cancer peritoneal
metastases. Ann Surg Oncol. 28:4140–4150. 2021. View Article : Google Scholar : PubMed/NCBI
|
7
|
Sugarbaker PH: Prevention and treatment of
peritoneal metastases: A comprehensive review. Indian J Surg Oncol.
10:3–23. 2019. View Article : Google Scholar : PubMed/NCBI
|
8
|
Parikh MS, Johnson P, Romanes JP, Freitag
HE, Spring ME, Garcia-Henriquez N and Monson JRT: Cytoreductive
surgery and hyperthermic intraperitoneal chemotherapy for
colorectal peritoneal metastases: A systematic review. Dis Colon
Rectum. 65:16–26. 2022. View Article : Google Scholar
|
9
|
Kciuk M, Gielecińska A, Budzinska A,
Mojzych M and Kontek R: Metastasis and MAPK Pathways. Int J Mol
Sci. 23:38472022. View Article : Google Scholar : PubMed/NCBI
|
10
|
LeBleu VS and Thiery JP: The continuing
search for causality between epithelial-to-mesenchymal transition
and the metastatic fitness of carcinoma cells. Cancer Res.
82:1467–1469. 2022. View Article : Google Scholar : PubMed/NCBI
|
11
|
Banerjee S, Lo WC, Majumder P, Roy D,
Ghorai M, Shaikh NK, Kant N, Shekhawat MS, Gadekar VS, Ghosh S, et
al: Multiple roles for basement membrane proteins in cancer
progression and EMT. Eur J Cell Biol. 101:1512202022. View Article : Google Scholar : PubMed/NCBI
|
12
|
Han L, Wang S, Wei C, Fang Y, Huang S, Yin
T, Xiong B and Yang C: Tumour microenvironment: A non-negligible
driver for epithelial-mesenchymal transition in colorectal cancer.
Expert Rev Mol Med. 23:e162021. View Article : Google Scholar : PubMed/NCBI
|
13
|
Ni Q, Li M and Yu S: Research progress of
epithelial-mesenchymal transition treatment and drug resistance in
colorectal cancer. Technol Cancer Res Treat.
21:153303382210812192022. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhang N, Ng AS, Cai S, Li Q, Yang L and
Kerr D: Novel therapeutic strategies: Targeting
epithelial-mesenchymal transition in colorectal cancer. Lancet
Oncol. 22:e358–e368. 2021. View Article : Google Scholar : PubMed/NCBI
|
15
|
Wolfsberg TG, Straight PD, Gerena RL,
Huovila AP, Primakoff P, Myles DG and White JM: ADAM, a widely
distributed and developmentally regulated gene family encoding
membrane proteins with a disintegrin and metalloprotease domain.
Dev Biol. 169:378–383. 1995. View Article : Google Scholar : PubMed/NCBI
|
16
|
Edwards DR, Handsley MM and Pennington CJ:
The ADAM metalloproteinases. Mol Aspects Med. 29:258–289. 2008.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Reiss K and Saftig P: The 'a disintegrin
and metalloprotease' (ADAM) family of sheddases: Physiological and
cellular functions. Semin Cell Dev Biol. 20:126–137. 2009.
View Article : Google Scholar
|
18
|
Ma B, Ma Q, Jin C, Wang X, Zhang G, Zhang
H, Seeger H and Mueck AO: ADAM12 expression predicts clinical
outcome in estrogen receptor-positive breast cancer. Int J Clin Exp
Pathol. 8:13279–13283. 2015.
|
19
|
Pan J, Huang Z, Zhang Y and Xu Y: ADAM12
as a clinical prognostic indicator associated with tumor immune
infiltration in lung adenocarcinoma. DNA Cell Biol. 41:410–423.
2022. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhu H, Jiang W, Zhu H, Hu J, Tang B, Zhou
Z and He X: Elevation of ADAM12 facilitates tumor progression by
enhancing metastasis and immune infiltration in gastric cancer. Int
J Oncol. 60:512022. View Article : Google Scholar : PubMed/NCBI
|
21
|
Du S, Sun L, Wang Y, Zhu W, Gao J, Pei W
and Zhang Y: ADAM12 is an independent predictor of poor prognosis
in liver cancer. Sci Rep. 12:66342022. View Article : Google Scholar : PubMed/NCBI
|
22
|
Mendaza S, Ulazia-Garmendia A,
Monreal-Santesteban I, Córdoba A, de Azúa YR, Aguiar B, Beloqui R,
Armendáriz P, Arriola M, Martín-Sánchez E and Guerrero-Setas D:
ADAM12 is a potential therapeutic target regulated by
hypomethylation in triple-negative breast cancer. Int J Mol Sci.
