1
|
Tang BL: Glucose, glycolysis, and
neurodegenerative diseases. J Cell Physiol. 235:7653–7662.
2020.
|
2
|
Fernie AR, Carrari F and Sweetlove LJ:
Respiratory metabolism: Glycolysis, the TCA cycle and mitochondrial
electron transport. Curr Opin Plant Biol. 7:254–261. 2004.
|
3
|
Hui S, Ghergurovich JM, Morscher RJ, Jang
C, Teng X, Lu W, Esparza LA, Reya T, Le Z, Yanxiang Guo J, et al:
Glucose feeds the TCA cycle via circulating lactate. Nature.
551:115–118. 2017.
|
4
|
Gerich JE, Meyer C, Woerle HJ and Stumvoll
M: Renal gluconeogenesis: Its importance in human glucose
homeostasis. Diabetes Care. 24:382–391. 2001.
|
5
|
Weinhouse S: Oxidative metabolism of
neoplastic tissues. Adv Cancer Res. 3:269–325. 1955.
|
6
|
Jin L and Zhou Y: Crucial role of the
pentose phosphate pathway in malignant tumors. Oncol Lett.
17:4213–4221. 2019.
|
7
|
Chen F, Zhuang X, Lin L, Yu P, Wang Y, Shi
Y, Hu G and Sun Y: New horizons in tumor microenvironment biology:
Challenges and opportunities. BMC Med. 13:452015.
|
8
|
Pereira M, Chen TD, Buang N, Olona A, Ko
JH, Prendecki M, Costa ASH, Nikitopoulou E, Tronci L, Pusey CD, et
al: Acute iron deprivation reprograms human macrophage metabolism
and reduces inflammation in vivo. Cell Rep. 28:498–511.e5.
2019.
|
9
|
Wang F, Zhang S, Vuckovic I, Jeon R,
Lerman A, Folmes CD, Dzeja PP and Herrmann J: Glycolytic
stimulation is not a requirement for M2 macrophage differentiation.
Cell Metab. 28:463–475.e4. 2018.
|
10
|
Reinfeld BI, Madden MZ, Wolf MM, Chytil A,
Bader JE, Patterson AR, Sugiura A, Cohen AS, Ali A, Do BT, et al:
Cell-programmed nutrient partitioning in the tumour
microenvironment. Nature. 593:282–288. 2021.
|
11
|
Huang SC, Smith AM, Everts B, Colonna M,
Pearce EL, Schilling JD and Pearce EJ: Metabolic reprogramming
mediated by the mTORC2-IRF4 signaling axis is essential for
macrophage alternative activation. Immunity. 45:817–830. 2016.
|
12
|
Shi Q, Shen Q, Liu Y, Shi Y, Huang W, Wang
X, Li Z, Chai Y, Wang H, Hu X, et al: Increased glucose metabolism
in TAMs fuels O-GlcNAcylation of lysosomal Cathepsin B to promote
cancer metastasis and chemoresistance. Cancer Cell.
40:1207–1222.e10. 2022.
|
13
|
M de-Brito N, Duncan-Moretti J, C da-Costa
H, Saldanha-Gama R, Paula-Neto HA, G Dorighello G, L Simões R and
Barja-Fidalgo C: Aerobic glycolysis is a metabolic requirement to
maintain the M2-like polarization of tumor-associated macrophages.
Biochim Biophys Acta Mol Cell Res. 1867:1186042020.
|
14
|
Saha S, Shalova IN and Biswas SK:
Metabolic regulation of macrophage phenotype and function. Immunol
Rev. 280:102–111. 2017.
|
15
|
Lin EY, Gouon-Evans V, Nguyen AV and
Pollard JW: The macrophage growth factor CSF-1 in mammary gland
development and tumor progression. J Mammary Gland Biol Neoplasia.
7:147–162. 2002.
|
16
|
Gocheva V, Wang HW, Gadea BB, Shree T,
Hunter KE, Garfall AL, Berman T and Joyce JA: IL-4 induces
cathepsin protease activity in tumor-associated macrophages to
promote cancer growth and invasion. Genes Dev. 24:241–255.
2010.
|
17
|
Li W, Li Y, Jin X, Liao Q, Chen Z, Peng H
and Zhou Y: CD38: A Significant Regulator of macrophage Function.
Front Oncol. 12:7756492022.
|
18
|
Wynn TA, Chawla A and Pollard JW:
Macrophage biology in development, homeostasis and disease. Nature.
