1
|
Siegel RL, Miller KD, Fuchs HE and Jemal
A: Cancer statistics, 2022. CA Cancer J Clin. 72:7–33. 2022.
|
2
|
Culp MB, Soerjomataram I, Efstathiou JA,
Bray F and Jemal A: Recent global patterns in prostate cancer
incidence and mortality rates. Eur Urol. 77:38–52. 2020.
|
3
|
Milliron BJ, Bruneau M, Obeid E, Gross L,
Bealin L, Smaltz C and Giri VN: Diet assessment among men
undergoing genetic counseling and genetic testing for inherited
prostate cancer: Exploring a teachable moment to support diet
intervention. Prostate. 79:778–783. 2019.
|
4
|
Hanahan D: Hallmarks of cancer: New
dimensions. Cancer Discov. 12:31–46. 2022.
|
5
|
Pavlova NN, Zhu J and Thompson CB: The
hallmarks of cancer metabolism: Still emerging. Cell Metab.
34:355–377. 2022.
|
6
|
Flavahan WA, Gaskell E and Bernstein BE:
Epigenetic plasticity and the hallmarks of cancer. Science.
357:eaal23802017.
|
7
|
Liberti MV and Locasale JW: The Warburg
effect: How does it benefit cancer cells? Trends Biochem Sci.
41:211–218. 2016.
|
8
|
Chaudagar K, Hieromnimon HM, Khurana R,
Labadie B, Hirz T, Mei S, Hasan R, Shafran J, Kelley A, Apostolov
E, et al: Reversal of lactate and PD-1-mediated macrophage
immunosuppression controls growth of PTEN/p53-deficient prostate
cancer. Clin Cancer Res. Mar;2023:2023.Epub ahead of print.
|
9
|
Poulose N, Amoroso F, Steele RE, Singh R,
Ong CW and Mills IG: Genetics of lipid metabolism in prostate
cancer. Nat Genet. 50:169–171. 2018.
|
10
|
Laurent V, Guérard A, Mazerolles C, Le
Gonidec S, Toulet A, Nieto L, Zaidi F, Majed B, Garandeau D,
Socrier Y, et al: Periprostatic adipocytes act as a driving force
for prostate cancer progression in obesity. Nat Commun.
7:102302016.
|
11
|
Fontaine A, Bellanger D, Guibon R, Bruyère
F, Brisson L and Fromont G: Lipophagy and prostate cancer:
Association with disease aggressiveness and proximity to
periprostatic adipose tissue. J Pathol. 255:166–176. 2021.
|
12
|
Kuemmerle NB, Rysman E, Lombardo PS,
Flanagan AJ, Lipe BC, Wells WA, Pettus JR, Froehlich HM, Memoli VA,
Morganelli PM, et al: Lipoprotein lipase links dietary fat to solid
tumor cell proliferation. Mol Cancer Ther. 10:427–436. 2011.
|
13
|
De Piano M, Manuelli V, Zadra G, Otte J,
Edqvist PD, Pontén F, Nowinski S, Niaouris A, Grigoriadis A, Loda
M, et al: Lipogenic signalling modulates prostate cancer cell
adhesion and migration via modification of Rho GTPases. Oncogene.
39:3666–3679. 2020.
|
14
|
Gazi E, Gardner P, Lockyer NP, Hart CA,
Brown MD and Clarke NW: Direct evidence of lipid translocation
between adipocytes and prostate cancer cells with imaging FTIR
microspectroscopy. J Lipid Res. 48:1846–1856. 2007.
|
15
|
Centenera MM, Scott JS, Machiels J, Nassar
ZD, Miller DC, Zinonos I, Dehairs J, Burvenich IJG, Zadra G, Chetta
PM, et al: ELOVL5 is a critical and targetable fatty acid elongase
in prostate cancer. Cancer Res. 81:1704–1718. 2021.
|
16
|
Yue S, Li J, Lee SY, Lee HJ, Shao T, Song
B, Cheng L, Masterson TA, Liu X, Ratliff TL and Cheng JX:
Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT
activation underlies human prostate cancer aggressiveness. Cell
Metab. 19:393–406. 2014.
|
17
|
DeBerardinis RJ and Chandel NS:
Fundamentals of cancer metabolism. Sci Adv. 2:e16002002016.
|
18
|
Weiss L, Hoffmann GE, Schreiber R, Andres
H, Fuchs E, Körber E and Kolb HJ: Fatty-acid biosynthesis in man, a
pathway of minor importance. Purification, optimal assay
conditions, and organ distribution of fatty-acid synthase. Biol
Chem Hoppe Seyler. 367:905–912. 1986.
|
19
|
Dirat B, Bochet L, Dabek M, Daviaud D,
Dauvillier S, Majed B, Wang YY, Meulle A, Salles B, Le Gonidec S,
et al: Cancer-associated adipocytes exhibit an activated phenotype
and contribute to breast cancer invasion. Cancer Res. 71:2455–2465.
2011.
|
20
|
Nieman KM, Kenny HA, Penicka CV, Ladanyi
A, Buell-Gutbrod R, Zillhardt MR, Romero IL, Carey MS, Mills GB,
Hotamisligil GS, et al: Adipocytes promote ovarian cancer
metastasis and provide energy for rapid tumor growth. Nat Med.
17:1498–1503. 2011.
|
21
|
Gomaraschi M: Role of lipoproteins in the
microenvironment of hormone-dependent cancers. Trends Endocrinol
Metab. 31:256–268. 2020.
|
22
|
Watt MJ, Clark AK, Selth LA, Haynes VR,
Lister N, Rebello R, Porter LH, Niranjan B, Whitby ST, Lo J, et al:
Suppressing fatty acid uptake has therapeutic effects in
preclinical models of prostate cancer. Sci Transl Med.