21:9032020. View Article : Google Scholar : PubMed/NCBI
|
23
|
Reiss K, Leitzke S, Seidel J, Sperrhacke M
and Bhakdi S: Scramblases as regulators of proteolytic ADAM
function. Membranes (Basel). 12:1852022. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zadka L, Kulus MJ and Piatek K: ADAM
protein family-its role in tumorigenesis, mechanisms of
chemoresistance and potential as diagnostic and prognostic factors.
Neoplasma. 65:823–839. 2018. View Article : Google Scholar : PubMed/NCBI
|
25
|
Kveiborg M, Albrechtsen R, Couchman JR and
Wewer UM: Cellular roles of ADAM12 in health and disease. Int J
Biochem Cell Biol. 40:1685–1702. 2008. View Article : Google Scholar : PubMed/NCBI
|
26
|
Jacobsen J and Wewer UM: Targeting ADAM12
in human disease: Head, body or tail? Curr Pharm Des. 15:2300–2310.
2009. View Article : Google Scholar : PubMed/NCBI
|
27
|
Nyren-Erickson EK, Jones JM, Srivastava DK
and Mallik S: A disintegrin and metalloproteinase-12 (ADAM12):
Function, roles in disease progression, and clinical implications.
Biochim Biophys Acta. 1830:4445–4455. 2013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Park YL, Park SY, Oh HH, Chung MW, Hong
JY, Kim KY, Myung DS, Cho SB, Lee WS, Kim HS and Joo YE: A
disintegrin and metalloprotease 12 promotes tumor progression by
inhibiting apoptosis in human colorectal cancer. Cancers (Basel).
13:19272021. View Article : Google Scholar : PubMed/NCBI
|
29
|
Huang Z, Lai H, Liao J, Cai J, Li B, Meng
L, Wang W, Mo X and Qin H: Upregulation of ADAM12 is associated
with a poor survival and immune cell infiltration in colon
adenocarcinoma. Front Oncol. 11:7292302021. View Article : Google Scholar : PubMed/NCBI
|
30
|
Ten Hoorn S, Waasdorp C, van Oijen MGH,
Damhofer H, Trinh A, Zhao L, Smits LJH, Bootsma S, van Pelt GW,
Mesker WE, et al: Serum-based measurements of stromal activation
through ADAM12 associate with poor prognosis in colorectal cancer.
BMC Cancer. 22:3942022. View Article : Google Scholar : PubMed/NCBI
|
31
|
Mochizuki S, Ao T, Sugiura T, Yonemura K,
Shiraishi T, Kajiwara Y, Okamoto K, Shinto E, Okada Y and Ueno H:
Expression and function of a disintegrin and metalloproteinases in
cancer-associated fibroblasts of colorectal cancer. Digestion.
101:18–24. 2020. View Article : Google Scholar
|
32
|
Yao Y, Zhou Y, Su X, Dai L, Yu L, Deng H,
Gou L and Yang J: Establishment and characterization of
intraperitoneal xenograft models by co-injection of human tumor
cells and extracellular matrix gel. Oncol Lett. 10:3450–3456. 2015.
View Article : Google Scholar
|
33
|
Bastiaenen VP, Klaver CEL, van der Heijden
MCS, Nijman LE, Lecca MC, Tanis PJ, Lenos KJ and Vermeulen L: A
mouse model for peritoneal metastases of colorectal origin
recapitulates patient heterogeneity. Lab Invest. 100:1465–1474.
2020. View Article : Google Scholar : PubMed/NCBI
|
34
|
Sugarbaker PH: Intraperitoneal
chemotherapy and cytoreductive surgery for the prevention and
treatment of peritoneal carcinomatosis and sarcomatosis. Semin Surg
Oncol. 14:254–261. 1998. View Article : Google Scholar : PubMed/NCBI
|
35
|
Klaver YL, Hendriks T, Lomme RM, Rutten
HJ, Bleichrodt RP and de Hingh IH: Intraoperative hyperthermic
intraperitoneal chemotherapy after cytoreductive surgery for
peritoneal carcinomatosis in an experimental model. Br J Surg.
97:1874–1880. 2010. View Article : Google Scholar : PubMed/NCBI
|
36
|
Amin MB, Edge SB, Greene FL, Byrd DR,
Brookland RK, Washington MK, Gershenwald JE, Compton CC, Hess KR,
Sullivan DC, et al: AJCC Cancer Staging Manual. Springer
International Publishing; 2018
|
37
|
Chen N, Zhu X, Zhu Y, Shi J, Zhang J, Tang
C and Chen J: The regulatory relationship and function of LncRNA
FAM225A-miR-206-ADAM12 in gastric cancer. Am J Transl Res.