496:445–455. 2013.
|
19
|
Haschemi A, Kosma P, Gille L, Evans CR,
Burant CF, Starkl P, Knapp B, Haas R, Schmid JA, Jandl C, et al:
The sedoheptulose kinase CARKL directs macrophage polarization
through control of glucose metabolism. Cell Metab. 15:813–826.
2012.
|
20
|
Tan Z, Xie N, Cui H, Moellering DR,
Abraham E, Thannickal VJ and Liu G: Pyruvate dehydrogenase kinase 1
participates in macrophage polarization via regulating glucose
metabolism. J Immunol. 194:6082–6089. 2015.
|
21
|
Palsson-McDermott EM, Curtis AM, Goel G,
Lauterbach MA, Sheedy FJ, Gleeson LE, van den Bosch MW, Quinn SR,
Domingo-Fernandez R, Johnston DG, et al: Pyruvate kinase M2
regulates Hif-1α activity and IL-1β induction and is a critical
determinant of the Warburg effect in LPS-activated macrophages.
Cell Metab. 21:65–80. 2015.
|
22
|
Tawakol A, Singh P, Mojena M,
Pimentel-Santillana M, Emami H, MacNabb M, Rudd JH, Narula J,
Enriquez JA, Través PG, et al: HIF-1α and PFKFB3 mediate a tight
relationship between proinflammatory activation and anerobic
metabolism in atherosclerotic macrophages. Arterioscler Thromb Vasc
Biol. 35:1463–1471. 2015.
|
23
|
Ruiz-Ga rcía A, Monsalve E, Novellasdemunt
L, Navarro-Sabaté A, Manzano A, Rivero S, Castrillo A, Casado M,
Laborda J, Bartrons R and Díaz-Guerra MJ: Cooperation of adenosine
with macrophage Toll-4 receptor agonists leads to increased
glycolytic flux through the enhanced expression of PFKFB3 gene. J
Biol Chem. 286:19247–19258. 2011.
|
24
|
Bell GI, Burant CF, Takeda J and Gould GW:
Structure and function of mammalian facilitative sugar
transporters. J Biol Chem. 268:19161–19164. 1993.
|
25
|
Middleton RJ: Hexokinases and
glucokinases. Biochem Soc Trans. 18:180–183. 1990.
|
26
|
Wang GL, Jiang BH, Rue EA and Semenza GL:
Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS
heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci
USA. 92:5510–5514. 1995.
|
27
|
Moon JS, Hisata S, Park MA, DeNicola GM,
Ryter SW, Nakahira K and Choi AMK: mTORC1-Induced HK1-dependent
glycolysis regulates NLRP3 inflammasome activation. Cell Rep.
12:102–115. 2015.
|
28
|
Zafar A, Ng HP, Kim GD, Chan ER and
Mahabeleshwar GH: BHLHE40 promotes macrophage pro-inflammatory gene
expression and functions. FASEB J. 35:e219402021.
|
29
|
Kim MJ, Lee CH, Lee Y, Youn H, Kang KW,
Kwon J, Alavi A, Carlin S, Cheon GJ and Chung JK:
Glucose-6-phosphatase expression-mediated [18F]FDG
efflux in murine inflammation and cancer models. Mol Imaging Biol.
21:917–925. 2019.
|
30
|
Yu Q, Wang Y, Dong L, He Y, Liu R, Yang Q,
Cao Y, Wang Y, Jia A, Bi Y and Liu G: Regulations of glycolytic
activities on macrophages functions in tumor and infectious
inflammation. Front Cell Infect Microbiol. 10:2872020.
|
31
|
Alatshan A, Kovács GE, Aladdin A,
Czimmerer Z, Tar K and Benkő S: All-trans retinoic acid enhances
both the signaling for priming and the glycolysis for activation of
NLRP3 inflammasome in human macrophage. Cells. 9:15912020.
|
32
|
Wenes M, Shang M, Di Matteo M, Goveia J,
Martín-Pérez R, Serneels J, Prenen H, Ghesquière B, Carmeliet P and
Mazzone M: Macrophage metabolism controls tumor blood vessel
morphogenesis and metastasis. Cell Metab. 24:701–715. 2016.
|
33
|
Penny HL, Sieow JL, Adriani G, Yeap WH,
See Chi Ee P, San Luis B, Lee B, Lee T, Mak SY, Ho YS, et al:
Warburg metabolism in tumor-conditioned macrophages promotes
metastasis in human pancreatic ductal adenocarcinoma.
