New developments in the mechanism and application of immune checkpoint inhibitors in cancer therapy (Review)
- Authors:
- Yanjun Wang
- Shuo Yang
- Li Wan
- Wei Ling
- Hao Chen
- Jinghua Wang
-
Affiliations: Department of Urology, Sun Yat‑sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510062, P.R. China, Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China, Department of Endocrinology and Metabolism, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China, Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China - Published online on: June 12, 2023 https://doi.org/10.3892/ijo.2023.5534
- Article Number: 86
-
Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Li K and Tian H: Development of small-molecule immune checkpoint inhibitors of PD-1/PD-L1 as a new therapeutic strategy for tumour immunotherapy. J Drug Target. 27:244–256. 2019. View Article : Google Scholar | |
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
Dunn GP, Bruce AT, Ikeda H, Old LJ and Schreiber RD: Cancer immunoediting: From immunosurveillance to tumor escape. Nat Immunol. 3:991–998. 2002. View Article : Google Scholar : PubMed/NCBI | |
Dillman RO: Cancer immunotherapy. Cancer Biother Radiopharm. 26:1–64. 2011.PubMed/NCBI | |
Stewart TJ and Smyth MJ: Improving cancer immunotherapy by targeting tumor-induced immune suppression. Cancer Metastasis Rev. 30:125–140. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sharma P, Wagner K, Wolchok JD and Allison JP: Novel cancer immunotherapy agents with survival benefit: Recent successes and next steps. Nat Rev Cancer. 11:805–812. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pardoll DM: The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 12:252–264. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sharma P and Allison JP: The future of immune checkpoint therapy. Science. 348:56–61. 2015. View Article : Google Scholar : PubMed/NCBI | |
Topalian SL, Drake CG and Pardoll DM: Immune checkpoint blockade: A common denominator approach to cancer therapy. Cancer Cell. 27:450–461. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hoos A: Development of immuno-oncology drugs-from CTLA4 to PD1 to the next generations. Nat Rev Drug Discov. 15:235–247. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wei SC, Duffy CR and Allison JP: Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 8:1069–1086. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sharma P and Allison JP: Immune checkpoint targeting in cancer therapy: Toward combination strategies with curative potential. Cell. 161:205–214. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sharpe AH: Mechanisms of costimulation. Immunol Rev. 229:5–11. 2009. View Article : Google Scholar : PubMed/NCBI | |
Rudd CE, Taylor A and Schneider H: CD28 and CTLA-4 coreceptor expression and signal transduction. Immunol Rev. 229:12–26. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chen L and Flies DB: Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol. 13:227–242. 2013. View Article : Google Scholar : PubMed/NCBI | |
Brunet JF, Denizot F, Luciani MF, Roux-Dosseto M, Suzan M, Mattei MG and Golstein P: A new member of the immunoglobulin superfamily-CTLA-4. Nature. 328:267–270. 1987. View Article : Google Scholar : PubMed/NCBI | |
Krummel MF and Allison JP: CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med. 182:459–465. 1995. View Article : Google Scholar : PubMed/NCBI | |
Linsley PS, Brady W, Urnes M, Grosmaire LS, Damle NK and Ledbetter JA: CTLA-4 is a second receptor for the B cell activation antigen B7. J Exp Med. 174:561–569. 1991. View Article : Google Scholar : PubMed/NCBI | |
Walunas TL, Lenschow DJ, Bakker CY, Linsley PS, Freeman GJ, Green JM, Thompson CB and Bluestone JA: Pillars article: CTLA-4 can function as a negative regulator of T cell activation. Immunity. 1994. 1: 405-413. J Immunol. 187:3466–3474. 2011.PubMed/NCBI | |
Linsley PS, Greene JL, Brady W, Bajorath J, Ledbetter JA and Peach R: Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity. 1:793–801. 1994. View Article : Google Scholar : PubMed/NCBI | |
Gibson HM, Hedgcock CJ, Aufiero BM, Wilson AJ, Hafner MS, Tsokos GC and Wong HK: Induction of the CTLA-4 gene in human lymphocytes is dependent on NFAT binding the proximal promoter. J Immunol. 179:3831–3840. 2007. View Article : Google Scholar : PubMed/NCBI | |
Waterhouse P, Penninger JM, Timms E, Wakeham A, Shahinian A, Lee KP, Thompson CB, Griesser H and Mak TW: Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science. 270:985–988. 1995. View Article : Google Scholar : PubMed/NCBI | |
Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA and Sharpe AH: Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity. 3:541–547. 1995. View Article : Google Scholar : PubMed/NCBI | |
Read S, Greenwald R, Izcue A, Robinson N, Mandelbrot D, Francisco L, Sharpe AH and Powrie F: Blockade of CTLA-4 on CD4+CD25+ regulatory T cells abrogates their function in vivo. J Immunol. 177:4376–4383. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z, Nomura T and Sakaguchi S: CTLA-4 control over Foxp3+ regulatory T cell function. Science. 322:271–275. 2008. View Article : Google Scholar : PubMed/NCBI | |
Schneider H, Smith X, Liu H, Bismuth G and Rudd CE: CTLA-4 disrupts ZAP70 microcluster formation with reduced T cell/APC dwell times and calcium mobilization. Eur J Immunol. 38:40–47. 2008. View Article : Google Scholar | |
Wang XB, Fan ZZ, Anton D, Vollenhoven AV, Ni ZH, Chen XF and Lefvert AK: CTLA4 is expressed on mature dendritic cells derived from human monocytes and influences their maturation and antigen presentation. BMC Immunol. 12:212011. View Article : Google Scholar : PubMed/NCBI | |
Boasso A, Herbeuval JP, Hardy AW, Winkler C and Shearer GM: Regulation of indoleamine 2,3-dioxygenase and tryptophanyl-tRNA-synthetase by CTLA-4-Fc in human CD4+ T cells. Blood. 105:1574–1581. 2005. View Article : Google Scholar | |
Leach DR, Krummel MF and Allison JP: Enhancement of antitumor immunity by CTLA-4 blockade. Science. 271:1734–1736. 1996. View Article : Google Scholar : PubMed/NCBI | |
Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, et al: Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 363:711–723. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hammers HJ, Plimack ER, Infante JR, Rini BI, McDermott DF, Lewis LD, Voss MH, Sharma P, Pal SK, Razak ARA, et al: Safety and efficacy of nivolumab in combination with ipilimumab in metastatic renal cell carcinoma: The CheckMate 016 study. J Clin Oncol. 35:3851–3858. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kwon ED, Drake CG, Scher HI, Fizazi K, Bossi A, van den Eertwegh AJ, Krainer M, Houede N, Santos R, Mahammedi H, et al: Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): A multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 15:700–712. 2014. View Article : Google Scholar : PubMed/NCBI | |
Le DT, Lutz E, Uram JN, Sugar EA, Onners B, Solt S, Zheng L, Diaz LA Jr, Donehower RC, Jaffee EM and Laheru DA: Evaluation of ipilimumab in combination with allogeneic pancreatic tumor cells transfected with a GM-CSF gene in previously treated pancreatic cancer. J Immunother. 36:382–389. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhao X and Subramanian S: Intrinsic resistance of solid tumors to immune checkpoint blockade therapy. Cancer Res. 77:817–822. 2017. View Article : Google Scholar : PubMed/NCBI | |
Duffy AG, Ulahannan SV, Makorova-Rusher O, Rahma O, Wedemeyer H, Pratt D, Davis JL, Hughes MS, Heller T, ElGindi M, et al: Tremelimumab in combination with ablation in patients with advanced hepatocellular carcinoma. J Hepatol. 66:545–551. 2017. View Article : Google Scholar : | |
Selby MJ, Engelhardt JJ, Quigley M, Henning KA, Chen T, Srinivasan M and Korman AJ: Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells. Cancer Immunol Res. 1:32–42. 2013. View Article : Google Scholar | |