11:eaau57582019.
|
23
|
Batchuluun B, Pinkosky SL and Steinberg
GR: Lipogenesis inhibitors: Therapeutic opportunities and
challenges. Nat Rev Drug Discov. 21:283–305. 2022.
|
24
|
Zhao S, Torres A, Henry RA, Trefely S,
Wallace M, Lee JV, Carrer A, Sengupta A, Campbell SL, Kuo YM, et
al: ATP-citrate lyase controls a glucose-to-acetate metabolic
switch. Cell Rep. 17:1037–1052. 2016.
|
25
|
Galbraith L, Leung HY and Ahmad I: Lipid
pathway deregulation in advanced prostate cancer. Pharmacol Res.
131:177–184. 2018.
|
26
|
Gao Y, Islam MS, Tian J, Lui VWY and Xiao
D: Inactivation of ATP citrate lyase by Cucurbitacin B: A bioactive
compound from cucumber, inhibits prostate cancer growth. Cancer
Lett. 349:15–25. 2014.
|
27
|
Hunkeler M, Hagmann A, Stuttfeld E, Chami
M, Guri Y, Stahlberg H and Maier T: Structural basis for regulation
of human acetyl-CoA carboxylase. Nature. 558:470–474. 2018.
|
28
|
Rios Garcia M, Steinbauer B, Srivastava K,
Singhal M, Mattijssen F, Maida A, Christian S, Hess-Stumpp H,
Augustin HG, Müller-Decker K, et al: Acetyl-CoA carboxylase
1-dependent protein acetylation controls breast cancer metastasis
and recurrence. Cell Metab. 26:842–855.e5. 2017.
|
29
|
Zhao S, Cheng L, Shi Y, Li J, Yun Q and
Yang H: MIEF2 reprograms lipid metabolism to drive progression of
ovarian cancer through ROS/AKT/mTOR signaling pathway. Cell Death
Dis. 12:182021.
|
30
|
Lally JSV, Ghoshal S, DePeralta DK, Moaven
O, Wei L, Masia R, Erstad DJ, Fujiwara N, Leong V, Houde VP, et al:
Inhibition of acetyl-CoA carboxylase by phosphorylation or the
inhibitor ND-654 suppresses lipogenesis and hepatocellular
carcinoma. Cell Metab. 29:174–182.e5. 2019.
|
31
|
Raimondo S, Saieva L, Cristaldi M,
Monteleone F, Fontana S and Alessandro R: Label-free quantitative
proteomic profiling of colon cancer cells identifies acetyl-CoA
carboxylase alpha as antitumor target of Citrus limon-derived
nanovesicles. J Proteomics. 173:1–11. 2018.
|
32
|
Brusselmans K, De Schrijver E, Verhoeven G
and Swinnen JV: RNA interference-mediated silencing of the
acetyl-CoA-carboxylase-alpha gene induces growth inhibition and
apoptosis of prostate cancer cells. Cancer Res. 65:6719–6725.
2005.
|
33
|
O'Malley J, Kumar R, Kuzmin AN, Pliss A,
Yadav N, Balachandar S, Wang J, Attwood K, Prasad PN and Chandra D:
Lipid quantification by Raman microspectroscopy as a potential
biomarker in prostate cancer. Cancer Lett. 397:52–60. 2017.
|
34
|
Nguyen PL, Ma J, Chavarro JE, Freedman ML,
Lis R, Fedele G, Fiore C, Qiu W, Fiorentino M, Finn S, et al: Fatty
acid synthase polymorphisms, tumor expression, body mass index,
prostate cancer risk, and survival. J Clin Oncol. 28:3958–3964.
2010.
|
35
|
Rossi S, Graner E, Febbo P, Weinstein L,
Bhattacharya N, Onody T, Bubley G, Balk S and Loda M: Fatty acid
synthase expression defines distinct molecular signatures in
prostate cancer. Mol Cancer Res. 1:707–715. 2003.
|
36
|
Li X, Chen YT, Hu P and Huang WC:
Fatostatin displays high antitumor activity in prostate cancer by
blocking SREBP-regulated metabolic pathways and androgen receptor
signaling. Mol Cancer Ther. 13:855–866. 2014.
|
37
|
Migita T, Ruiz S, Fornari A, Fiorentino M,
Priolo C, Zadra G, Inazuka F, Grisanzio C, Palescandolo E, Shin E,
et al: Fatty acid synthase: A metabolic enzyme and candidate
oncogene in prostate cancer. J Natl Cancer Inst. 101:519–532.
2009.
|
38
|
Wu X, Dong Z, Wang CJ, Barlow LJ, Fako V,
Serrano MA, Zou Y, Liu JY and Zhang JT: FASN regulates cellular
response to genotoxic treatments by increasing PARP-1 expression
and DNA repair activity via NF-κB and SP1. Proc Natl Acad Sci USA.
113:E6965–E6973. 2016.
|
39
|
Ventura R, Mordec K, Waszczuk J, Wang Z,
Lai J, Fridlib M, Buckley D, Kemble G and Heuer TS: Inhibition of
de novo palmitate synthesis by fatty acid synthase induces
apoptosis in tumor cells by remodeling cell membranes, inhibiting
signaling pathways, and reprogramming gene expression.
EBioMedicine. 2:808–824. 2015.
|
40
|
Zadra G, Ribeiro CF, Chetta P, Ho Y,
Cacciatore S, Gao X, Syamala S, Bango C, Photopoulos C, Huang Y, et
al: Inhibition of de novo lipogenesis targets androgen receptor
signaling in castration-resistant prostate cancer. Proc Natl Acad
Sci USA. 116:631–640. 2019.
|
41
|
Agostini M, Almeida LY, Bastos DC, Ortega
RM, Moreira FS, Seguin F, Zecchin KG, Raposo HF, Oliveira HC,
Amoêdo ND, et al: The fatty acid synthase inhibitor orlistat
reduces the growth and metastasis of orthotopic tongue oral
squamous cell carcinomas. Mol Cancer Ther. 13:585–595. 2014.
|
42
|
Menendez JA, Vellon L and Lupu R:
Antitumoral actions of the anti-obesity drug orlistat (XenicalTM)
in breast cancer cells: Blockade of cell cycle progression,
promotion of apoptotic cell death and PEA3-mediated transcriptional
repression of Her2/neu (erbB-2) oncogene. Ann Oncol. 16:1253–1267.