Oncoimmunology. 5:e11917312016.
|
34
|
Singh P, González-Ramos S, Mojena M,
Rosales-Mendoza CE, Emami H, Swanson J, Morss A, Fayad ZA, Rudd JH,
Gelfand J, et al: GM-CSF enhances macrophage glycolytic activity in
vitro and improves detection of inflammation in vivo. J Nucl Med.
57:1428–1435. 2016.
|
35
|
Zeng H, Qi X, Xu X and Wu Y: TAB1
regulates glycolysis and activation of macrophages in diabetic
nephropathy. Inflamm Res. 69:1215–1234. 2020.
|
36
|
Xu J, Wang L, Yang Q, Ma Q, Zhou Y, Cai Y,
Mao X, Da Q, Lu T, Su Y, et al: Deficiency of myeloid Pfkfb3
protects mice from lung edema and cardiac dysfunction in
LPS-induced endotoxemia. Front Cardiovasc Med. 8:7458102021.
|
37
|
Meng Q, Guo P, Jiang Z, Bo L and Bian J:
Dexmedetomidine inhibits LPS-induced proinflammatory responses via
suppressing HIF1α-dependent glycolysis in macrophages. Aging
(Albany NY). 12:9534–9548. 2020.
|
38
|
Poels K, Schnitzler JG, Waissi F, Levels
JHM, Stroes ESG, Daemen M, Lutgens E, Pennekamp AM, De Kleijn DPV,
Seijkens TTP and Kroon J: Inhibition of PFKFB3 hampers the
progression of atherosclerosis and promotes plaque stability. Front
Cell Dev Biol. 8:5816412020.
|
39
|
Anastasiou D, Yu Y, Israelsen WJ, Jiang
JK, Boxer MB, Hong BS, Tempel W, Dimov S, Shen M, Jha A, et al:
Pyruvate kinase M2 activators promote tetramer formation and
suppress tumorigenesis. Nat Chem Biol. 8:839–847. 2012.
|
40
|
Luo W, Hu H, Chang R, Zhong J, Knabel M,
O'Meally R, Cole RN, Pandey A and Semenza GL: Pyruvate kinase M2 is
a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell.
145:732–744. 2011.
|
41
|
Wang F, Wang K, Xu W, Zhao S, Ye D, Wang
Y, Xu Y, Zhou L, Chu Y, Zhang C, et al: SIRT5 Desuccinylates and
Activates Pyruvate Kinase M2 to Block Macrophage IL-1β Production
And To Prevent DSS-Induced Colitis In Mice. Cell Rep. 19:2331–2344.
2017.
|
42
|
Henze AT and Mazzone M: The impact of
hypoxia on tumor-associated macrophages. J Clin Invest.
126:3672–3679. 2016.
|
43
|
Colangelo T, Polcaro G, Muccillo L,
D'Agostino G, Rosato V, Ziccardi P, Lupo A, Mazzoccoli G, Sabatino
L and AColantuoni V: Friend or foe? The tumour microenvironment
dilemma in colorectal cancer. Biochim Biophys Acta Rev Cancer.
1867:1–18. 2017.
|
44
|
Semba H, Takeda N, Isagawa T, Sugiura Y,
Honda K, Wake M, Miyazawa H, Yamaguchi Y, Miura M, Jenkins DM, et
al: HIF-1α-PDK1 axis-induced active glycolysis plays an essential
role in macrophage migratory capacity. Nat Commun. 7:116352016.
|
45
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011.
|
46
|
Levine AJ and Puzio-Kuter AM: The control
of the metabolic switch in cancers by oncogenes and tumor
suppressor genes. Science. 330:1340–1344. 2010.
|
47
|
Vander Heiden MG, Cantley LC and Thompson
CB: Understanding the Warburg effect: The metabolic requirements of
cell proliferation. Science. 324:1029–1033. 2009.
|
48
|
Li C, Wang Y, Li Y, Yu Q, Jin X, Wang X,
Jia A, Hu Y, Han L, Wang J, et al: HIF1α-dependent glycolysis
promotes macrophage functional activities in protecting against
bacterial and fungal infection. Sci Rep. 8:36032018.
|
49
|
Wang L, Pavlou S, Du X, Bhuckory M, Xu H
and Chen M: Glucose transporter 1 critically controls microglial
activation through facilitating glycolysis. Mol Neurodegener.
14:22019.
|
50
|
Peng F, Wang JH, Fan WJ, Meng YT, Li MM,
Li TT, Cui B, Wang HF, Zhao Y, An F, et al: Glycolysis gatekeeper
PDK1 reprograms breast cancer stem cells under hypoxia. Oncogene.