Marangoni F, Zhakyp A, Corsini M, Geels SN, Carrizosa E, Thelen M, Mani V, Prüßmann JN, Warner RD, Ozga AJ, et al: Expansion of tumor-associated Treg cells upon disruption of a CTLA-4-dependent feedback loop. Cell. 184:3998–4015.e19. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ishida Y, Agata Y, Shibahara K and Honjo T: Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 11:3887–3895. 1992. View Article : Google Scholar : PubMed/NCBI | |
Nishimura H, Nose M, Hiai H, Minato N and Honjo T: Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity. 11:141–151. 1999. View Article : Google Scholar : PubMed/NCBI | |
Dong H, Zhu G, Tamada K and Chen L: B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med. 5:1365–1369. 1999. View Article : Google Scholar : PubMed/NCBI | |
Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, Fitz LJ, Malenkovich N, Okazaki T, Byrne MC, et al: Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 192:1027–1034. 2000. View Article : Google Scholar : PubMed/NCBI | |
Agata Y, Kawasaki A, Nishimura H, Ishida Y, Tsubata T, Yagita H and Honjo T: Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol. 8:765–772. 1996. View Article : Google Scholar : PubMed/NCBI | |
Keir ME, Butte MJ, Freeman GJ and Sharpe AH: PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 26:677–704. 2008. View Article : Google Scholar : PubMed/NCBI | |
Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M, Chernova I, Iwai Y, Long AJ, Brown JA, Nunes R, et al: PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol. 2:261–268. 2001. View Article : Google Scholar : PubMed/NCBI | |
Okazaki T and Honjo T: The PD-1-PD-L pathway in immunological tolerance. Trends Immunol. 27:195–201. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zamani MR, Aslani S, Salmaninejad A, Javan MR and Rezaei N: PD-1/PD-L and autoimmunity: A growing relationship. Cell Immunol. 310:27–41. 2016. View Article : Google Scholar : PubMed/NCBI | |
Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, Freeman GJ and Ahmed R: Restoring function in exhausted CD8 T cells during chronic viral infection. Nature. 439:682–687. 2006. View Article : Google Scholar | |
Pauken KE and Wherry EJ: Overcoming T cell exhaustion in infection and cancer. Trends Immunol. 36:265–276. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ahmadzadeh M, Johnson LA, Heemskerk B, Wunderlich JR, Dudley ME, White DE and Rosenberg SA: Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood. 114:1537–1544. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yaghoubi N, Soltani A, Ghazvini K, Hassanian SM and Hashemy SI: PD-1/PD-L1 blockade as a novel treatment for colorectal cancer. Biomed Pharmacother. 110:312–318. 2019. View Article : Google Scholar | |
Patsoukis N, Wang Q, Strauss L and Boussiotis VA: Revisiting the PD-1 pathway. Sci Adv. 6:eabd27122020. View Article : Google Scholar : PubMed/NCBI | |
Sharpe AH, Wherry EJ, Ahmed R and Freeman GJ: The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat Immunol. 8:239–245. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhong X, Tumang JR, Gao W, Bai C and Rothstein TL: PD-L2 expression extends beyond dendritic cells/macrophages to B1 cells enriched for V(H)11/V(H)12 and phosphatidylcholine binding. Eur J Immunol. 37:2405–2410. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sharpe AH and Pauken KE: The diverse functions of the PD1 inhibitory pathway. Nat Rev Immunol. 18:153–167. 2018. View Article : Google Scholar | |
Ribas A and Hu-Lieskovan S: What does PD-L1 positive or negative mean? J Exp Med. 213:2835–2840. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, Roche PC, Lu J, Zhu G, Tamada K, et al: Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion. Nat Med. 8:793–800. 2002. View Article : Google Scholar : PubMed/NCBI | |
Brown JA, Dorfman DM, Ma FR, Sullivan EL, Munoz O, Wood CR, Greenfield EA and Freeman GJ: Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production. J Immunol. 170:1257–1266. 2003. View Article : Google Scholar : PubMed/NCBI | |
Konishi J, Yamazaki K, Azuma M, Kinoshita I, Dosaka-Akita H and Nishimura M: B7-H1 expression on non-small cell lung cancer cells and its relationship with tumor-infiltrating lymphocytes and their PD-1 expression. Clin Cancer Res. 10:5094–5100. 2004. View Article : Google Scholar : PubMed/NCBI | |
Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharfman WH, Stankevich E, Pons A, Salay TM, McMiller TL, et al: Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: Safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 28:3167–3175. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gettinger S, Rizvi NA, Chow LQ, Borghaei H, Brahmer J, Ready N, Gerber DE, Shepherd FA, Antonia S, Goldman JW, et al: Nivolumab monotherapy for first-line treatment of advanced non-small-cell lung cancer. J Clin Oncol. 34:2980–2987. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rizvi NA, Mazières J, Planchard D, Stinchcombe TE, Dy GK, Antonia SJ, Horn L, Lena H, Minenza E, Mennecier B, et al: Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): A phase 2, single-arm trial. Lancet Oncol. 16:257–265. 2015. View Article : Google Scholar : PubMed/NCBI | |
Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, Tykodi SS, Sosman JA, Procopio G, Plimack ER, et al: Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 373:1803–1813. 2015. View Article : Google Scholar : PubMed/NCBI | |
Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, et al: Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 366:2443–2454. 2012. View Article : Google Scholar : PubMed/NCBI | |
Robert C, Ribas A, Wolchok JD, Hodi FS, Hamid O, Kefford R, Weber JS, Joshua AM, Hwu WJ, Gangadhar TC, et al: Anti-p rogrammed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: A randomised dose-comparison cohort of a phase 1 trial. Lancet. 384:1109–1117. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ribas A, Puzanov I, Dummer R, Schadendorf D, Hamid O, Robert C, Hodi FS, Schachter J, Pavlick AC, Lewis KD, et al: Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): A randomised, controlled, phase 2 trial. Lancet Oncol. 16:908–918. 2015. View Article : Google Scholar : PubMed/NCBI | |
Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, Patnaik A, Aggarwal C, Gubens M, Horn L, et al: Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 372:2018–2028. 2015. View Article : Google Scholar : PubMed/NCBI | |
Patnaik A, Kang SP, Rasco D, Papadopoulos KP, Elassaiss-Schaap J, Beeram M, Drengler R, Chen C, Smith L, Espino G, et al: Phase I study of pembrolizumab (MK-3475; anti-PD-1 monoclonal antibody) in patients with advanced solid tumors. Clin Cancer Res. 21:4286–4293. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rihawi K, Gelsomino F, Sperandi F, Melotti B, Fiorentino M, Casolari L and Ardizzoni A: Pembrolizumab in the treatment of metastatic non-small cell lung cancer: A review of current evidence. Ther Adv Respir Dis. 11:353–373. 2017. View Article : Google Scholar : PubMed/NCBI | |
Suzman DL, Agrawal S, Ning YM, Maher VE, Fernandes LL, Karuri S, Tang S, Sridhara R, Schroeder J, Goldberg KB, et al: FDA approval summary: Atezolizumab or pembrolizumab for the treatment of patients with advanced urothelial carcinoma ineligible for cisplatin-containing chemotherapy. Oncologist. 24:563–569. 2019. View Article : Google Scholar | |
U.S. Food and Drug: FDA approves first treatment for advanced form of the second most common skin cancer. https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-advanced-form-second-most-common-skin-cancer-0. Accessed January 20, 2023 | |
