1
|
Dobruch J and Oszczudlowski M: Bladder
cancer: Current challenges and future directions. Medicina
(Kaunas). 57:7492021. View Article : Google Scholar : PubMed/NCBI
|
2
|
Lenis AT, Lec PM, Chamie K and Mshs MD:
Bladder cancer: A review. JAMA. 324:1980–1991. 2020. View Article : Google Scholar : PubMed/NCBI
|
3
|
Siracusano S, Rizzetto R and Porcaro AB:
Bladder cancer genomics. Urologia. 87:49–56. 2020. View Article : Google Scholar : PubMed/NCBI
|
4
|
Na L, Wang Z, Bai Y, Sun Y, Dong D, Wang W
and Zhao C: WNT7B represses epithelial-mesenchymal transition and
stem-like properties in bladder urothelial carcinoma. Biochim
Biophys Acta Mol Basis Dis. 1868:1662712022. View Article : Google Scholar
|
5
|
Hollinshead KER, Munford H, Eales KL,
Bardella C, Li C, Escribano-Gonzalez C, Thakker A, Nonnenmacher Y,
Kluckova K, Jeeves M, et al: Oncogenic IDH1 mutations promote
enhanced proline synthesis through PYCR1 to support the maintenance
of mitochondrial redox homeostasis. Cell Rep. 22:3107–3114. 2018.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Westbrook RL, Bridges E, Roberts J,
Escribano-Gonzalez C, Eales KL, Vettore LA, Walker PD,
Vera-Siguenza E, Rana H, Cuozzo F, et al: Proline synthesis through
PYCR1 is required to support cancer cell proliferation and survival
in oxygen-limiting conditions. Cell Rep. 38:1103202022. View Article : Google Scholar : PubMed/NCBI
|
7
|
Du S, Sui Y, Ren W, Zhou J and Du C: PYCR1
promotes bladder cancer by affecting the Akt/Wnt/beta-catenin
signaling. J Bioenerg Biomembr. 53:247–258. 2021. View Article : Google Scholar : PubMed/NCBI
|
8
|
El-Far AH, Al Jaouni SK, Li X and Fu J:
Cancer metabolism control by natural products: Pyruvate kinase M2
targeting therapeutics. Phytother Res. 36:3181–3201. 2022.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Wu Z, Wu J, Zhao Q, Fu S and Jin J:
Emerging roles of aerobic glycolysis in breast cancer. Clin Transl
Oncol. 22:631–646. 2020. View Article : Google Scholar
|
10
|
Hua S, Lei L, Deng L, Weng X, Liu C, Qi X,
Wang S, Zhang D, Zou X, Cao C, et al: miR-139-5p inhibits aerobic
glycolysis, cell proliferation, migration, and invasion in
hepatocellular carcinoma via a reciprocal regulatory interaction
with ETS1. Oncogene. 37:1624–1636. 2018. View Article : Google Scholar : PubMed/NCBI
|
11
|
Ji H, Li D, Chen L, Shimamura T, Kobayashi
S, McNamara K, Mahmood U, Mitchell A, Sun Y, Al-Hashem R, et al:
The impact of human EGFR kinase domain mutations on lung
tumorigenesis and in vivo sensitivity to EGFR-targeted therapies.
Cancer Cell. 9:485–495. 2006. View Article : Google Scholar : PubMed/NCBI
|
12
|
Jamal-Hanjani M, Wilson GA, McGranahan N,
Birkbak NJ, Watkins TBK, Veeriah S, Shafi S, Johnson DH, Mitter R,
Rosenthal R, et al: Tracking the evolution of non-small-cell lung
cancer. N Engl J Med. 376:2109–2121. 2017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Mertins P, Mani DR, Ruggles KV, Gillette
MA, Clauser KR, Wang P, Wang X, Qiao JW, Cao S, Petralia F, et al:
Proteogenomics connects somatic mutations to signalling in breast
cancer. Nature. 534:55–62. 2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Srivatsa S, Paul MC, Cardone C, Holcmann
M, Amberg N, Pathria P, Diamanti MA, Linder M, Timelthaler G,
Dienes HP, et al: EGFR in tumor-associated myeloid cells promotes
development of colorectal cancer in mice and associates with
outcomes of patients. Gastroenterology. 153:178–190 e110. 2017.