13:8632–8652. 2021.PubMed/NCBI
|
38
|
Huang X and Xie X, Liu P, Yang L, Chen B,
Song C, Tang H and Xie X: Adam12 and lnc015192 act as ceRNAs in
breast cancer by regulating miR-34a. Oncogene. 37:6316–6326. 2018.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Dekky B, Ruff M, Bonnier D, Legagneux V
and Théret N: Proteomic screening identifies the zonula occludens
protein ZO-1 as a new partner for ADAM12 in invadopodia-like
structures. Oncotarget. 9:21366–21382. 2018. View Article : Google Scholar : PubMed/NCBI
|
40
|
Wang J, Zhang Z, Li R, Mao F, Sun W, Chen
J, Zhang H, Bartsch JW, Shu K and Lei T: ADAM12 induces EMT and
promotes cell migration, invasion and proliferation in pituitary
adenomas via EGFR/ERK signaling pathway. Biomed Pharmacother.
97:1066–1077. 2018. View Article : Google Scholar
|
41
|
Eckert MA, Santiago-Medina M, Lwin TM, Kim
J, Courtneidge SA and Yang J: ADAM12 induction by Twist1 promotes
tumor invasion and metastasis via regulation of invadopodia and
focal adhesions. J Cell Sci. 130:2036–2048. 2017.PubMed/NCBI
|
42
|
Ruff M, Leyme A, Le Cann F, Bonnier D, Le
Seyec J, Chesnel F, Fattet L, Rimokh R, Baffet G and Théret N: The
disintegrin and metalloprotease ADAM12 is associated with
TGF-β-induced epithelial to mesenchymal transition. PLoS One.
10:e01391792015. View Article : Google Scholar
|
43
|
Li H, Duhachek-Muggy S, Dubnicka S and
Zolkiewska A: Metalloproteinase-disintegrin ADAM12 is associated
with a breast tumor-initiating cell phenotype. Breast Cancer Res
Treat. 139:691–703. 2013. View Article : Google Scholar : PubMed/NCBI
|
44
|
Guan X: Cancer metastases: Challenges and
opportunities. Acta Pharm Sin B. 5:402–418. 2015. View Article : Google Scholar : PubMed/NCBI
|
45
|
Neophytou CM, Panagi M, Stylianopoulos T
and Papageorgis P: The role of tumor microenvironment in cancer
metastasis: Molecular mechanisms and therapeutic opportunities.
Cancers (Basel). 13:20532021. View Article : Google Scholar : PubMed/NCBI
|
46
|
Henke E, Nandigama R and Ergün S:
Extracellular matrix in the tumor microenvironment and its impact
on cancer therapy. Front Mol Biosci. 6:1602019. View Article : Google Scholar
|
47
|
Popova NV and Jücker M: The functional
role of extracellular matrix proteins in cancer. Cancers (Basel).
14:2382022. View Article : Google Scholar : PubMed/NCBI
|
48
|
Devergne O, Sun GH and Schüpbach T:
Stratum, a homolog of the human GEF Mss4, partnered with Rab8,
controls the basal restriction of basement membrane proteins in
epithelial cells. Cell Rep. 18:1831–1839. 2017. View Article : Google Scholar : PubMed/NCBI
|
49
|
Horejs CM: Basement membrane fragments in
the context of the epithelial-to-mesenchymal transition. Eur J Cell
Biol. 95:427–440. 2016. View Article : Google Scholar : PubMed/NCBI
|
50
|
Liao Z, Tan ZW, Zhu P and Tan NS:
Cancer-associated fibroblasts in tumor microenvironment-Accomplices
in tumor malignancy. Cell Immunol. 343:1037292019. View Article : Google Scholar
|
51
|
Deng S, Leong HC, Datta A, Gopal V, Kumar
AP and Yap CT: PI3K/AKT signaling tips the balance of cytoskeletal
forces for cancer progression. Cancers (Basel). 14:16522022.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Peng Y, Wang Y, Zhou C, Mei W and Zeng C:
PI3K/Akt/mTOR pathway and its role in cancer therapeutics: Are we
making headway? Front Oncol. 12:8191282022. View Article : Google Scholar : PubMed/NCBI
|
53
|
Di Blasio L, Gagliardi PA, Puliafito A and
Primo L: Serine/Threonine kinase 3-phosphoinositide-dependent
protein kinase-1 (PDK1) as a key regulator of cell migration and
cancer dissemination. Cancers (Basel). 9:252017. View Article : Google Scholar : PubMed/NCBI
|
54
|
Gagliardi PA, Puliafito A and Primo L:
PDK1: At the crossroad of cancer signaling pathways. Semin Cancer
Biol. 48:27–35. 2018. View Article : Google Scholar
|
55
|
Lin J, Song T, Li C and Mao W: GSK-3β in
DNA repair, apoptosis, and resistance of chemotherapy, radiotherapy
of cancer. Biochim Biophys Acta Mol Cell Res. 1867:1186592020.
View Article : Google Scholar
|
56
|
Nagini S, Sophia J and Mishra R: Glycogen
synthase kinases: Moonlighting proteins with theranostic potential
in cancer. Semin Cancer Biol. 56:25–36. 2019. View Article : Google Scholar
|