Rosenberg JE, Hoffman-Censits J, Powles T, van der Heijden MS, Balar AV, Necchi A, Dawson N, O'Donnell PH, Balmanoukian A, Loriot Y, et al: Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: A single-arm, multicentre, phase 2 trial. Lancet. 387:1909–1920. 2016. View Article : Google Scholar : PubMed/NCBI | |
Peters S, Gettinger S, Johnson ML, Jänne PA, Garassino MC, Christoph D, Toh CK, Rizvi NA, Chaft JE, Carcereny Costa E, et al: Phase II trial of atezolizumab as first-line or subsequent therapy for patients with programmed death-ligand 1-selected advanced non-small-cell lung cancer (BIRCH). J Clin Oncol. 35:2781–2789. 2017. View Article : Google Scholar : PubMed/NCBI | |
Balar AV, Galsky MD, Rosenberg JE, Powles T, Petrylak DP, Bellmunt J, Loriot Y, Necchi A, Hoffman-Censits J, Perez-Gracia JL, et al: Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: A single-arm, multicentre, phase 2 trial. Lancet. 389:67–76. 2017. View Article : Google Scholar | |
Petrylak DP, Powles T, Bellmunt J, Braiteh F, Loriot Y, Morales-Barrera R, Burris HA, Kim JW, Ding B, Kaiser C, et al: Atezolizumab (MPDL3280A) monotherapy for patients with metastatic urothelial cancer: Long-term outcomes from a phase 1 study. JAMA Oncol. 4:537–544. 2018. View Article : Google Scholar : PubMed/NCBI | |
Socinski MA, Jotte RM, Cappuzzo F, Orlandi F, Stroyakovskiy D, Nogami N, Rodriguez-Abreu D, Moro-Sibilot D, Thomas CA, Barlesi F, et al: Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med. 378:2288–2301. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hamilton G and Rath B: Avelumab: Combining immune checkpoint inhibition and antibody-dependent cytotoxicity. Expert Opin Biol Ther. 17:515–523. 2017. View Article : Google Scholar : PubMed/NCBI | |
Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, Yokoi T, Chiappori A, Lee KH, de Wit M, et al: Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N Engl J Med. 377:1919–1929. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sunshine J and Taube JM: PD-1/PD-L1 inhibitors. Curr Opin Pharmacol. 23:32–38. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gay CL, Bosch RJ, Ritz J, Hataye JM, Aga E, Tressler RL, Mason SW, Hwang CK, Grasela DM, Ray N, et al: Clinical trial of the anti-PD-L1 antibody BMS-936559 in HIV-1 infected participants on suppressive antiretroviral therapy. J Infect Dis. 215:1725–1733. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S, Berent-Maoz B, Pang J, Chmielowski B, Cherry G, et al: Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell. 165:35–44. 2016. View Article : Google Scholar : PubMed/NCBI | |
Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, Skora AD, Luber BS, Azad NS, Laheru D, et al: PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 372:2509–2520. 2015. View Article : Google Scholar : PubMed/NCBI | |
Workman CJ and Vignali DAA: Negative regulation of T cell homeostasis by lymphocyte activation gene-3 (CD223). J Immunol. 174:688–695. 2005. View Article : Google Scholar : PubMed/NCBI | |
Goldberg MV and Drake CG: LAG-3 in cancer immunotherapy. Curr Top Microbiol Immunol. 344:269–278. 2011. | |
Anderson AC, Joller N and Kuchroo VK: Lag-3, Tim-3, and TIGIT: Co-inhibitory receptors with specialized functions in immune regulation. Immunity. 44:989–1004. 2016. View Article : Google Scholar : PubMed/NCBI | |
Demeure CE, Wolfers J, Martin-Garcia N, Gaulard P and Triebel F: T Lymphocytes infiltrating various tumour types express the MHC class II ligand lymphocyte activation gene-3 (LAG-3): Role of LAG-3/MHC class II interactions in cell-cell contacts. Eur J Cancer. 37:1709–1718. 2001. View Article : Google Scholar : PubMed/NCBI | |
Gandhi MK, Lambley E, Duraiswamy J, Dua U, Smith C, Elliott S, Gill D, Marlton P, Seymour J and Khanna R: Expression of LAG-3 by tumor-infiltrating lymphocytes is coincident with the suppression of latent membrane antigen-specific CD8+ T-cell function in Hodgkin lymphoma patients. Blood. 108:2280–2289. 2006. View Article : Google Scholar : PubMed/NCBI | |
Matsuzaki J, Gnjatic S, Mhawech-Fauceglia P, Beck A, Miller A, Tsuji T, Eppolito C, Qian F, Lele S, Shrikant P, et al: Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer. Proc Natl Acad Sci USA. 107:7875–7880. 2010. View Article : Google Scholar : PubMed/NCBI | |
Li FJ, Zhang Y, Jin GX, Yao L and Wu DQ: Expression of LAG-3 is coincident with the impaired effector function of HBV-specific CD8(+) T cell in HCC patients. Immunol Lett. 150:116–122. 2013. View Article : Google Scholar | |
Andrews LP, Marciscano AE, Drake CG and Vignali DA: LAG3 (CD223) as a cancer immunotherapy target. Immunol Rev. 276:80–96. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ruffo E, Wu RC, Bruno TC, Workman CJ and Vignali DAA: Lymphocyte-activation gene 3 (LAG3): The next immune checkpoint receptor. Semin Immunol. 42:1013052019. View Article : Google Scholar : PubMed/NCBI | |
Gleason MK, Lenvik TR, McCullar V, Felices M, O'Brien MS, Cooley SA, Verneris MR, Cichocki F, Holman CJ, Panoskaltsis-Mortari A, et al: Tim-3 is an inducible human natural killer cell receptor that enhances interferon gamma production in response to galectin-9. Blood. 119:3064–3072. 2012. View Article : Google Scholar : PubMed/NCBI | |
Anderson AC: Tim-3, a negative regulator of anti-tumor immunity. Curr Opin Immunol. 24:213–216. 2012. View Article : Google Scholar : PubMed/NCBI | |
Nakayama M, Akiba H, Takeda K, Kojima Y, Hashiguchi M, Azuma M, Yagita H and Okumura K: Tim-3 mediates phagocytosis of apoptotic cells and cross-presentation. Blood. 113:3821–3830. 2009. View Article : Google Scholar : PubMed/NCBI | |
Tang D and Lotze MT: Tumor immunity times out: TIM-3 and HMGB1. Nat Immunol. 13:808–810. 2012. View Article : Google Scholar : PubMed/NCBI | |
Huang YH, Zhu C, Kondo Y, Anderson AC, Gandhi A, Russell A, Dougan SK, Petersen BS, Melum E, Pertel T, et al: CEACAM1 regulates TIM-3-mediated tolerance and exhaustion. Nature. 517:386–390. 2015. View Article : Google Scholar | |
Fourcade J, Sun Z, Benallaoua M, Guillaume P, Luescher IF, Sander C, Kirkwood JM, Kuchroo V and Zarour HM: Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J Exp Med. 207:2175–2186. 2010. View Article : Google Scholar : PubMed/NCBI | |
Li H, Wu K, Tao K, Chen L, Zheng Q, Lu X, Liu J, Shi L, Liu C, Wang G and Zou W: Tim-3/galectin-9 signaling pathway mediates T-cell dysfunction and predicts poor prognosis in patients with hepatitis B virus-associated hepatocellular carcinoma. Hepatology. 56:1342–1351. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yang ZZ, Grote DM, Ziesmer SC, Niki T, Hirashima M, Novak AJ, Witzig TE and Ansell SM: IL-12 upregulates TIM-3 expression and induces T cell exhaustion in patients with follicular B cell non-Hodgkin lymphoma. J Clin Invest. 122:1271–1282. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gao X, Zhu Y, Li G, Huang H, Zhang G, Wang F, Sun J, Yang Q, Zhang X and Lu B: TIM-3 expression characterizes regulatory T cells in tumor tissues and is associated with lung cancer progression. PLoS One. 7:e306762012. View Article : Google Scholar : PubMed/NCBI | |
Markwick LJ, Riva A, Ryan JM, Cooksley H, Palma E, Tranah TH, Manakkat Vijay GK, Vergis N, Thursz M, Evans A, et al: Blockade of PD1 and TIM3 restores innate and adaptive immunity in patients with acute alcoholic hepatitis. Gastroenterology. 148:590–602 e10. 2015. View Article : Google Scholar | |
Stanietsky N, Simic H, Arapovic J, Toporik A, Levy O, Novik A, Levine Z, Beiman M, Dassa L, Achdout H, et al: The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity. Proc Natl Acad Sci USA. 106:17858–17863. 2009. View Article : Google Scholar : PubMed/NCBI | |
Levin SD, Taft DW, Brandt CS, Bucher C, Howard ED, Chadwick EM, Johnston J, Hammond A, Bontadelli K, Ardourel D, et al: Vstm3 is a member of the CD28 family and an important modulator of T-cell function. Eur J Immunol. 41:902–915. 2011. View Article : Google Scholar : PubMed/NCBI | |