37:1062–74. 2018.
|
51
|
Talreja J, Talwar H, Bauerfeld C, Grossman
LI, Zhang K, Tranchida P and Samavati L: HIF-1α regulates IL-1β and
IL-17 in sarcoidosis. Elife. 8. pp. e445192019
|
52
|
Freemerman AJ, Johnson AR, Sacks GN,
Milner JJ, Kirk EL, Troester MA, Macintyre AN, Goraksha-Hicks P,
Rathmell JC and Makowski L: Metabolic reprogramming of macrophages:
Glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a
proinflammatory phenotype. J Biol Chem. 289:7884–7896. 2014.
|
53
|
Freemerman AJ, Zhao L, Pingili AK, Teng B,
Cozzo AJ, Fuller AM, Johnson AR, Milner JJ, Lim MF, Galanko JA, et
al: Myeloid Slc2a1-Deficient murine model revealed macrophage
activation and metabolic phenotype are fueled by GLUT1. J Immunol.
202:1265–1286. 2019.
|
54
|
Masoud GN and Li W: HIF-1α pathway: Role,
regulation and intervention for cancer therapy. Acta Pharm Sin B.
5:378–389. 2015.
|
55
|
Fix DK, Ekiz HA, Petrocelli JJ, McKenzie
AM, Mahmassani ZS, O'Connell RM and Drummond MJ: Disrupted
macrophage metabolic reprogramming in aged soleus muscle during
early recovery following disuse atrophy. Aging Cell.
20:e134482021.
|
56
|
Zhuang H, Lv Q, Zhong C, Cui Y, He L,
Zhang C and Yu J: Tiliroside ameliorates ulcerative colitis by
restoring the M1/M2 macrophage balance via the HIF-1α/glycolysis
pathway. Front Immunol. 12:6494632021.
|
57
|
Renaudin F, Orliaguet L, Castelli F,
Fenaille F, Prignon A, Alzaid F, Combes C, Delvaux A, Adimy Y,
Cohen-Solal M, et al: Gout and pseudo-gout-related crystals promote
GLUT1-mediated glycolysis that governs NLRP3 and interleukin-1β
activation on macrophages. Ann Rheum Dis. 79:1506–1514. 2020.
|
58
|
He Y, Du J and Dong Z: Myeloid deletion of
phosphoinositide-dependent kinase-1 enhances NK cell-mediated
antitumor immunity by mediating macrophage polarization.
Oncoimmunology. 9:17742812020.
|
59
|
Baseler WA, Davies LC, Quigley L, Ridnour
LA, Weiss JM, Hussain SP, Wink DA and McVicar DW: Autocrine IL-10
functions as a rheostat for M1 macrophage glycolytic commitment by
tuning nitric oxide production. Redox Biol. 10:12–23. 2016.
|
60
|
Wei T, Gao J, Huang C, Song B, Sun M and
Shen W: SIRT3 (Sirtuin-3) prevents Ang II (Angiotensin II)-Induced
macrophage metabolic switch improving perivascular adipose tissue
function. Arterioscler Thromb Vasc Biol. 41:714–7130. 2021.
|
61
|
Johnson AR, Qin Y, Cozzo AJ, Freemerman
AJ, Huang MJ, Zhao L, Sampey BP, Milner JJ, Beck MA, Damania B, et
al: Metabolic reprogramming through fatty acid transport protein 1
(FATP1) regulates macrophage inflammatory potential and adipose
inflammation. Mol Metab. 5:506–526. 2016.
|
62
|
Gu Z, Liu T, Liu C, Yang Y, Tang J, Song
H, Wang Y, Yang Y and Yu C: Ferroptosis-Strengthened metabolic and
inflammatory regulation of tumor-associated macrophages provokes
potent tumoricidal activities. Nano Lett. 21:6471–6479. 2021.
|
63
|
Blanco-Pérez F, Goretzki A, Wolfheimer S
and Schülke S: The vaccine adjuvant MPLA activates glycolytic
metabolism in mouse mDC by a JNK-dependent activation of
mTOR-signaling. Mol Immunol. 106:159–169. 2019.
|
64
|
Uehara T, Eikawa S, Nishida M, Kunisada Y,
Yoshida A, Fujiwara T, Kunisada T, Ozaki T and Udono H: Metformin
induces CD11b+-cell-mediated growth inhibition of an osteosarcoma:
Implications for metabolic reprogramming of myeloid cells and
anti-tumor effects. Int Immunol. 31:187–198. 2019.
|
65
|
Yu H, Bai Y, Qiu J, He X, Xiong J, Dai Q,
Wang X, Li Y, Sheng H, Xin R, et al: Pseudomonas aeruginosa PcrV
Enhances the nitric Oxide-Mediated tumoricidal activity of
Tumor-Associated macrophages via a
TLR4/PI3K/AKT/mTOR-Glycolysis-nitric oxide circuit. Front Oncol.