2005.
|
43
|
Wright C, Iyer AKV, Kaushik V and Azad N:
Anti-tumorigenic potential of a novel orlistat-AICAR combination in
prostate cancer cells. J Cell Biochem. 118:3834–3845. 2017.
|
44
|
Fritz V, Benfodda Z, Rodier G, Henriquet
C, Iborra F, Avancès C, Allory Y, de la Taille A, Culine S, Blancou
H, et al: Abrogation of de novo lipogenesis by stearoyl-CoA
desaturase 1 inhibition interferes with oncogenic signaling and
blocks prostate cancer progression in mice. Mol Cancer Ther.
9:1740–1754. 2010.
|
45
|
Kim SJ, Choi H, Park SS, Chang C and Kim
E: Stearoyl CoA desaturase (SCD) facilitates proliferation of
prostate cancer cells through enhancement of androgen receptor
transactivation. Mol Cells. 31:371–377. 2011.
|
46
|
Contreras-López EF, Cruz-Hernández CD,
Cortés-Ramírez SA, Ramírez-Higuera A, Peña-Montes C,
Rodríguez-Dorantes M and Oliart-Ros RM: Inhibition of stearoyl-CoA
desaturase by sterculic oil reduces proliferation and induces
apoptosis in prostate cancer cell lines. Nutr Cancer. 74:1308–1321.
2022.
|
47
|
Yi J, Zhu J, Wu J, Thompson CB and Jiang
X: Oncogenic activation of PI3K-AKT-mTOR signaling suppresses
ferroptosis via SREBP-mediated lipogenesis. Proc Natl Acad Sci USA.
117:31189–31197. 2020.
|
48
|
Berquin IM, Edwards IJ, Kridel SJ and Chen
YQ: Polyunsaturated fatty acid metabolism in prostate cancer.
Cancer Metastasis Rev. 30:295–309. 2011.
|
49
|
Staubach S and Hanisch FG: Lipid rafts:
Signaling and sorting platforms of cells and their roles in cancer.
Expert Rev Proteomics. 8:263–277. 2011.
|
50
|
Yang WS, Kim KJ, Gaschler MM, Patel M,
Shchepinov MS and Stockwell BR: Peroxidation of polyunsaturated
fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci
USA. 113:E4966–E4975. 2016.
|
51
|
Tamura K, Makino A, Hullin-Matsuda F,
Kobayashi T, Furihata M, Chung S, Ashida S, Miki T, Fujioka T,
Shuin T, et al: Novel lipogenic enzyme ELOVL7 is involved in
prostate cancer growth through saturated long-chain fatty acid
metabolism. Cancer Res. 69:8133–8140. 2009.
|
52
|
Hu T, Zhang H, Du Y, Luo S, Yang X, Zhang
H, Feng J, Chen X, Tu X, Wang C and Zhang Y: ELOVL2 restrains cell
proliferation, migration, and invasion of prostate cancer via
regulation of the tumor suppressor INPP4B. Cell Signal.
96:1103732022.
|
53
|
Xu H, Li S, Sun Y, Xu L, Hong X, Wang Z
and Hu H: ELOVL5-mediated long chain fatty acid elongation
contributes to enzalutamide resistance of prostate cancer. Cancers
(Basel). 13:39572021.
|
54
|
Chen M, Zhang J, Sampieri K, Clohessy JG,
Mendez L, Gonzalez-Billalabeitia E, Liu XS, Lee YR, Fung J, Katon
JM, et al: An aberrant SREBP-dependent lipogenic program promotes
metastatic prostate cancer. Nat Genet. 50:206–218. 2018.
|
55
|
Lee HJ, Jung YH, Choi GE, Ko SH, Lee SJ,
Lee SH and Han HJ: BNIP3 induction by hypoxia stimulates
FASN-dependent free fatty acid production enhancing therapeutic
potential of umbilical cord blood-derived human mesenchymal stem
cells. Redox Biol. 13:426–443. 2017.
|
56
|
Huang WC, Li X, Liu J, Lin J and Chung
LWK: Activation of androgen receptor, lipogenesis, and oxidative
stress converged by SREBP-1 is responsible for regulating growth
and progression of prostate cancer cells. Mol Cancer Res.
10:133–142. 2012.
|
57
|
Hsieh PF, Jiang WP, Basavaraj P, Huang SY,
Ruangsai P, Wu JB, Huang GJ and Huang WC: Cell suspension culture
extract of Eriobotrya japonica attenuates growth and induces
apoptosis in prostate cancer cells via targeting
SREBP-1/FASN-driven metabolism and AR. Phytomedicine.
93:1538062021.
|
58
|
Kanagasabai T, Li G, Shen TH, Gladoun N,
Castillo-Martin M, Celada SI, Xie Y, Brown LK, Mark ZA, Ochieng J,
et al: MicroRNA-21 deficiency suppresses prostate cancer
progression through downregulation of the IRS1-SREBP-1 signaling
pathway. Cancer Lett. 525:46–54. 2022.
|
59
|
Shangguan X, Ma Z, Yu M, Ding J, Xue W and
Qi J: Squalene epoxidase metabolic dependency is a targetable
vulnerability in castration-resistant prostate cancer. Cancer Res.
82:3032–3044. 2022.
|
60
|
Krycer JR, Phan L and Brown AJ: A key
regulator of cholesterol homoeostasis, SREBP-2, can be targeted in
prostate cancer cells with natural products. Biochem J.
446:191–201. 2012.
|
61
|
Storch J and Corsico B: The emerging
functions and mechanisms of mammalian fatty acid-binding proteins.
Annu Rev Nutr. 28:73–95. 2008.
|
62
|
Li B, Hao J, Zeng J and Sauter ER:
SnapShot: FABP functions. Cell. 182:1066–1066.e1. 2020.
|
63
|
Cher ML, Bova GS, Moore DH, Small EJ,
Carroll PR, Pin SS, Epstein JI, Isaacs WB and Jensen RH: Genetic
alterations in untreated metastases and androgen-independent
prostate cancer detected by comparative genomic hybridization and
allelotyping. Cancer Res. 56:3091–3102. 1996.
|
64
|
Taylor BS, Schultz N, Hieronymus H,
Gopalan A, Xiao Y, Carver BS, Arora VK, Kaushik P, Cerami E, Reva
B, et al: Integrative genomic profiling of human prostate cancer.