Boles KS, Vermi W, Facchetti F, Fuchs A, Wilson TJ, Diacovo TG, Cella M and Colonna M: A novel molecular interaction for the adhesion of follicular CD4 T cells to follicular DC. Eur J Immunol. 39:695–703. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kurtulus S, Sakuishi K, Ngiow SF, Joller N, Tan DJ, Teng MW, Smyth MJ, Kuchroo VK and Anderson AC: TIGIT predominantly regulates the immune response via regulatory T cells. J Clin Invest. 125:4053–4062. 2015. View Article : Google Scholar : PubMed/NCBI | |
Manieri NA, Chiang EY and Grogan JL: TIGIT: A Key inhibitor of the cancer immunity cycle. Trends Immunol. 38:20–28. 2017. View Article : Google Scholar | |
U.S. National Library of Medicine: Zimberelimab (AB122) With TIGIT Inhibitor Domvanalimab (AB154) in PD-1 Relapsed/Refractory Melanoma. https://clinicaltrials.gov/ct2/show/NCT05130177?term=NCT05130177&draw=2&rank=1. Accessed January 20, 2023 | |
U.S. National Library of Medicine: COM902 (A TIGIT Inhibitor) in Subjects With Advanced Malignancies. https://clinicaltrials.gov/ct2/show/NCT04354246?term=NCT04354246&draw=2&rank=1. Accessed January 20, 2023 | |
U.S. National Library of Medicine: Study to Assess the Safety and Efficacy of AZD2936 in Participants With Advanced or Metastatic Non-small Cell Lung Cancer (ARTEMIDE-01). https://clinicaltrials.gov/ct2/show/NCT04995523?term=NCT04995523&draw=2&rank=1. Accessed January 20, 2023 | |
Watanabe N, Gavrieli M, Sedy JR, Yang J, Fallarino F, Loftin SK, Hurchla MA, Zimmerman N, Sim J, Zang X, et al: BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. Nat Immunol. 4:670–679. 2003. View Article : Google Scholar : PubMed/NCBI | |
Karakatsanis S, Bertsias G, Roussou P and Boumpas D: Programmed death 1 and B and T lymphocyte attenuator immunoreceptors and their association with malignant T-lymphoproliferative disorders: Brief review. Hematol Oncol. 32:113–119. 2014. View Article : Google Scholar | |
Pasero C and Olive D: Interfering with coinhibitory molecules: BTLA/HVEM as new targets to enhance anti-tumor immunity. Immunol Lett. 151:71–75. 2013. View Article : Google Scholar : PubMed/NCBI | |
M'Hidi H, Thibult ML, Chetaille B, Rey F, Bouadallah R, Nicollas R, Olive D and Xerri L: High expression of the inhibitory receptor BTLA in T-follicular helper cells and in B-cell small lymphocytic lymphoma/chronic lymphocytic leukemia. Am J Clin Pathol. 132:589–596. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hosseinkhani N, Derakhshani A, Shadbad MA, Argentiero A, Racanelli V, Kazemi T, Mokhtarzadeh A, Brunetti O, Silvestris N and Baradaran B: The role of V-domain Ig suppressor of T cell activation (VISTA) in cancer therapy: Lessons learned and the road ahead. Front Immunol. 12:6761812021. View Article : Google Scholar : PubMed/NCBI | |
U.S. National Library of Medicine: A Study of CA-170 (Oral PD-L1 PD-L2 and VISTA Checkpoint Antagonist) in Patients With Advanced Tumors and Lymphomas. https://clinicaltrials.gov/ct2/show/NCT02812875?term=NCT02812875&draw=2&rank=1. Accessed January 20, 2023 | |
U.S. National Library of Medicine: A Study of Safety Pharmacokinetics, Pharmacodynamics of JNJ-61610588 in Participants With Advanced Cancer. https://clinicaltrials.gov/ct2/show/NCT02671955?term=NCT02671955&draw=2&rank=1. Accessed January 20, 2023 | |
U.S. National Library of Medicine: Phase 1 Study of CI-8993 Anti-VISTA Antibody in Patients With Advanced Solid Tumor Malignancies. https://clinicaltrials.gov/ct2/show/NCT04475523?term=NCT04475523&draw=2&rank=1. Accessed January 20, 2023 | |
Motzer RJ, Rini BI, McDermott DF, Redman BG, Kuzel TM, Harrison MR, Vaishampayan UN, Drabkin HA, George S, Logan TF, et al: Nivolumab for metastatic renal cell carcinoma: Results of a randomized phase II trial. J Clin Oncol. 33:1430–1437. 2015. View Article : Google Scholar | |
Gettinger SN, Horn L, Gandhi L, Spigel DR, Antonia SJ, Rizvi NA, Powderly JD, Heist RS, Carvajal RD, Jackman DM, et al: Overall survival and long-term safety of nivolumab (anti-programmed death 1 antibody, BMS-936558, ONO-4538) in patients with previously treated advanced non-small-cell lung cancer. J Clin Oncol. 33:2004–2012. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, Kefford R, Wolchok JD, Hersey P, Joseph RW, Weber JS, et al: Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 369:134–144. 2013. View Article : Google Scholar : PubMed/NCBI | |
McDermott DF, Sosman JA, Sznol M, Massard C, Gordon MS, Hamid O, Powderly JD, Infante JR, Fassò M, Wang YV, et al: Atezolizumab, an anti-programmed death-ligand 1 antibody, in metastatic renal cell carcinoma: Long-term safety, clinical activity, and immune correlates from a phase Ia study. J Clin Oncol. 34:833–842. 2016. View Article : Google Scholar : PubMed/NCBI | |
Augustin RC, Delgoffe GM and Najjar YG: Characteristics of the tumor microenvironment that influence immune cell functions: Hypoxia, oxidative stress, metabolic alterations. Cancers (Basel). 12:38022020. View Article : Google Scholar : PubMed/NCBI | |
Wang DR, Wu XL and Sun YL: Therapeutic targets and biomarkers of tumor immunotherapy: Response versus non-response. Signal Transduct Target Ther. 7:3312022. View Article : Google Scholar : PubMed/NCBI | |
Doroshow DB, Bhalla S, Beasley MB, Sholl LM, Kerr KM, Gnjatic S, Wistuba II, Rimm DL, Tsao MS and Hirsch FR: PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat Rev Clin Oncol. 18:345–362. 2021. View Article : Google Scholar : PubMed/NCBI | |
Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, Sosman JA, McDermott DF, Powderly JD, Gettinger SN, et al: Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 515:563–567. 2014. View Article : Google Scholar : PubMed/NCBI | |
Herbst RS, Baas P, Kim DW, Felip E, Pérez-Gracia JL, Han JY, Molina J, Kim JH, Arvis CD, Ahn MJ, et al: Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet. 387:1540–1550. 2016. View Article : Google Scholar | |
Zou W, Wolchok JD and Chen L: PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations. Sci Transl Med. 8:328rv42016. View Article : Google Scholar : PubMed/NCBI | |
Patel SP and Kurzrock R: PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol Cancer Ther. 14:847–856. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mahoney KM and Atkins MB: Prognostic and predictive markers for the new immunotherapies. Oncology (Williston Park). 28(Suppl 3): S39–S48. 2014. | |
Kim J, Myers AC, Chen L, Pardoll DM, Truong-Tran QA, Lane AP, McDyer JF, Fortuno L and Schleimer RP: Constitutive and inducible expression of b7 family of ligands by human airway epithelial cells. Am J Respir Cell Mol Biol. 33:280–289. 2005. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Jiang CC, Jin L and Zhang XD: Regulation of PD-L1: A novel role of pro-survival signalling in cancer. Ann Oncol. 27:409–416. 2016. View Article : Google Scholar | |
Meng X, Huang Z, Teng F, Xing L and Yu J: Predictive biomarkers in PD-1/PD-L1 checkpoint blockade immunotherapy. Cancer Treat Rev. 41:868–876. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mansfield AS, Murphy SJ, Peikert T, Yi ES, Vasmatzis G, Wigle DA and Aubry MC: Heterogeneity of programmed cell death ligand 1 expression in multifocal lung cancer. Clin Cancer Res. 22:2177–2182. 2016. View Article : Google Scholar | |
Topalian SL, Taube JM, Anders RA and Pardoll DM: Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer. 16:275–287. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lee V, Murphy A, Le DT and Diaz LA Jr: Mismatch repair deficiency and response to immune checkpoint blockade. Oncologist. 21:1200–1211. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lynch HT, Jascur T, Lanspa S and Boland CR: Making sense of missense in Lynch syndrome: The clinical perspective. Cancer Prev Res (Phila). 3:1371–1374. 2010. View Article : Google Scholar : PubMed/NCBI | |