11:7368822021.
|
66
|
Chen D, Xie J, Fiskesund R, Dong W, Liang
X, Lv J, Jin X, Liu J, Mo S, Zhang T, et al: Chloroquine modulates
antitumor immune response by resetting tumor-associated macrophages
toward M1 phenotype. Nat Commun. 9:8732018.
|
67
|
Chen S, Cui W, Chi Z, Xiao Q, Hu T, Ye Q,
Zhu K, Yu W, Wang Z, Yu C, et al: Tumor-associated macrophages are
shaped by intratumoral high potassium via Kir2.1. Cell Metab.
34:1843–1859.e11. 2022.
|
68
|
Ling J, Chang Y, Yuan Z, Chen Q, He L and
Chen T: Designing lactate Dehydrogenase-Mimicking SnSe nanosheets
to reprogram tumor-associated macrophages for potentiation of
photothermal immunotherapy. ACS Appl Mater Interfaces.
14:27651–27665. 2022.
|
69
|
Ramesh A, Malik V, Brouillard A and
Kulkarni A: Supramolecular nanotherapeutics enable metabolic
reprogramming of tumor-associated macrophages to inhibit tumor
growth. J Biomed Mater Res A. 110:1448–1459. 2022.
|
70
|
Cai W, Cheng J, Zong S, Yu Y, Wang Y, Song
Y, He R, Yuan S, Chen T, Hu M, et al: The glycolysis inhibitor
2-deoxyglucose ameliorates adjuvant-induced arthritis by regulating
macrophage polarization in an AMPK-dependent manner. Mol Immunol.
140:186–195. 2021.
|
71
|
Qin Y, Jiang X, Yang Q, Zhao J, Zhou Q and
Zhou Y: The Functions, methods, and mobility of mitochondrial
transfer between cells. Front Oncol. 11:6727812021.
|
72
|
Wang T, Liu H, Lian G, Zhang SY, Wang X
and Jiang C: HIF1α-Induced glycolysis metabolism Is essential to
the activation of inflammatory macrophages. Mediators Inflamm.
2017:90293272017.
|
73
|
Dang CP and Leelahavanichkul A:
Over-expression of miR-223 induces M2 macrophage through glycolysis
alteration and attenuates LPS-induced sepsis mouse model, the
cell-based therapy in sepsis. PLoS One. 15:e02360382020.
|
74
|
Jing C, Castro-Dopico T, Richoz N, Tuong
ZK, Ferdinand JR, Lok LSC, Loudon KW, Banham GD, Mathews RJ, Cader
Z, et al: Macrophage metabolic reprogramming presents a therapeutic
target in lupus nephritis. Proc Natl Acad Sci USA. 117:15160–71.
2020.
|
75
|
Wang S, Liu F, Tan KS, Ser HL, Tan LT, Lee
LH and Tan W: Effect of (R)-salbutamol on the switch of phenotype
and metabolic pattern in LPS-induced macrophage cells. J Cell Mol
Med. 24:722–736. 2020.
|
76
|
Xu H, Li D, Ma J, Zhao Y, Xu L, Tian R,
Liu Y, Sun L and Su J: The IL-33/ST2 axis affects tumor growth by
regulating mitophagy in macrophages and reprogramming their
polarization. Cancer Biol Med. 18:172–183. 2021.
|
77
|
Paul S, Ghosh S and Kumar S: Tumor
glycolysis, an essential sweet tooth of tumor cells. Semin Cancer
Biol. 86:1216–1230. 2022.
|
78
|
Liao WT, Hung CH, Liang SS, Yu S, Lu JH,
Lee CH, Chai CY and Yu HS: Anti-Inflammatory effects induced by
near-infrared light irradiation through M2 macrophage polarization.