Cancer Cell. 18:11–22. 2010.
|
65
|
Yang PB, Hou PP, Liu FY, Hong WB, Chen HZ,
Sun XY, Li P, Zhang Y, Ju CY, Luo LJ, et al: Blocking PPARγ
interaction facilitates Nur77 interdiction of fatty acid uptake and
suppresses breast cancer progression. Proc Natl Acad Sci USA.
117:27412–27422. 2020.
|
66
|
Liu RZ and Godbout R: An amplified fatty
acid-binding protein gene cluster in prostate cancer: Emerging
roles in lipid metabolism and metastasis. Cancers (Basel).
12:38232020.
|
67
|
Guo Y, Liu Y, Zhao S, Xu W, Li Y, Zhao P,
Wang D, Cheng H, Ke Y and Zhang X: Oxidative stress-induced FABP5
S-glutathionylation protects against acute lung injury by
suppressing inflammation in macrophages. Nat Commun.
12:70942021.
|
68
|
Montaigne D, Butruille L and Staels B:
PPAR control of metabolism and cardiovascular functions. Nat Rev
Cardiol. 18:809–823. 2021.
|
69
|
Aguilar-Recarte D, Barroso E, Gumà A,
Pizarro-Delgado J, Peña L, Ruart M, Palomer X, Wahli W and
Vázquez-Carrera M: GDF15 mediates the metabolic effects of PPARβ/δ
by activating AMPK. Cell Rep. 36:1095012021.
|
70
|
Ahmad I, Mui E, Galbraith L, Patel R, Tan
EH, Salji M, Rust AG, Repiscak P, Hedley A, Markert E, et al:
Sleeping Beauty screen reveals Pparg activation in metastatic
prostate cancer. Proc Natl Acad Sci USA. 113:8290–8295. 2016.
|
71
|
Prentice KJ, Saksi J, Robertson LT, Lee
GY, Inouye KE, Eguchi K, Lee A, Cakici O, Otterbeck E, Cedillo P,
et al: A hormone complex of FABP4 and nucleoside kinases regulates
islet function. Nature. 600:720–726. 2021.
|
72
|
Massillo C, Dalton GN, Porretti J, Scalise
GD, Farré PL, Piccioni F, Secchiari F, Pascuali N, Clyne C, Gardner
K, et al: CTBP1/CYP19A1/estradiol axis together with adipose tissue
impacts over prostate cancer growth associated to metabolic
syndrome. Int J Cancer. 144:1115–1127. 2019.
|
73
|
Harraz AM, Atia N, Ismail A, Shady A, Farg
H, Gabr H, Fouda M, Abol-Enein H and Abdel-Aziz AF: Evaluation of
serum fatty acid binding protein-4 (FABP-4) as a novel biomarker to
predict biopsy outcomes in prostate biopsy naïve patients. Int Urol
Nephrol. 52:1483–1490. 2020.
|
74
|
Carbonetti G, Wilpshaar T, Kroonen J,
Studholme K, Converso C, d'Oelsnitz S and Kaczocha M: FABP5
coordinates lipid signaling that promotes prostate cancer
metastasis. Sci Rep. 9:189442019.
|
75
|
Hou Y, Wei D, Zhang Z, Guo H, Li S, Zhang
J, Zhang P, Zhang L and Zhao Y: FABP5 controls macrophage
alternative activation and allergic asthma by selectively
programming long-chain unsaturated fatty acid metabolism. Cell Rep.
41:1116682022.
|
76
|
Carbonetti G, Converso C, Clement T, Wang
C, Trotman LC, Ojima I and Kaczocha M: Docetaxel/cabazitaxel and
fatty acid binding protein 5 inhibitors produce synergistic
inhibition of prostate cancer growth. Prostate. 80:88–98. 2020.
|
77
|
Adamson J, Morgan EA, Beesley C, Mei Y,
Foster CS, Fujii H, Rudland PS, Smith PH and Ke Y: High-level
expression of cutaneous fatty acid-binding protein in prostatic
carcinomas and its effect on tumorigenicity. Oncogene.
22:2739–2749. 2003.
|
78
|
O'Sullivan SE and Kaczocha M: FABP5 as a
novel molecular target in prostate cancer. Drug Discov Today. Sep
20–2020.Epub ahead of print.
|
79
|
Liu RZ, Choi WS, Jain S, Dinakaran D, Xu
X, Han WH, Yang XH, Glubrecht DD, Moore RB, Lemieux H and Godbout
R: The FABP12/PPARγ pathway promotes metastatic transformation by
inducing epithelial-to-mesenchymal transition and lipid-derived
energy production in prostate cancer cells. Mol Oncol.
14:3100–3120. 2020.
|
80
|
Javed S and Langley SEM: Importance of HOX
genes in normal prostate gland formation, prostate cancer
development and its early detection. BJU Int. 113:535–540.
2014.
|
81
|
Xu F, Shangguan X, Pan J, Yue Z, Shen K,
Ji Y, Zhang W, Zhu Y, Sha J, Wang Y, et al: HOXD13 suppresses
prostate cancer metastasis and BMP4-induced epithelial-mesenchymal
transition by inhibiting SMAD1. Int J Cancer. 148:3060–3070.
2021.
|
82
|
Long Z, Li Y, Gan Y, Zhao D, Wang G, Xie
N, Lovnicki JM, Fazli L, Cao Q, Chen K and Dong X: Roles of the
HOXA10 gene during castrate-resistant prostate cancer progression.
Endocr Relat Cancer. 26:279–292. 2019.
|
83
|
Hatanaka Y, de Velasco MA, Oki T, Shimizu
N, Nozawa M, Yoshimura K, Yoshikawa K, Nishio K and Uemura H:
HOXA10 expression profiling in prostate cancer. Prostate.