Boland CR and Goel A: Microsatellite instability in colorectal cancer. Gastroenterology. 138:2073–2087.e3. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ratner D and Lennerz JK: Implementing keytruda/pembrolizumab testing in clinical practice. Oncologist. 23:647–649. 2018. View Article : Google Scholar : PubMed/NCBI | |
Schwitalle Y, Kloor M, Eiermann S, Linnebacher M, Kienle P, Knaebel HP, Tariverdian M, Benner A and von Knebel Doeberitz M: Immune response against frameshift-induced neopeptides in HNPCC patients and healthy HNPCC mutation carriers. Gastroenterology. 134:988–997. 2008. View Article : Google Scholar : PubMed/NCBI | |
Drescher KM, Sharma P, Watson P, Gatalica Z, Thibodeau SN and Lynch HT: Lymphocyte recruitment into the tumor site is altered in patients with MSI-H colon cancer. Fam Cancer. 8:231–239. 2009. View Article : Google Scholar : PubMed/NCBI | |
Llosa NJ, Cruise M, Tam A, Wicks EC, Hechenbleikner EM, Taube JM, Blosser RL, Fan H, Wang H, Luber BS, et al: The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov. 5:43–51. 2015. View Article : Google Scholar : | |
Goel G and Sun W: Advances in the management of gastrointestinal cancers-an upcoming role of immune checkpoint blockade. J Hematol Oncol. 8:862015. View Article : Google Scholar | |
Mouw KW, Goldberg MS, Konstantinopoulos PA and D'Andrea AD: DNA damage and repair biomarkers of immunotherapy response. Cancer Discov. 7:675–693. 2017. View Article : Google Scholar : PubMed/NCBI | |
Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, Bignell GR, Bolli N, Borg A, Børresen-Dale AL, et al: Signatures of mutational processes in human cancer. Nature. 500:415–421. 2013. View Article : Google Scholar : PubMed/NCBI | |
Schumacher TN and Schreiber RD: Neoantigens in cancer immunotherapy. Science. 348:69–74. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gubin MM, Zhang X, Schuster H, Caron E, Ward JP, Noguchi T, Ivanova Y, Hundal J, Arthur CD, Krebber WJ, et al: Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature. 515:577–581. 2014. View Article : Google Scholar : PubMed/NCBI | |
Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, Walsh LA, Postow MA, Wong P, Ho TS, et al: Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med. 371:2189–2199. 2014. View Article : Google Scholar : PubMed/NCBI | |
Van Allen EM, Miao D, Schilling B, Shukla SA, Blank C, Zimmer L, Sucker A, Hillen U, Foppen MHG, Goldinger SM, et al: Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science. 350:207–211. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS, et al: Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 348:124–128. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hellmann MD, Callahan MK, Awad MM, Calvo E, Ascierto PA, Atmaca A, Rizvi NA, Hirsch FR, Selvaggi G, Szustakowski JD, et al: Tumor mutational burden and efficacy of nivolumab monotherapy and in combination with ipilimumab in small-cell lung cancer. Cancer Cell. 33:853–861.e4. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hellmann MD, Ciuleanu TE, Pluzanski A, Lee JS, Otterson GA, Audigier-Valette C, Minenza E, Linardou H, Burgers S, Salman P, et al: Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N Engl J Med. 378:2093–2104. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chalmers ZR, Connelly CF, Fabrizio D, Gay L, Ali SM, Ennis R, Schrock A, Campbell B, Shlien A, Chmielecki J, et al: Analysis of 100,000 human c'ancer genomes reveals the landscape of tumor mutational burden. Genome Med. 9:342017. View Article : Google Scholar | |
Yarchoan M, Hopkins A and Jaffee EM: Tumor mutational burden and response rate to PD-1 inhibition. N Engl J Med. 377:2500–2501. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, Carter SL, Stewart C, Mermel CH, Roberts SA, et al: Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. 499:214–218. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pardoll D: Cancer and the immune system: Basic concepts and targets for intervention. Semin Oncol. 42:523–538. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu V, et al: PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 515:568–571. 2014. View Article : Google Scholar : PubMed/NCBI | |
Adams S, Gray RJ, Demaria S, Goldstein L, Perez EA, Shulman LN, Martino S, Wang M, Jones VE, Saphner TJ, et al: Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. J Clin Oncol. 32:2959–2966. 2014. View Article : Google Scholar : PubMed/NCBI | |
Salgado R, Denkert C, Campbell C, Savas P, Nuciforo P, Aura C, de Azambuja E, Eidtmann H, Ellis CE, Baselga J, et al: Tumor-infiltrating lymphocytes and associations with pathological complete response and event-free survival in HER2-positive early-stage breast cancer treated with lapatinib and trastuzumab: a secondary analysis of the NeoALTTO trial. JAMA Oncol. 1:448–454. 2015. View Article : Google Scholar : PubMed/NCBI | |
Basile D, Pelizzari G, Vitale MG, Lisanti C, Cinausero M, Iacono D and Puglisi F: Atezolizumab for the treatment of breast cancer. Expert Opin Biol Ther. 18:595–603. 2018. View Article : Google Scholar : PubMed/NCBI | |
Denkert C, von Minckwitz G, Darb-Esfahani S, Lederer B, Heppner BI, Weber KE, Budczies J, Huober J, Klauschen F, Furlanetto J, et al: Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: A pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol. 19:40–50. 2018. View Article : Google Scholar | |
Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pagès C, Tosolini M, Camus M, Berger A, Wind P, et al: Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 313:1960–1964. 2006. View Article : Google Scholar : PubMed/NCBI | |
Pagès F, Mlecnik B, Marliot F, Bindea G, Ou FS, Bifulco C, Lugli A, Zlobec I, Rau TT, Berger MD, et al: International validation of the consensus immunoscore for the classification of colon cancer: A prognostic and accuracy study. Lancet. 391:2128–2139. 2018. View Article : Google Scholar : PubMed/NCBI | |
Khalili JS, Liu S, Rodríguez-Cruz TG, Whittington M, Wardell S, Liu C, Zhang M, Cooper ZA, Frederick DT, Li Y, et al: Oncogenic BRAF(V600E) promotes stromal cell-mediated immunosuppression via induction of interleukin-1 in melanoma. Clin Cancer Res. 18:5329–5340. 2012. View Article : Google Scholar : PubMed/NCBI | |
Frederick DT, Piris A, Cogdill AP, Cooper ZA, Lezcano C, Ferrone CR, Mitra D, Boni A, Newton LP, Liu C, et al: BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clin Cancer Res. 19:1225–1231. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wolchok JD, Chiarion-Sileni V, Gonzalez R, Rutkowski P, Grob JJ, Cowey CL, Lao CD, Wagstaff J, Schadendorf D, Ferrucci PF, et al: Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 377:1345–1356. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gao J, Shi LZ, Zhao H, Chen J, Xiong L, He Q, Chen T, Roszik J, Bernatchez C, Woodman SE, et al: Loss of IFN-γ pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell. 167:397–404.e9. 2016. View Article : Google Scholar | |
Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W, Hu-Lieskovan S, Torrejon DY, Abril-Rodriguez G, Sandoval S, Barthly L, et al: Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med. 375:819–829. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shin DS, Zaretsky JM, Escuin-Ordinas H, Garcia-Diaz A, Hu-Lieskovan S, Kalbasi A, Grasso CS, Hugo W, Sandoval S, Torrejon DY, et al: Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov. 7:188–201. 2017. View Article : Google Scholar : | |
Riaz N, Havel JJ, Kendall SM, Makarov V, Walsh LA, Desrichard A, Weinhold N and Chan TA: Recurrent SERPINB3 and SERPINB4 mutations in patients who respond to anti-CTLA4 immunotherapy. Nat Genet. 48:1327–1329. 2016. View Article : Google Scholar : PubMed/NCBI | |