View Article : Google Scholar
|
15
|
Sun C, Wang L, Huang S, Heynen GJJE,
Prahallad A, Robert C, Haanen J, Blank C, Wesseling J, Willems SM,
et al: Reversible and adaptive resistance to BRAF(V600E) inhibition
in melanoma. Nature. 508:118–122. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Zhang B, Zhang Y, Jiang X, Su H, Wang Q,
Wudu M, Jiang J, Ren H, Xu Y, Liu Z and Qiu X: JMJD8 promotes
malignant progression of lung cancer by maintaining EGFR stability
and EGFR/PI3K/AKT pathway activation. J Cancer. 12:976–987. 2021.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Lee JH, Liu R, Li J, Wang Y, Tan L, Li XJ,
Qian X, Zhang C, Xia Y, Xu D, et al: EGFR-phosphorylated platelet
isoform of phosphofructokinase 1 promotes PI3K activation. Mol
Cell. 70:197–210 e197. 2018. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhangyuan G, Wang F, Zhang H, Jiang R, Tao
X, Yu D, Jin K, Yu W, Liu Y, Yin Y, et al: VersicanV1 promotes
proliferation and metastasis of hepatocellular carcinoma through
the activation of EGFR-PI3K-AKT pathway. Oncogene. 39:1213–1230.
2020. View Article : Google Scholar
|
19
|
Xiao S, Li S, Yuan Z and Zhou L:
Pyrroline-5-carboxylate reductase 1 (PYCR1) upregulation
contributes to gastric cancer progression and indicates poor
survival outcome. Ann Transl Med. 8:9372020. View Article : Google Scholar : PubMed/NCBI
|
20
|
Jiang X, Fu J, Zhong J, Li X, Wang H,
Zhong S, Wei Y, Zhao X, Chen X, Zhou Y, et al: Guanidinylated
cyclic synthetic polypeptides can effectively deliver siRNA by
mimicking the biofunctions of both cell-penetrating peptides and
nuclear localization signal peptides. ACS Macro Lett. 10:767–773.
2021. View Article : Google Scholar
|
21
|
Gabrielson NP, Lu H, Yin L, Kim KH and
Cheng J: A cell-penetrating helical polymer for siRNA delivery to
mammalian cells. Mol Ther. 20:1599–1609. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Singh A, Trivedi P and Jain NK: Advances
in siRNA delivery in cancer therapy. Artif Cells Nanomed
Biotechnol. 46:274–283. 2018. View Article : Google Scholar
|
23
|
Song Z, Han Z, Lv S, Chen C, Chen L, Yin L
and Cheng J: Synthetic polypeptides: from polymer design to
supramolecular assembly and biomedical application. Chem Soc Rev.
46:6570–6599. 2017. View Article : Google Scholar : PubMed/NCBI
|
24
|
Liao W, Du Y, Zhang C, Pan F, Yao Y, Zhang
T and Peng Q: Exosomes: The next generation of endogenous
nanomaterials for advanced drug delivery and therapy. Acta
Biomater. 86:1–14. 2019. View Article : Google Scholar : PubMed/NCBI
|
25
|
Zhang L and Yu D: Exosomes in cancer
development, metastasis, and immunity. Biochim Biophys Acta Rev
Cancer. 1871:455–468. 2019. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhang Y, Liu Q, Zhang X, Huang H, Tang S,
Chai Y, Xu Z, Li M, Chen X, Liu J, et al: Recent advances in
exosome-mediated nucleic acid delivery for cancer therapy. J
Nanobiotechnology. 20:2792022. View Article : Google Scholar : PubMed/NCBI
|
27
|
National Standard of the P.R.C GB/T
39760-2021 Laboratory animal Guidelines for euthanasia.
|
28
|
Song X, Xue Y, Fan S, Hao J and Deng R:
Lipopolysaccharide-activated macrophages regulate the osteogenic
differentiation of bone marrow mesenchymal stem cells through
exosomes. PeerJ. 10:e134422022. View Article : Google Scholar : PubMed/NCBI
|
29
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
30
|
Hira VVV, de Jong AL, Ferro K, Khurshed M,
Molenaar RJ and Van Noorden CJF: Comparison of different
methodologies and cryostat versus paraffin sections for chromogenic
immunohistochemistry. Acta Histochem. 121:125–134. 2019. View Article : Google Scholar
|
31
|
Cheng C, Song D, Wu Y and Liu B: RAC3
promotes proliferation, migration and invasion via PYCR1/JAK/STAT
signaling in bladder cancer. Front Mol Biosci. 7:2182020.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Liu Z, Sun T, Zhang Z, Bi J and Kong C: An
18-gene signature based on glucose metabolism and DNA methylation
improves prognostic prediction for urinary bladder cancer.
Genomics. 113:896–907. 2021. View Article : Google Scholar
|
33
|
Cao L, Wu J, Qu X, Sheng J, Cui M, Liu S,
Huang X, Xiang Y, Li B, Zhang X and Cui R: Glycometabolic
rearrangements-aerobic glycolysis in pancreatic cancer: Causes,
characteristics and clinical applications. J Exp Clin Cancer Res.