79:554–563. 2019.
|
84
|
Carracedo A, Cantley LC and Pandolfi PP:
Cancer metabolism: Fatty acid oxidation in the limelight. Nat Rev
Cancer. 13:227–232. 2013.
|
85
|
Liu Y: Fatty acid oxidation is a dominant
bioenergetic pathway in prostate cancer. Prostate Cancer Prostatic
Dis. 9:230–234. 2006.
|
86
|
Tennakoon JB, Shi Y, Han JJ, Tsouko E,
White MA, Burns AR, Zhang A, Xia X, Ilkayeva OR, Xin L, et al:
Androgens regulate prostate cancer cell growth via an
AMPK-PGC-1α-mediated metabolic switch. Oncogene. 33:5251–5261.
2014.
|
87
|
Bramhecha YM, Guérard KP, Audet-Walsh É,
Rouzbeh S, Kassem O, Pernet E, Scarlata E, Hamel L, Brimo F,
Divangahi M, et al: Fatty acid oxidation enzyme Δ3, Δ2-enoyl-CoA
isomerase 1 (ECI1) drives aggressive tumor phenotype and predicts
poor clinical outcome in prostate cancer patients. Oncogene.
41:2798–2810. 2022.
|
88
|
Bravo-Sagua R, Parra V, López-Crisosto C,
Díaz P, Quest AF and Lavandero S: Calcium transport and signaling
in mitochondria. Compr Physiol. 7:623–634. 2017.
|
89
|
Butler LM, Centenera MM and Swinnen JV:
Androgen control of lipid metabolism in prostate cancer: Novel
insights and future applications. Endocr Relat Cancer.
23:R219–R227. 2016.
|
90
|
Adamopoulos PG, Kontos CK and Scorilas A:
Molecular characterization, genomic structure and expression
analysis of a gene (CATL1/CPT1C) encoding a third member of the
human carnitine acyltransferase family. Genomics. May 22–2019.Epub
ahead of print.
|
91
|
Fondevila MF, Fernandez U, Heras V,
Parracho T, Gonzalez-Rellan MJ, Novoa E, Porteiro B, Alonso C, Mayo
R, da Silva Lima N, et al: Inhibition of carnitine
palmitoyltransferase 1A in hepatic stellate cells protects against
fibrosis. J Hepatol. 77:15–28. 2022.
|
92
|
Joshi M, Stoykova GE, Salzmann-Sullivan M,
Dzieciatkowska M, Liebman LN, Deep G and Schlaepfer IR: CPT1A
supports castration-resistant prostate cancer in androgen-deprived
conditions. Cells. 8:11152019.
|
93
|
Abudurexiti M, Zhu W, Wang Y, Wang J, Xu
W, Huang Y, Zhu Y, Shi G, Zhang H, Zhu Y, et al: Targeting CPT1B as
a potential therapeutic strategy in castration-resistant and
enzalutamide-resistant prostate cancer. Prostate. 80:950–961.
2020.
|
94
|
Simons K and Ikonen E: How cells handle
cholesterol. Science. 290:1721–1726. 2000.
|
95
|
El-Kenawi A, Dominguez-Viqueira W, Liu M,
Awasthi S, Abraham-Miranda J, Keske A, Steiner KK, Noel L, Serna
AN, Dhillon J, et al: Macrophage-derived cholesterol contributes to
therapeutic resistance in prostate cancer. Cancer Res.
81:5477–5490. 2021.
|
96
|
Garcia-Bermudez J, Baudrier L, Bayraktar
EC, Shen Y, La K, Guarecuco R, Yucel B, Fiore D, Tavora B,
Freinkman E, et al: Squalene accumulation in cholesterol
auxotrophic lymphomas prevents oxidative cell death. Nature.
567:118–122. 2019.
|
97
|
Revilla G, Cedó L, Tondo M, Moral A, Pérez
JI, Corcoy R, Lerma E, Fuste V, Reddy ST, Blanco-Vaca F, et al:
LDL, HDL and endocrine-related cancer: From pathogenic mechanisms
to therapies. Semin Cancer Biol. 73:134–157. 2021.
|
98
|
Shen WJ, Azhar S and Kraemer FB: SR-B1: A
unique multifunctional receptor for cholesterol influx and efflux.
Annu Rev Physiol. 80:95–116. 2018.
|
99
|
Leon CG, Locke JA, Adomat HH, Etinger SL,
Twiddy AL, Neumann RD, Nelson CC, Guns ES and Wasan KM: Alterations
in cholesterol regulation contribute to the production of
intratumoral androgens during progression to castration-resistant
prostate cancer in a mouse xenograft model. Prostate. 70:390–400.
2010.
|
100
|
Ediriweera MK: Use of cholesterol
metabolism for anti-cancer strategies. Drug Discov Today. 27:Sep
7–2022.Epub ahead of print.
|
101
|
Hilvo M, Denkert C, Lehtinen L, Müller B,
Brockmöller S, Seppänen-Laakso T, Budczies J, Bucher E, Yetukuri L,
Castillo S, et al: Novel theranostic opportunities offered by
characterization of altered membrane lipid metabolism in breast
cancer progression. Cancer Res. 71:3236–3245. 2011.
|
102
|
Gordon JA, Noble JW, Midha A, Derakhshan
F, Wang G, Adomat HH, Tomlinson Guns ES, Lin YY, Ren S, Collins CC,
et al: Upregulation of scavenger receptor B1 is required for
steroidogenic and nonsteroidogenic cholesterol metabolism in
prostate cancer. Cancer Res. 79:3320–3331. 2019.
|
103
|
Wang B, Rong X, Palladino END, Wang J,
Fogelman AM, Martín MG, Alrefai WA, Ford DA and Tontonoz P:
Phospholipid remodeling and cholesterol availability regulate
intestinal stemness and tumorigenesis. Cell Stem Cell.
22:206–220.e4. 2018.
|
104
|
Pandey M, Cuddihy G, Gordon JA, Cox ME and
Wasan KM: Inhibition of scavenger receptor class B type 1 (SR-B1)
expression and activity as a potential novel target to disrupt
cholesterol availability in castration-resistant prostate cancer.