Peng W, Chen JQ, Liu C, Malu S, Creasy C, Tetzlaff MT, Xu C, McKenzie JA, Zhang C, Liang X, et al: Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discov. 6:202–216. 2016. View Article : Google Scholar : | |
George S, Miao D, Demetri GD, Adeegbe D, Rodig SJ, Shukla S, Lipschitz M, Amin-Mansour A, Raut CP, Carter SL, et al: Loss of PTEN is associated with resistance to Anti-PD-1 checkpoint blockade therapy in metastatic uterine leiomyosarcoma. Immunity. 46:197–204. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dong ZY, Zhong WZ, Zhang XC, Su J, Xie Z, Liu SY, Tu HY, Chen HJ, Sun YL, Zhou Q, et al: Potential predictive value of TP53 and KRAS mutation status for response to PD-1 blockade immunotherapy in lung adenocarcinoma. Clin Cancer Res. 23:3012–3024. 2017. View Article : Google Scholar : PubMed/NCBI | |
Skoulidis F, Goldberg ME, Greenawalt DM, Hellmann MD, Awad MM, Gainor JF, Schrock AB, Hartmaier RJ, Trabucco SE, Gay L, et al: STK11/LKB1 mutations and PD-1 inhibitor resistance in KRAS-mutant lung adenocarcinoma. Cancer Discov. 8:822–835. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lisberg A, Cummings A, Goldman JW, Bornazyan K, Reese N, Wang T, Coluzzi P, Ledezma B, Mendenhall M, Hunt J, et al: A phase II study of pembrolizumab in EGFR-mutant, PD-L1+, tyrosine kinase inhibitor Naïve patients with advanced NSCLC. J Thorac Oncol. 13:1138–1145. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cancer Genome Atlas Research Network: Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 499:43–49. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kapur P, Peña-Llopis S, Christie A, Zhrebker L, Pavía-Jiménez A, Rathmell WK, Xie XJ and Brugarolas J: Effects on survival of BAP1 and PBRM1 mutations in sporadic clear-cell renal-cell carcinoma: A retrospective analysis with independent validation. Lancet Oncol. 14:159–167. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pawłowski R, Mühl SM, Sulser T, Krek W, Moch H and Schraml P: Loss of PBRM1 expression is associated with renal cell carcinoma progression. Int J Cancer. 132:E11–E17. 2013. View Article : Google Scholar | |
Nam SJ, Lee C, Park JH and Moon KC: Decreased PBRM1 expression predicts unfavorable prognosis in patients with clear cell renal cell carcinoma. Urol Oncol. 33:340.e9–e16. 2015. View Article : Google Scholar : PubMed/NCBI | |
Miao D, Margolis CA, Gao W, Voss MH, Li W, Martini DJ, Norton C, Bossé D, Wankowicz SM, Cullen D, et al: Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma. Science. 359:801–806. 2018. View Article : Google Scholar : PubMed/NCBI | |
Manguso RT, Pope HW, Zimmer MD, Brown FD, Yates KB, Miller BC, Collins NB, Bi K, LaFleur MW, Juneja VR, et al: In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature. 547:413–418. 2017. View Article : Google Scholar : PubMed/NCBI | |
Patel SJ, Sanjana NE, Kishton RJ, Eidizadeh A, Vodnala SK, Cam M, Gartner JJ, Jia L, Steinberg SM, Yamamoto TN, et al: Identification of essential genes for cancer immunotherapy. Nature. 548:537–542. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pan D, Kobayashi A, Jiang P, Ferrari de Andrade L, Tay RE, Luoma AM, Tsoucas D, Qiu X, Lim K, Rao P, et al: A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing. Science. 359:770–775. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shukla SA, Rooney MS, Rajasagi M, Tiao G, Dixon PM, Lawrence MS, Stevens J, Lane WJ, Dellagatta JL, Steelman S, et al: Comprehensive analysis of cancer-associated somatic mutations in class I HLA genes. Nat Biotechnol. 33:1152–1158. 2015. View Article : Google Scholar : PubMed/NCBI | |
McGranahan N, Rosenthal R, Hiley CT, Rowan AJ, Watkins TBK, Wilson GA, Birkbak NJ, Veeriah S, Van Loo P, Herrero J, et al: Allele-specific HLA loss and immune escape in lung cancer evolution. Cell. 171:1259–1271.e11. 2017. View Article : Google Scholar : PubMed/NCBI | |
Rodig SJ, Gusenleitner D, Jackson DG, Gjini E, Giobbie-Hurder A, Jin C, Chang H, Lovitch SB, Horak C, Weber JS, et al: MHC proteins confer differential sensitivity to CTLA-4 and PD-1 blockade in untreated metastatic melanoma. Sci Transl Med. 10:eaar33422018. View Article : Google Scholar : PubMed/NCBI | |
Chowell D, Morris LGT, Grigg CM, Weber JK, Samstein RM, Makarov V, Kuo F, Kendall SM, Requena D, Riaz N, et al: Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science. 359:582–587. 2018. View Article : Google Scholar : | |
Simeone E, Gentilcore G, Giannarelli D, Grimaldi AM, Caracò C, Curvietto M, Esposito A, Paone M, Palla M, Cavalcanti E, et al: Immunological and biological changes during ipilimumab treatment and their potential correlation with clinical response and survival in patients with advanced melanoma. Cancer Immunol Immunother. 63:675–683. 2014. View Article : Google Scholar : PubMed/NCBI | |
Martens A, Wistuba-Hamprecht K, Geukes Foppen M, Yuan J, Postow MA, Wong P, Romano E, Khammari A, Dreno B, Capone M, et al: Baseline peripheral blood biomarkers associated with clinical outcome of advanced melanoma patients treated with ipilimumab. Clin Cancer Res. 22:2908–2918. 2016. View Article : Google Scholar : PubMed/NCBI | |
Martens A, Wistuba-Hamprecht K, Yuan J, Postow MA, Wong P, Capone M, Madonna G, Khammari A, Schilling B, Sucker A, et al: Increases in absolute lymphocytes and circulating CD4+ and CD8+ T cells are associated with positive clinical outcome of melanoma patients treated with ipilimumab. Clin Cancer Res. 22:4848–4858. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wistuba-Hamprecht K, Martens A, Heubach F, Romano E, Geukes Foppen M, Yuan J, Postow M, Wong P, Mallardo D, Schilling B, et al: Peripheral CD8 effector-memory type 1 T-cells correlate with outcome in ipilimumab-treated stage IV melanoma patients. Eur J Cancer. 73:61–70. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kuzman JA, Stenehjem DD, Merriman J, Agarwal AM, Patel SB, Hahn AW, Alex A, Albertson D, Gill DM and Agarwal N: Neutrophil-lymphocyte ratio as a predictive biomarker for response to high dose interleukin-2 in patients with renal cell carcinoma. BMC Urol. 17:12017. View Article : Google Scholar : PubMed/NCBI | |
Weide B, Martens A, Hassel JC, Berking C, Postow MA, Bisschop K, Simeone E, Mangana J, Schilling B, Di Giacomo AM, et al: Baseline biomarkers for outcome of melanoma patients treated with pembrolizumab. Clin Cancer Res. 22:5487–5496. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dall'Olio FG, Gelsomino F, Conci N, Marcolin L, De Giglio A, Grilli G, Sperandi F, Fontana F, Terracciano M, Fragomeno B, et al: PD-L1 expression in circulating tumor cells as a promising prognostic biomarker in advanced non-small-cell lung cancer treated with immune checkpoint inhibitors. Clin Lung Cancer. 22:423–431. 2021. View Article : Google Scholar : PubMed/NCBI | |
Krieg C, Nowicka M, Guglietta S, Schindler S, Hartmann FJ, Weber LM, Dummer R, Robinson MD, Levesque MP and Becher B: High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy. Nat Med. 24:144–153. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yuan J, Zhou J, Dong Z, Tandon S, Kuk D, Panageas KS, Wong P, Wu X, Naidoo J, Page DB, et al: Pretreatment serum VEGF is associated with clinical response and overall survival in advanced melanoma patients treated with ipilimumab. Cancer Immunol Res. 2:127–132. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zang J, Hu Y, Xu X, Ni J, Yan D, Liu S, He J, Xue J, Wu J and Feng J: Elevated serum levels of vascular endothelial growth factor predict a poor prognosis of platinum-based chemotherapy in non-small cell lung cancer. Onco Targets Ther. 10:409–415. 2017. View Article : Google Scholar : PubMed/NCBI | |
Powles T, Eder JP, Fine GD, Braiteh FS, Loriot Y, Cruz C, Bellmunt J, Burris HA, Petrylak DP, Teng SL, et al: MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature. 515:558–562. 2014. View Article : Google Scholar : PubMed/NCBI | |