39:2672020. View Article : Google Scholar
|
34
|
Gentric G, Mieulet V and Mechta-Grigoriou
F: Heterogeneity in cancer metabolism: New concepts in an old
field. Antioxid Redox Signal. 26:462–485. 2017. View Article : Google Scholar :
|
35
|
Xu H, Ju L, Xiong Y, Yu M, Zhou F, Qian K,
Wang G, Xiao Y and Wang X: E3 ubiquitin ligase RNF126 affects
bladder cancer progression through regulation of PTEN stability.
Cell Death Dis. 12:2392021. View Article : Google Scholar : PubMed/NCBI
|
36
|
Song W, Yang K, Luo J, Gao Z and Gao Y:
Dysregulation of USP18/FTO/PYCR1 signaling network promotes bladder
cancer development and progression. Aging (Albany NY).
13:3909–3925. 2021. View Article : Google Scholar : PubMed/NCBI
|
37
|
Arrighetti N, Corbo C, Evangelopoulos M,
Pasto A, Zuco V and Tasciotti E: Exosome-like nanovectors for drug
delivery in cancer. Curr Med Chem. 26:6132–6148. 2019. View Article : Google Scholar :
|
38
|
Li Z and Zhou X, Huang J, Xu Z, Xing C,
Yang J and Zhou X: MicroRNA hsa-miR-150-5p inhibits nasopharyngeal
carcinogenesis by suppressing PYCR1 (pyrroline-5-carboxylate
reductase 1). Bioengineered. 12:9766–9778. 2021. View Article : Google Scholar : PubMed/NCBI
|
39
|
Sang S, Zhang C and Shan J:
Pyrroline-5-carboxylate reductase 1 accelerates the migration and
invasion of nonsmall cell lung cancer in vitro. Cancer Biother
Radiopharm. 34:380–387. 2019.PubMed/NCBI
|
40
|
Feng J, Li J, Wu L, Yu Q, Ji J, Wu J, Dai
W and Guo C: Emerging roles and the regulation of aerobic
glycolysis in hepatocellular carcinoma. J Exp Clin Cancer Res.
39:1262020. View Article : Google Scholar : PubMed/NCBI
|
41
|
Hu Q, Qin Y, Ji S, Xu W, Liu W, Sun Q,
Zhang Z, Liu M, Ni Q, Yu X and Xu X: UHRF1 promotes aerobic
glycolysis and proliferation via suppression of SIRT4 in pancreatic
cancer. Cancer Lett. 452:226–236. 2019. View Article : Google Scholar : PubMed/NCBI
|
42
|
de la Cruz-Lopez KG, Castro-Munoz LJ,
Reyes-Hernandez DO, Garcia-Carranca A and Manzo-Merino J: Lactate
in the regulation of tumor microenvironment and therapeutic
approaches. Front Oncol. 9:11432019. View Article : Google Scholar : PubMed/NCBI
|
43
|
Massari F, Ciccarese C, Santoni M,
Iacovelli R, Mazzucchelli R, Piva F, Scarpelli M, Berardi R,
Tortora G, Lopez-Beltran A, et al: Metabolic phenotype of bladder
cancer. Cancer Treat Rev. 45:46–57. 2016. View Article : Google Scholar : PubMed/NCBI
|
44
|
Liu W, Hancock CN, Fischer JW, Harman M
and Phang JM: Proline biosynthesis augments tumor cell growth and
aerobic glycolysis: Involvement of pyridine nucleotides. Sci Rep.
5:172062015. View Article : Google Scholar : PubMed/NCBI
|
45
|
Tejedor G, Contreras-Lopez R, Barthelaix
A, Ruiz M, Noël D, Ceuninck FD, Pastoureau P, Luz-Crawford P,
Jorgensen C and Djouad F: Pyrroline-5-carboxylate reductase 1
directs the cartilage protective and regenerative potential of
murphy roths large mouse mesenchymal stem cells. Front Cell Dev
Biol. 9:6047562021. View Article : Google Scholar : PubMed/NCBI
|
46
|
Wang Y, Wang C, Fu Z, Zhang S and Chen J:
miR-30b-5p inhibits proliferation, invasion, and migration of
papillary thyroid cancer by targeting GALNT7 via the EGFR/PI3K/AKT
pathway. Cancer Cell Int. 21:6182021. View Article : Google Scholar : PubMed/NCBI
|
47
|
Makinoshima H, Takita M, Saruwatari K,
Umemura S, Obata Y, Ishii G, Matsumoto S, Sugiyama E, Ochiai A, Abe
R, et al: Signaling through the phosphatidylinositol 3-kinase
(PI3K)/mammalian target of rapamycin (mTOR) axis is responsible for
aerobic glycolysis mediated by glucose transporter in epidermal
growth factor receptor (EGFR)-mutated lung adenocarcinoma. J Biol
Chem. 290:17495–17504. 2015. View Article : Google Scholar : PubMed/NCBI
|