Pharmaceutics. 13:15092021.
|
105
|
Pommier AJC, Alves G, Viennois E, Bernard
S, Communal Y, Sion B, Marceau G, Damon C, Mouzat K, Caira F, et
al: Liver X receptor activation downregulates AKT survival
signaling in lipid rafts and induces apoptosis of prostate cancer
cells. Oncogene. 29:2712–2723. 2010.
|
106
|
Locke JA, Wasan KM, Nelson CC, Guns ES and
Leon CG: Androgen-mediated cholesterol metabolism in LNCaP and PC-3
cell lines is regulated through two different isoforms of
acyl-coenzyme A: Cholesterol acyltransferase (ACAT). Prostate.
68:20–33. 2008.
|
107
|
Raftopulos NL, Washaya TC, Niederprüm A,
Egert A, Hakeem-Sanni MF, Varney B, Aishah A, Georgieva ML, Olsson
E, Dos Santos DZ, et al: Prostate cancer cell proliferation is
influenced by LDL-cholesterol availability and cholesteryl ester
turnover. Cancer Metab. 10:12022.
|
108
|
Cai C and Balk SP: Intratumoral androgen
biosynthesis in prostate cancer pathogenesis and response to
therapy. Endocr Relat Cancer. 18:R175–R182. 2011.
|
109
|
An T, Zhang X, Li H, Dou L, Huang X, Man
Y, Zhang X, Shen T, Li G, Li J and Tang W: GPR120 facilitates
cholesterol efflux in macrophages through activation of AMPK
signaling pathway. FEBS J. 287:5080–5095. 2020.
|
110
|
Hu YW, Yang JY, Ma X, Chen ZP, Hu YR, Zhao
JY, Li SF, Qiu YR, Lu JB, Wang YC, et al: A
lincRNA-DYNLRB2-2/GPR119/GLP-1R/ABCA1-dependent signal transduction
pathway is essential for the regulation of cholesterol homeostasis.
J Lipid Res. 55:681–697. 2014.
|
111
|
Locke JA, Nelson CC, Adomat HH, Hendy SC,
Gleave ME and Guns ES: Steroidogenesis inhibitors alter but do not
eliminate androgen synthesis mechanisms during progression to
castration-resistance in LNCaP prostate xenografts. J Steroid
Biochem Mol Biol. 115:126–136. 2009.
|
112
|
Stopsack KH, Gerke TA, Sinnott JA, Penney
KL, Tyekucheva S, Sesso HD, Andersson SO, Andrén O, Cerhan JR,
Giovannucci EL, et al: Cholesterol metabolism and prostate cancer
lethality. Cancer Res. 76:4785–4790. 2016.
|
113
|
Dambal S, Alfaqih M, Sanders S, Maravilla
E, Ramirez-Torres A, Galvan GC, Reis-Sobreiro M, Rotinen M, Driver
LM, Behrove MS, et al: 27-Hydroxycholesterol impairs plasma
membrane lipid raft signaling as evidenced by inhibition of
IL6-JAK-STAT3 signaling in prostate cancer cells. Mol Cancer Res.
18:671–684. 2020.
|
114
|
Zhuang L, Lin J, Lu ML, Solomon KR and
Freeman MR: Cholesterol-rich lipid rafts mediate akt-regulated
survival in prostate cancer cells. Cancer Res. 62:2227–2231.
2002.
|
115
|
Freeman MR and Solomon KR: Cholesterol and
prostate cancer. J Cell Biochem. 91:54–69. 2004.
|
116
|
Jiang S, Wang X, Song D, Liu X, Gu Y, Xu
Z, Wang X, Zhang X, Ye Q, Tong Z, et al: Cholesterol induces
epithelial-to-mesenchymal transition of prostate cancer cells by
suppressing degradation of EGFR through APMAP. Cancer Res.
79:3063–3075. 2019.
|
117
|
Waugh MG, Lawson D and Hsuan JJ: Epidermal
growth factor receptor activation is localized within low-buoyant
density, non-caveolar membrane domains. Biochem J. 337:591–597.
1999.
|
118
|
Márquez DC, Chen HW, Curran EM, Welshons
WV and Pietras RJ: Estrogen receptors in membrane lipid rafts and
signal transduction in breast cancer. Mol Cell Endocrinol.
246:91–100. 2006.
|
119
|
Freeman MR, Cinar B and Lu ML: Membrane
rafts as potential sites of nongenomic hormonal signaling in
prostate cancer. Trends Endocrinol Metab. 16:273–279. 2005.
|
120
|
Legembre P, Daburon S, Moreau P, Ichas F,
de Giorgi F, Moreau JF and Taupin JL: Amplification of Fas-mediated
apoptosis in type II cells via microdomain recruitment. Mol Cell
Biol. 25:6811–6820. 2005.
|
121
|
Priolo C, Pyne S, Rose J, Regan ER, Zadra
G, Photopoulos C, Cacciatore S, Schultz D, Scaglia N, McDunn J, et
al: AKT1 and MYC induce distinctive metabolic fingerprints in human
prostate cancer. Cancer Res. 74:7198–7204. 2014.
|
122
|
Dong P, Flores J, Pelton K and Solomon KR:
Prohibitin is a cholesterol-sensitive regulator of cell cycle
transit. J Cell Biochem. 111:1367–1374. 2010.
|
123
|
Lee BH, Taylor MG, Robinet P, Smith JD,
Schweitzer J, Sehayek E, Falzarano SM, Magi-Galluzzi C, Klein EA
and Ting AH: Dysregulation of cholesterol homeostasis in human
prostate cancer through loss of ABCA1. Cancer Res. 73:1211–1218.
2013.
|
124
|
Migita T, Takayama KI, Urano T, Obinata D,
Ikeda K, Soga T, Takahashi S and Inoue S: ACSL3 promotes
intratumoral steroidogenesis in prostate cancer cells. Cancer Sci.