Schalper KA, Carleton M, Zhou M, Chen T, Feng Y, Huang SP, Walsh AM, Baxi V, Pandya D, Baradet T, et al: Elevated serum interleukin-8 is associated with enhanced intratumor neutrophils and reduced clinical benefit of immune-checkpoint inhibitors. Nat Med. 26:688–692. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen G, Huang AC, Zhang W, Zhang G, Wu M, Xu W, Yu Z, Yang J, Wang B, Sun H, et al: Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature. 560:382–386. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Li CW, Chan LC, Wei Y, Hsu JM, Xia W, Cha JH, Hou J, Hsu JL, Sun L and Hung MC: Exosomal PD-L1 harbors active defense function to suppress T cell killing of breast cancer cells and promote tumor growth. Cell Res. 28:862–864. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tucci M, Passarelli A, Mannavola F, Stucci LS, Ascierto PA, Capone M, Madonna G, Lopalco P and Silvestris F: Serum exosomes as predictors of clinical response to ipilimumab in metastatic melanoma. Oncoimmunology. 7:e13877062017. View Article : Google Scholar | |
Garrett WS: Cancer and the microbiota. Science. 348:80–86. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zitvogel L, Ayyoub M, Routy B and Kroemer G: Microbiome and anticancer immunosurveillance. Cell. 165:276–287. 2016. View Article : Google Scholar : PubMed/NCBI | |
Vétizou M, Pitt JM, Daillère R, Lepage P, Waldschmitt N, Flament C, Rusakiewicz S, Routy B, Roberti MP, Duong CP, et al: Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 350:1079–1084. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, Benyamin FW, Lei YM, Jabri B, Alegre ML, et al: Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 350:1084–1089. 2015. View Article : Google Scholar : PubMed/NCBI | |
Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillère R, Fluckiger A, Messaoudene M, Rauber C, Roberti MP, et al: Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 359:91–97. 2018. View Article : Google Scholar | |
Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, Prieto PA, Vicente D, Hoffman K, Wei SC, et al: Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 359:97–103. 2018. View Article : Google Scholar | |
Matson V, Fessler J, Bao R, Chongsuwat T, Zha Y, Alegre ML, Luke JJ and Gajewski TF: The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science. 359:104–108. 2018. View Article : Google Scholar : PubMed/NCBI | |
Arora S, Velichinskii R, Lesh RW, Ali U, Kubiak M, Bansal P, Borghaei H, Edelman MJ and Boumber Y: Existing and emerging biomarkers for immune checkpoint immunotherapy in solid tumors. Adv Ther. 36:2638–2678. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sucker A, Zhao F, Real B, Heeke C, Bielefeld N, Maβen S, Horn S, Moll I, Maltaner R, Horn PA, et al: Genetic evolution of T-cell resistance in the course of melanoma progression. Clin Cancer Res. 20:6593–6604. 2014. View Article : Google Scholar : PubMed/NCBI | |
Rooney MS, Shukla SA, Wu CJ, Getz G and Hacohen N: Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell. 160:48–61. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sade-Feldman M, Jiao YJ, Chen JH, Rooney MS, Barzily-Rokni M, Eliane JP, Bjorgaard SL, Hammond MR, Vitzthum H, Blackmon SM, et al: Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat Commun. 8:11362017. View Article : Google Scholar : PubMed/NCBI | |
Gettinger S, Choi J, Hastings K, Truini A, Datar I, Sowell R, Wurtz A, Dong W, Cai G, Melnick MA, et al: Impaired HLA class I antigen processing and presentation as a mechanism of acquired resistance to immune checkpoint inhibitors in lung cancer. Cancer Discov. 7:1420–1435. 2017. View Article : Google Scholar : PubMed/NCBI | |
Benci JL, Xu B, Qiu Y, Wu TJ, Dada H, Twyman-Saint Victor C, Cucolo L, Lee DSM, Pauken KE, Huang AC, et al: Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade. Cell. 167:1540–1554.e12. 2016. View Article : Google Scholar : PubMed/NCBI | |
Spranger S, Bao R and Gajewski TF: Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature. 523:231–235. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang B, Tian T, Kalland KH, Ke X and Qu Y: Targeting Wnt/β-catenin signaling for cancer immunotherapy. Trends Pharmacol Sci. 39:648–658. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cancer Genome Atlas Network: Genomic classification of cutaneous melanoma. Cell. 161:1681–1696. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sumimoto H, Imabayashi F, Iwata T and Kawakami Y: The BRAF-MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. J Exp Med. 203:1651–1656. 2006. View Article : Google Scholar : PubMed/NCBI | |
Koyama S, Akbay EA, Li YY, Herter-Sprie GS, Buczkowski KA, Richards WG, Gandhi L, Redig AJ, Rodig SJ, Asahina H, et al: Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun. 7:105012016. View Article : Google Scholar : PubMed/NCBI | |
Gao J, Ward JF, Pettaway CA, Shi LZ, Subudhi SK, Vence LM, Zhao H, Chen J, Chen H, Efstathiou E, et al: VISTA is an inhibitory immune checkpoint that is increased after ipilimumab therapy in patients with prostate cancer. Nat Med. 23:551–555. 2017. View Article : Google Scholar : PubMed/NCBI | |
Saleh R and Elkord E: Acquired resistance to cancer immunotherapy: Role of tumor-mediated immunosuppression. Semin Cancer Biol. 65:13–27. 2020. View Article : Google Scholar | |
Brabletz T, Kalluri R, Nieto MA and Weinberg RA: EMT in cancer. Nat Rev Cancer. 18:128–134. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Saci A, Szabo PM, Chasalow SD, Castillo-Martin M, Domingo-Domenech J, Siefker-Radtke A, Sharma P, Sfakianos JP, Gong Y, et al: EMT- and stroma-related gene expression and resistance to PD-1 blockade in urothelial cancer. Nat Commun. 9:35032018. View Article : Google Scholar : PubMed/NCBI | |
Terry S, Savagner P, Ortiz-Cuaran S, Mahjoubi L, Saintigny P, Thiery JP and Chouaib S: New insights into the role of EMT in tumor immune escape. Mol Oncol. 11:824–846. 2017. View Article : Google Scholar : PubMed/NCBI | |
Arce Vargas F, Furness AJS, Solomon I, Joshi K, Mekkaoui L, Lesko MH, Miranda Rota E, Dahan R, Georgiou A, Sledzinska A, et al: Fc-optimized anti-CD25 depletes tumor-infiltrating regulatory T cells and synergizes with PD-1 blockade to eradicate established tumors. Immunity. 46:577–586. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shitara K and Nishikawa H: Regulatory T cells: A potential target in cancer immunotherapy. Ann N Y Acad Sci. 1417:104–115. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gebhardt C, Sevko A, Jiang H, Lichtenberger R, Reith M, Tarnanidis K, Holland-Letz T, Umansky L, Beckhove P, Sucker A, et al: Myeloid cells and related chronic inflammatory factors as novel predictive markers in melanoma treatment with ipilimumab. Clin Cancer Res. 21:5453–5459. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ruffell B and Coussens LM: Macrophages and therapeutic resistance in cancer. Cancer Cell. 27:462–472. 2015. View Article : Google Scholar : PubMed/NCBI | |
Arlauckas SP, Garris CS, Kohler RH, Kitaoka M, Cuccarese MF, Yang KS, Miller MA, Carlson JC, Freeman GJ, Anthony RM, et al: In vivo imaging reveals a tumor-associated macrophage-mediated resistance pathway in anti-PD-1 therapy. Sci Transl Med. 9:eaal36042017. View Article : Google Scholar : PubMed/NCBI | |
Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, Kadel EE III, Koeppen H, Astarita JL, Cubas R, et al: TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature. 554:544–548. 2018. View Article : Google Scholar : PubMed/NCBI | |
Highfill SL, Cui Y, Giles AJ, Smith JP, Zhang H, Morse E, Kaplan RN and Mackall CL: Disruption of CXCR2-mediated MDSC tumor trafficking enhances anti-PD1 efficacy. Sci Transl Med. 6:237ra672014. View Article : Google Scholar : PubMed/NCBI | |