J Invest Dermatol. 141:2056–2066.e10. 2021.
|
79
|
Kelly B and O'Neill LA: Metabolic
reprogramming in macrophages and dendritic cells in innate
immunity. Cell Res. 25:771–784. 2015.
|
80
|
Jeon EH, Park TS, Jang Y, Hwang E, Kim SJ,
Song KD, Weinstein DA, Lee YM, Park BC and Jun HS:
Glucose-6-phosphate transporter mediates macrophage proliferation
and functions by regulating glycolysis and mitochondrial
respiration. Biochem Biophys Res Commun. 524:89–95. 2020.
|
81
|
Liu D, Chang C, Lu N, Wang X, Lu Q, Ren X,
Ren P, Zhao D, Wang L, Zhu Y, et al: Comprehensive proteomics
analysis reveals metabolic reprogramming of tumor-associated
macrophages stimulated by the tumor microenvironment. J Proteome
Res. 16:288–2897. 2017.
|
82
|
Jiang Y, Han Q, Zhao H and Zhang J:
Promotion of epithelial-mesenchymal transformation by
hepatocellular carcinoma-educated macrophages through
Wnt2b/β-catenin/c-Myc signaling and reprogramming glycolysis. J Exp
Clin Cancer Res. 40(13)2021.
|
83
|
Geeraerts X, Fernández-Garcia J, Hartmann
FJ, de Goede KE, Martens L, Elkrim Y, Debraekeleer A, Stijlemans B,
Vandekeere A, Rinaldi G, et al: Macrophages are metabolically
heterogeneous within the tumor microenvironment. Cell Rep.
37:1101712021.
|
84
|
He Z, Chen D, Wu J, Sui C, Deng X, Zhang
P, Chen Z, Liu D, Yu J, Shi J, et al: Yes associated protein 1
promotes resistance to 5-fluorouracil in gastric cancer by
regulating GLUT3-dependent glycometabolism reprogramming of
tumor-associated macrophages. Arch Biochem Biophys.
702:1088382021.
|
85
|
Yan W, Wu X, Zhou W, Fong MY, Cao M, Liu
J, Liu X, Chen CH, Fadare O, Pizzo DP, et al: Cancer-cell-secreted
exosomal miR-105 promotes tumour growth through the MYC-dependent
metabolic reprogramming of stromal cells. Nat Cell Biol.
20:597–609. 2018.
|
86
|
Wang JX, Choi SYC, Niu X, Kang N, Xue H,
Killam J and Wang Y: Lactic Acid and an Acidic Tumor
Microenvironment suppress Anticancer Immunity. Int J Mol Sci.
21:83632020.
|
87
|
Consiglio CR, Udartseva O, Ramsey KD, Bush
C and Gollnick SO: Enzalutamide, an androgen receptor antagonist,
enhances myeloid Cell-Mediated immune suppression and tumor
progression. Cancer Immunol Res. 8:1215–1227. 2020.
|
88
|
Arts RJ, Plantinga TS, Tuit S, Ulas T,
Heinhuis B, Tesselaar M, Sloot Y, Adema GJ, Joosten LA, Smit JW, et
al: Transcriptional and metabolic reprogramming induce an
inflammatory phenotype in non-medullary thyroid carcinoma-induced
macrophages. Oncoimmunology. 5:e12297252016.
|
89
|
Manoharan I, Prasad PD, Thangaraju M and
Manicassamy S: Lactate-Dependent regulation of immune responses by
dendritic cells and macrophages. Front Immunol. 12:6911342021.
|
90
|
Wu Q, Allouch A, Paoletti A, Leteur C,
Mirjolet C, Martins I, Voisin L, Law F, Dakhli H, Mintet E, et al:
NOX2-dependent ATM kinase activation dictates pro-inflammatory
macrophage phenotype and improves effectiveness to radiation
therapy. Cell Death Differ. 24:1632–1644. 2017.
|
91
|
Zhang J, Muri J, Fitzgerald G, Gorski T,
Gianni-Barrera R, Masschelein E, D'Hulst G, Gilardoni P, Turiel G,
Fan Z, et al: Endothelial lactate controls muscle regeneration from
ischemia by Inducing M2-like macrophage polarization. Cell Metab.
31:1136–1153.e7. 2020.
|
92
|
Colegio OR, Chu NQ, Szabo AL, Chu T,
Rhebergen AM, Jairam V, Cyrus N, Brokowski CE, Eisenbarth SC,
Phillips GM, et al: Functional polarization of tumour-associated
macrophages by tumour-derived lactic acid. Nature. 513:559–563.