108:2011–2021. 2017.
|
125
|
Locke JA, Guns ES, Lehman ML, Ettinger S,
Zoubeidi A, Lubik A, Margiotti K, Fazli L, Adomat H, Wasan KM, et
al: Arachidonic acid activation of intratumoral steroid synthesis
during prostate cancer progression to castration resistance.
Prostate. 70:239–251. 2010.
|
126
|
Masko EM, Allott EH and Freedland SJ: The
relationship between nutrition and prostate cancer: Is more always
better? Eur Urol. 63:810–820. 2013.
|
127
|
Pardo JC, Ruiz de Porras V, Gil J, Font A,
Puig-Domingo M and Jordà M: Lipid metabolism and epigenetics
crosstalk in prostate cancer. Nutrients. 14:8512022.
|
128
|
Allott EH and Freedland SJ: Words of
wisdom. Re: Impact of circulating cholesterol levels on growth and
intratumoral androgen concentration of prostate tumors. Eur Urol.
63:178–179. 2013.
|
129
|
Zhuang L, Kim J, Adam RM, Solomon KR and
Freeman MR: Cholesterol targeting alters lipid raft composition and
cell survival in prostate cancer cells and xenografts. J Clin
Invest. 115:959–968. 2005.
|
130
|
Platz EA, Till C, Goodman PJ, Parnes HL,
Figg WD, Albanes D, Neuhouser ML, Klein EA, Thompson IM Jr and
Kristal AR: Men with low serum cholesterol have a lower risk of
high-grade prostate cancer in the placebo arm of the prostate
cancer prevention trial. Cancer Epidemiol Biomarkers Prev.
18:2807–2813. 2009.
|
131
|
Magura L, Blanchard R, Hope B, Beal JR,
Schwartz GG and Sahmoun AE: Hypercholesterolemia and prostate
cancer: A hospital-based case-control study. Cancer Causes Control.
19:1259–1266. 2008.
|
132
|
Platz EA, Leitzmann MF, Visvanathan K,
Rimm EB, Stampfer MJ, Willett WC and Giovannucci E: Statin drugs
and risk of advanced prostate cancer. J Natl Cancer Inst.
98:1819–1825. 2006.
|
133
|
Sherwin RW, Wentworth DN, Cutler JA,
Hulley SB, Kuller LH and Stamler J: Serum cholesterol levels and
cancer mortality in 361,662 men screened for the multiple risk
factor intervention trial. JAMA. 257:943–948. 1987.
|
134
|
Ribas V, García-Ruiz C and Fernández-Checa
JC: Mitochondria, cholesterol and cancer cell metabolism. Clin
Transl Med. 5:222016.
|
135
|
Solomon KR and Freeman MR: The complex
interplay between cholesterol and prostate malignancy. Urol Clin
North Am. 38:243–259. 2011.
|
136
|
Komoroski RA, Holder JC, Pappas AA and
Finkbeiner AE: 31P NMR of phospholipid metabolites in prostate
cancer and benign prostatic hyperplasia. Magn Reson Med.
65:911–913. 2011.
|
137
|
Philips BWJ, van Uden MJ, Rietsch SHG,
Orzada S and Scheenen TWJ: A multitransmit external body array
combined with a 1 H and 31 P endorectal coil
to enable a multiparametric and multimetabolic MRI examination of
the prostate at 7T. Med Phys. 46:3893–3905. 2019.
|
138
|
Kwan KH, Burvenich IJG, Centenera MM, Goh
YW, Rigopoulos A, Dehairs J, Swinnen JV, Raj GV, Hoy AJ, Butler LM,
et al: Synthesis and fluorine-18 radiolabeling of a phospholipid as
a PET imaging agent for prostate cancer. Nucl Med Biol. 93:37–45.
2021.
|
139
|
Randall EC, Zadra G, Chetta P, Lopez BGC,
Syamala S, Basu SS, Agar JN, Loda M, Tempany CM, Fennessy FM and
Agar NYR: Molecular characterization of prostate cancer with
associated gleason score using mass spectrometry imaging. Mol
Cancer Res. 17:1155–1165. 2019.
|
140
|
Lin HM, Mahon KL, Weir JM, Mundra PA,
Spielman C, Briscoe K, Gurney H, Mallesara G, Marx G, Stockler MR,
et al: A distinct plasma lipid signature associated with poor
prognosis in castration-resistant prostate cancer. Int J Cancer.
141:2112–2120. 2017.
|
141
|
Patton KT, Chen HM, Joseph L and Yang XJ:
Decreased annexin I expression in prostatic adenocarcinoma and in
high-grade prostatic intraepithelial neoplasia. Histopathology.
47:597–601. 2005.
|
142
|
Beyene DA, Naab TJ, Kanarek NF, Apprey V,
Esnakula A, Khan FA, Blackman MR, Brown CA and Hudson TS:
Differential expression of annexin 2, SPINK1, and Hsp60 predict
progression of prostate cancer through bifurcated WHO Gleason score
categories in African American men. Prostate. 78:801–811. 2018.
|
143
|
Köllermann J, Schlomm T, Bang H, Schwall
GP, von Eichel-Streiber C, Simon R, Schostak M, Huland H, Berg W,
Sauter G, et al: Expression and prognostic relevance of annexin A3
in prostate cancer. Eur Urol. 54:1314–1323. 2008.
|
144
|
Liu S, Li X, Lin Z, Su L, Yan S, Zhao B
and Miao J: SEC-induced activation of ANXA7 GTPase suppresses
prostate cancer metastasis. Cancer Lett. 416:11–23. 2018.
|
145
|
Miyazawa Y, Sekine Y, Kato H, Furuya Y,
Koike H and Suzuki K: Simvastatin up-regulates annexin A10 that can
inhibit the proliferation, migration, and invasion in
androgen-independent human prostate cancer cells. Prostate.