Holmgaard RB, Zamarin D, Munn DH, Wolchok JD and Allison JP: Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA-4. J Exp Med. 210:1389–1402. 2013. View Article : Google Scholar : PubMed/NCBI | |
Holmgaard RB, Zamarin D, Li Y, Gasmi B, Munn DH, Allison JP, Merghoub T and Wolchok JD: Tumor-expressed IDO recruits and activates MDSCs in a treg-dependent manner. Cell Rep. 13:412–424. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sharma P, Hu-Lieskovan S, Wargo JA and Ribas A: Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell. 168:707–723. 2017. View Article : Google Scholar : PubMed/NCBI | |
O'Donnell JS, Hoefsmit EP, Smyth MJ, Blank CU and Teng MWL: The promise of neoadjuvant immunotherapy and surgery for cancer treatment. Clin Cancer Res. 25:5743–5751. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Blake SJ, Yong MC, Harjunpää H, Ngiow SF, Takeda K, Young A, O'Donnell JS, Allen S, Smyth MJ and Teng MW: Improved efficacy of neoadjuvant compared to adjuvant immunotherapy to eradicate metastatic disease. Cancer Discov. 6:1382–1399. 2016. View Article : Google Scholar : PubMed/NCBI | |
Amaria RN, Reddy SM, Tawbi HA, Davies MA, Ross MI, Glitza IC, Cormier JN, Lewis C, Hwu WJ, Hanna E, et al: Neoadjuvant immune checkpoint blockade in high-risk resectable melanoma. Nat Med. 24:1649–1654. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu SY, Dong S, Liao RQ, Jiang B, Zhang JT, Lin JT, Zhang S, Yang J, Nie Q, Yang X, et al: LBA2 phase II study of PD-L1 expression guidance on neoadjuvant (NA) Nivolumab (Nivo) monotherapy with or without platinum-doublet chemotherapy in resectable NSCLC. ESMO. 16(Suppl 1): S103632022. | |
Hannani D, Sistigu A, Kepp O, Galluzzi L, Kroemer G and Zitvogel L: Prerequisites for the antitumor vaccine-like effect of chemotherapy and radiotherapy. Cancer J. 17:351–358. 2011. View Article : Google Scholar : PubMed/NCBI | |
Teng F, Kong L, Meng X, Yang J and Yu J: Radiotherapy combined with immune checkpoint blockade immunotherapy: Achievements and challenges. Cancer Lett. 365:23–29. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ngiow SF, McArthur GA and Smyth MJ: Radiotherapy complements immune checkpoint blockade. Cancer Cell. 27:437–438. 2015. View Article : Google Scholar : PubMed/NCBI | |
Twyman-Saint Victor C, Rech AJ, Maity A, Rengan R, Pauken KE, Stelekati E, Benci JL, Xu B, Dada H, Odorizzi PM, et al: Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature. 520:373–377. 2015. View Article : Google Scholar : PubMed/NCBI | |
Langer CJ, Gadgeel SM, Borghaei H, Papadimitrakopoulou VA, Patnaik A, Powell SF, Gentzler RD, Martins RG, Stevenson JP, Jalal SI, et al: Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: A randomised, phase 2 cohort of the open-label KEYNOTE-021 study. Lancet Oncol. 17:1497–1508. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Wang J, Zhang X, Yu S, Wen D, Hu Q, Ye Y, Bomba H, Hu X, Liu Z, et al: In situ formed reactive oxygen species-responsive scaffold with gemcitabine and checkpoint inhibitor for combination therapy. Sci Transl Med. 10:eaan36822018. View Article : Google Scholar : PubMed/NCBI | |
Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, Schadendorf D, Dummer R, Smylie M, Rutkowski P, et al: Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 373:23–34. 2015. View Article : Google Scholar : PubMed/NCBI | |
Redmond WL, Linch SN and Kasiewicz MJ: Combined targeting of costimulatory (OX40) and coinhibitory (CTLA-4) pathways elicits potent effector T cells capable of driving robust antitumor immunity. Cancer Immunol Res. 2:142–153. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mayes PA, Hance KW and Hoos A: The promise and challenges of immune agonist antibody development in cancer. Nat Rev Drug Discov. 17:509–527. 2018. View Article : Google Scholar : PubMed/NCBI | |
Popovic A, Jaffee EM and Zaidi N: Emerging strategies for combination checkpoint modulators in cancer immunotherapy. J Clin Invest. 128:3209–3218. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kuai R, Ochyl LJ, Bahjat KS, Schwendeman A and Moon JJ: Designer vaccine nanodiscs for personalized cancer immunotherapy. Nat Mater. 16:489–496. 2017. View Article : Google Scholar : | |
Madan RA, Mohebtash M, Arlen PM, Vergati M, Rauckhorst M, Steinberg SM, Tsang KY, Poole DJ, Parnes HL, Wright JJ, et al: Ipilimumab and a poxviral vaccine targeting prostate-specific antigen in metastatic castration-resistant prostate cancer: A phase 1 dose-escalation trial. Lancet Oncol. 13:501–508. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chesney J, Puzanov I, Collichio F, Singh P, Milhem MM, Glaspy J, Hamid O, Ross M, Friedlander P, Garbe C, et al: Randomized, open-label phase II study evaluating the efficacy and safety of talimogene laherparepvec in combination with ipilimumab versus ipilimumab alone in patients with advanced, unresectable melanoma. J Clin Oncol. 36:1658–1667. 2018. View Article : Google Scholar : | |
Liu X, Ranganathan R, Jiang S, Fang C, Sun J, Kim S, Newick K, Lo A, June CH, Zhao Y and Moon EK: A chimeric switch-receptor targeting PD1 augments the efficacy of second-generation CAR T cells in advanced solid tumors. Cancer Res. 76:1578–1590. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gay F, D'Agostino M, Giaccone L, Genuardi M, Festuccia M, Boccadoro M and Bruno B: Immuno-oncologic approaches: CAR-T cells and checkpoint inhibitors. Clin Lymphoma Myeloma Leuk. 17:471–478. 2017. View Article : Google Scholar : PubMed/NCBI | |
De Henau O, Rausch M, Winkler D, Campesato LF, Liu C, Cymerman DH, Budhu S, Ghosh A, Pink M, Tchaicha J, et al: Overcoming resistance to checkpoint blockade therapy by targeting PI3Kγ in myeloid cells. Nature. 539:443–447. 2016. View Article : Google Scholar : PubMed/NCBI | |
Abdel-Wahab N, Shah M and Suarez-Almazor ME: Adverse events associated with immune checkpoint blockade in patients with cancer: A systematic review of case reports. PLoS One. 11:e01602212016. View Article : Google Scholar : PubMed/NCBI | |
Palmieri DJ and Carlino MS: Immune checkpoint inhibitor toxicity. Curr Oncol Rep. 20:722018. View Article : Google Scholar : PubMed/NCBI | |
Boutros C, Tarhini A, Routier E, Lambotte O, Ladurie FL, Carbonnel F, Izzeddine H, Marabelle A, Champiat S, Berdelou A, et al: Safety profiles of anti-CTLA-4 and anti-PD-1 antibodies alone and in combination. Nat Rev Clin Oncol. 13:473–486. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cousin S, Seneschal J and Italiano A: Toxicity profiles of immunotherapy. Pharmacol Ther. 181:91–100. 2018. View Article : Google Scholar | |
Sznol M, Ferrucci PF, Hogg D, Atkins MB, Wolter P, Guidoboni M, Lebbé C, Kirkwood JM, Schachter J, Daniels GA, et al: Pooled analysis safety profile of nivolumab and ipilimumab combination therapy in patients with advanced melanoma. J Clin Oncol. 35:3815–3822. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kottschade LA: Incidence and management of immune-related adverse events in patients undergoing treatment with immune checkpoint inhibitors. Curr Oncol Rep. 20:242018. View Article : Google Scholar : PubMed/NCBI | |
Martins F, Sofiya L, Sykiotis GP, Lamine F, Maillard M, Fraga M, Shabafrouz K, Ribi C, Cairoli A, Guex-Crosier Y, et al: Adverse effects of immune-checkpoint inhibitors: Epidemiology, management and surveillance. Nat Rev Clin Oncol. 16:563–580. 2019. View Article : Google Scholar : PubMed/NCBI | |
Haanen JBAG, Carbonnel F, Robert C, Kerr KM, Peters S, Larkin J and Jordan K; ESMO Guidelines Committee: Management of toxicities from immunotherapy: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 28(Suppl 4): iv119–iv142. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sullivan RJ and Weber JS: Immune-related toxicities of checkpoint inhibitors: Mechanisms and mitigation strategies. Nat Rev Drug Discov. 21:495–508. 2022. View Article : Google Scholar |