2014.
|
93
|
Colgan SP, Furuta GT and Taylor CT:
Hypoxia and innate immunity: Keeping Up with the HIFsters. Annu Rev
Immunol. 38:341–363. 2020.
|
94
|
Zhang L and Li S: Lactic acid promotes
macrophage polarization through MCT-HIF1α signaling in gastric
cancer. Exp Cell Res. 388:1118462020.
|
95
|
Yao X, He Z, Qin C, Deng X, Bai L, Li G
and Shi J: SLC2A3 promotes macrophage infiltration by glycolysis
reprogramming in gastric cancer. Cancer Cell Int. 20:5032020.
|
96
|
Wang H, Wang L, Pan H, Wang Y, Shi M, Yu
H, Wang C, Pan X and Chen Z: Exosomes derived from macrophages
enhance aerobic glycolysis and chemoresistance in lung cancer by
stabilizing c-Myc via the Inhibition of NEDD4L. Front Cell Dev
Biol. 8:6206032020.
|
97
|
Liu N, Luo J, Kuang D, Xu S, Duan Y, Xia
Y, Wei Z, Xie X, Yin B, Chen F, et al: Lactate inhibits ATP6V0d2
expression in tumor-associated macrophages to promote
HIF-2α-mediated tumor progression. J Clin Invest. 129:631–646.
2019.
|
98
|
Jiang H, Wei H, Wang H, Wang Z, Li J, Ou
Y, Xiao X, Wang W, Chang A, Sun W, et al: Zeb1-induced metabolic
reprogramming of glycolysis is essential for macrophage
polarization in breast cancer. Cell Death Dis. 13:2062022.
|
99
|
Zhang A, Xu Y, Xu H, Ren J, Meng T, Ni Y,
Zhu Q, Zhang WB, Pan YB, Jin J, et al: Lactate-induced M2
polarization of tumor-associated macrophages promotes the invasion
of pituitary adenoma by secreting CCL17. Theranostics.
11:3839–3852. 2021.
|
100
|
Ye H, Zhou Q, Zheng S, Li G, Lin Q, Wei L,
Fu Z, Zhang B, Liu Y, Li Z and Chen R: Tumor-associated macrophages
promote progression and the Warburg effect via CCL18/NF-kB/VCAM-1
pathway in pancreatic ductal adenocarcinoma. Cell Death Dis.
9:4532018.
|
101
|
Stone SC, Rossetti RAM, Alvarez KLF,
Carvalho JP, Margarido PFR, Baracat EC, Tacla M, Boccardo E,
Yokochi K, Lorenzi NP and Lepique AP: Lactate secreted by cervical
cancer cells modulates macrophage phenotype. J Leukoc Biol.
105:1041–1054. 2019.
|
102
|
Qian M, Wang S, Guo X, Wang J, Zhang Z,
Qiu W, Gao X, Chen Z, Xu J, Zhao R, et al: Hypoxic glioma-derived
exosomes deliver microRNA-1246 to induce M2 macrophage polarization
by targeting TERF2IP via the STAT3 and NF-κB pathways. Oncogene.
39:428–442. 2020.
|
103
|
Niu X, Ma J, Li J, Gu Y, Yin L, Wang Y,
Zhou X, Wang J, Ji H and Zhang Q: Sodium/glucose cotransporter
1-dependent metabolic alterations induce tamoxifen resistance in
breast cancer by promoting macrophage M2 polarization. Cell Death
Dis. 12:5092021.
|
104
|
Lin S, Sun L, Lyu X, Ai X, Du D, Su N, Li
H, Zhang L, Yu J and Yuan S: Lactate-activated macrophages induced
aerobic glycolysis and epithelial-mesenchymal transition in breast
cancer by regulation of CCL5-CCR5 axis: A positive metabolic
feedback loop. Oncotarget. 8:110426–110443. 2017.
|
105
|
He Y, Fang Y, Zhang M, Zhao Y, Tu B, Shi
M, Muhitdinov B, Asrorov A, Xu Q and Huang Y: Remodeling 'cold'
tumor immune microenvironment via epigenetic-based therapy using
targeted liposomes with in situ formed albumin corona. Acta Pharm
Sin B. 12:2057–2073. 2022.
|
106
|
Wang H, Wu C, Tong X and Chen S: A
biomimetic Metal-Organic framework nanosystem modulates
immunosuppressive tumor microenvironment metabolism to amplify
immunotherapy. J Control Release. 353:727–737. 2023.
|
107
|
Zhang J, Sun X, Xu M and Zhao X, Yang C,
Li K, Zhao F, Hu H, Qiao M, Chen D and Zhao X: A Self-amplifying
ROS-sensitive prodrug-based nanodecoy for circumventing immune
resistance in chemotherapy-sensitized immunotherapy. Acta Biomater.