77:337–349. 2017.
|
146
|
Sharma B and Kanwar SS:
Phosphatidylserine: A cancer cell targeting biomarker. Semin Cancer
Biol. 52:17–25. 2018.
|
147
|
Blomme A, Ford CA, Mui E, Patel R, Ntala
C, Jamieson LE, Planque M, McGregor GH, Peixoto P, Hervouet E, et
al: 2,4-dienoyl-CoA reductase regulates lipid homeostasis in
treatment-resistant prostate cancer. Nat Commun. 11:25082020.
|
148
|
Dong Y, Chen Y, Zhu D, Shi K, Ma C, Zhang
W, Rocchi P, Jiang L and Liu X: Self-assembly of amphiphilic
phospholipid peptide dendrimer-based nanovectors for effective
delivery of siRNA therapeutics in prostate cancer therapy. J
Control Release. 322:416–425. 2020.
|
149
|
Ioannidou A, Watts EL, Perez-Cornago A,
Platz EA, Mills IG, Key TJ, Travis RC; PRACTICAL consortium, CRUK,
C3; et al: The relationship between lipoprotein A and other lipids
with prostate cancer risk: A multivariable Mendelian randomisation
study. PLoS Med. 19:e10038592022.
|
150
|
Liu Y, Wang Y, Hao S, Qin Y and Wu Y:
Knockdown of sterol O-acyltransferase 1 (SOAT1) suppresses
SCD1-mediated lipogenesis and cancer procession in prostate cancer.
Prostaglandins Other Lipid Mediat. 153:1065372021.
|
151
|
Freedland SJ, Howard LE, Ngo A,
Ramirez-Torres A, Csizmadi I, Cheng S, Mack A and Lin PH: Low
carbohydrate diets and estimated cardiovascular and metabolic
syndrome risk in prostate cancer. J Urol. 206:1411–1419. 2021.
|
152
|
Henrich SE, McMahon KM, Plebanek MP,
Calvert AE, Feliciano TJ, Parrish S, Tavora F, Mega A, De Souza A,
Carneiro BA and Thaxton CS: Prostate cancer extracellular vesicles
mediate intercellular communication with bone marrow cells and
promote metastasis in a cholesterol-dependent manner. J Extracell
Vesicles. 10:e120422020.
|
153
|
Scheinberg T, Mak B, Butler L, Selth L and
Horvath LG: Targeting lipid metabolism in metastatic prostate
cancer. Ther Adv Med Oncol. 15:175883592311528392023.
|
154
|
Kaulanjan K, Lavigne D, Saad F,
Karakiewicz PI, Flammia RS, Kluth LA, Mandel P, Chun FK, Taussky D
and Hoeh B: Impact of statin use on localized prostate cancer
outcomes after radiation therapy: Long-term follow-up. Cancers
(Basel). 14:36062022.
|
155
|
Chan JM, Litwack-Harrison S, Bauer SR,
Daniels NA, Wilt TJ, Shannon J and Bauer DC: Statin use and risk of
prostate cancer in the prospective osteoporotic fractures in men
(MrOS) study. Cancer Epidemiol Biomarkers Prev. 21:1886–1888.
2012.
|
156
|
Jacobs EJ, Newton CC, Thun MJ and Gapstur
SM: Long-term use of cholesterol-lowering drugs and cancer
incidence in a large United States cohort. Cancer Res.
71:1763–1771. 2011.
|
157
|
Alfaqih MA, Allott EH, Hamilton RJ,
Freeman MR and Freedland SJ: The current evidence on statin use and
prostate cancer prevention: are we there yet? Nat Rev Urol.
14:107–119. 2017.
|
158
|
Kafka M, Gruber R, Neuwirt H, Ladurner M
and Eder IE: Long-term treatment with simvastatin leads to reduced
migration capacity of prostate cancer cells. Biomedicines.
11:292022.
|
159
|
Mak B, Lin HM, Duong T, Mahon KL, Joshua
AM, Stockler MR, Gurney H, Parnis F, Zhang A, Scheinberg T, et al:
Modulation of plasma lipidomic profiles in metastatic
castration-resistant prostate cancer by simvastatin. Cancers
(Basel). 14:47922022.
|
160
|
Joshua AM, Armstrong A, Crumbaker M, Scher
HI, de Bono J, Tombal B, Hussain M, Sternberg CN, Gillessen S,
Carles J, et al: Statin and metformin use and outcomes in patients
with castration-resistant prostate cancer treated with
enzalutamide: A meta-analysis of AFFIRM, PREVAIL and PROSPER. Eur J
Cancer. 170:285–295. 2022.
|
161
|
Allott EH, Arab L, Su LJ, Farnan L,
Fontham ET, Mohler JL, Bensen JT and Steck SE: Saturated fat intake
and prostate cancer aggressiveness: Results from the
population-based North Carolina-Louisiana prostate cancer project.
Prostate Cancer Prostatic Dis. 20:48–54. 2017.
|
162
|
Iannelli F, Roca MS, Lombardi R,
Ciardiello C, Grumetti L, De Rienzo S, Moccia T, Vitagliano C,
Sorice A, Costantini S, et al: Synergistic antitumor interaction of
valproic acid and simvastatin sensitizes prostate cancer to
docetaxel by targeting CSCs compartment via YAP inhibition. J Exp
Clin Cancer Res. 39:2132020.
|
163
|
Peltomaa AI, Raittinen P, Talala K, Taari
K, Tammela TLJ, Auvinen A and Murtola TJ: Prostate cancer prognosis
after initiation of androgen deprivation therapy among statin
users. A population-based cohort study. Prostate Cancer Prostatic
Dis. 24:917–924. 2021.
|
164
|
Butler LM, Mah CY, Machiels J, Vincent AD,
Irani S, Mutuku SM, Spotbeen X, Bagadi M, Waltregny D, Moldovan M,
et al: Lipidomic profiling of clinical prostate cancer reveals
targetable alterations in membrane lipid composition. Cancer Res.
81:4981–4993. 2021.
|
165
|
Rhodes DR, Yu J, Shanker K, Deshpande N,
Varambally R, Ghosh D, Barrette T, Pandey A and Chinnaiyan AM:
ONCOMINE: A cancer microarray database and integrated data-mining
platform. Neoplasia. 6:1–6. 2004.
|