149:307–320. 2022.
|
108
|
Shen W, Liu T, Pei P, Li J, Yang S, Zhang
Y, Zhou H, Hu L and Yang K: Metabolic Homeostasis-Regulated
Nanoparticles for Antibody-Independent Cancer Radio-Immunotherapy.
Adv Mater. 34:e22073432022.
|
109
|
Harper J and Sainson RC: Regulation of the
anti-tumour immune response by cancer-associated fibroblasts. Semin
Cancer Biol. 25:69–77. 2014.
|
110
|
Sahai E, Astsaturov I, Cukierman E,
DeNardo DG, Egeblad M, Evans RM, Fearon D, Greten FR, Hingorani SR,
Hunter T, et al: A framework for advancing our understanding of
cancer-associated fibroblasts. Nat Rev Cancer. 20:174–186.
2020.
|
111
|
Gok Yavuz B, Gunaydin G, Gedik ME,
Kosemehmetoglu K, Karakoc D, Ozgur F and Guc D: Cancer associated
fibroblasts sculpt tumour microenvironment by recruiting monocytes
and inducing immunosuppressive PD-1+ TAMs. Sci Rep.
9:31722019.
|
112
|
Cui H, Xie N, Banerjee S, Ge J, Jiang D,
Dey T, Matthews QL, Liu RM and Liu G: Lung myofibroblasts promote
macrophage profibrotic activity through lactate-induced histone
lactylation. Am J Respir Cell Mol Biol. 64:115–125. 2021.
|
113
|
Chen S, Chen X, Shan T, Ma J, Lin W, Li W
and Kang Y: MiR-21-mediated Metabolic Alteration of
Cancer-associated Fibroblasts and Its Effect on Pancreatic Cancer
Cell Behavior. Int J Biol Sci. 14:100–110. 2018.
|
114
|
Nishida M, Yamashita N, Ogawa T, Koseki K,
Warabi E, Ohue T, Komatsu M, Matsushita H, Kakimi K, Kawakami E, et
al: Mitochondrial reactive oxygen species trigger
metformin-dependent antitumor immunity via activation of
Nrf2/mTORC1/p62 axis in tumor-infiltrating CD8T lymphocytes. J
Immunother Cancer. 9:e0029542021.
|
115
|
Janabi M, Yamashita S, Hirano K, Sakai N,
Hiraoka H, Matsumoto K, Zhang Z, Nozaki S and Matsuzawa Y: Oxidized
LDL-induced NF-kappa B activation and subsequent expression of
proinflammatory genes are defective in monocyte-derived macrophages
from CD36-deficient patients. Arterioscler Thromb Vasc Biol.
20:1953–1960. 2000.
|
116
|
Qiao G, Chen M, Mohammadpour H, MacDonald
CR, Bucsek MJ, Hylander BL, Barbi JJ and Repasky EA: Chronic
adrenergic stress contributes to metabolic dysfunction and an
exhausted phenotype in T cells in the tumor microenvironment.
Cancer Immunol Res. 9:651–664. 2021.
|
117
|
Sharma M, Boytard L, Hadi T, Koelwyn G,
Simon R, Ouimet M, Seifert L, Spiro W, Yan B, Hutchison S, et al:
Enhanced glycolysis and HIF-1α activation in adipose tissue
macrophages sustains local and systemic interleukin-1β production
in obesity. Sci Rep. 10:55552020.
|
118
|
Yang Q, Ma Q, Xu J, Liu Z, Zou J, Shen J,
Zhou Y, Da Q, Mao X, Lu S, et al: Prkaa1 metabolically regulates
monocyte/macrophage recruitment and viability in diet-induced
murine metabolic disorders. Front Cell Dev Biol. 8:6113542020.
|
119
|
Kumar V, Cheng P, Condamine T, Mony S,
Languino LR, McCaffrey JC, Hockstein N, Guarino M, Masters G,
Penman E, et al: CD45 phosphatase inhibits STAT3 transcription
factor activity in myeloid cells and promotes Tumor-Associated
macrophage differentiation. Immunity. 44:303–315. 2016.
|
120
|
Deng H, Wu L, Liu M, Zhu L, Chen Y, Zhou
H, Shi X, Wei J, Zheng L, Hu X, et al: Bone marrow mesenchymal stem
Cell-derived exosomes attenuate LPS-Induced ARDS by modulating
macrophage polarization through inhibiting glycolysis in
macrophages. Shock. 54:828–843. 2020.
|