1
|
Louis DN, Holland EC and Cairncross JG:
Glioma classification: A molecular reappraisal. Am J Pathol.
159:779–786. 2001. View Article : Google Scholar : PubMed/NCBI
|
2
|
Janjua TI, Rewatkar P, Ahmed-Cox A, Saeed
I, Mansfeld FM, Kulshreshtha R, Kumeria T, Ziegler DS, Kavallaris
M, Mazzieri R and Popat A: Frontiers in the treatment of
glioblas-toma: Past, present and emerging. Adv Drug Deliv Rev.
171:108–138. 2021. View Article : Google Scholar : PubMed/NCBI
|
3
|
Bhullar KS, Lagarón NO, McGowan EM, Parmar
I, Jha A, Hubbard BP and Rupasinghe HPV: Kinase-targeted cancer
therapies: Progress, challenges and future directions. Mol Cancer.
17:482018. View Article : Google Scholar : PubMed/NCBI
|
4
|
Shah NP, Tran C, Lee FY, Chen P, Norris D
and Sawyers CL: Overriding imatinib resistance with a novel ABL
kinase inhibitor. Science. 305:399–401. 2004. View Article : Google Scholar : PubMed/NCBI
|
5
|
Lombardo LJ, Lee FY, Chen P, Norris D,
Barrish JC, Behnia K, Castaneda S, Cornelius LA, Das J, Doweyko AM,
et al: Discovery of
N-(2-chloro-6-methyl-phenyl)-2-(6-(4-(2-hydroxyethyl)-piperazin-1-yl)-2-methylpyrimidin-4-ylamino)thiazole-5-carboxamide
(BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor
activity in preclinical assays. J Med Chem. 47:6658–6661. 2004.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Ding Y, Liu H, Zhang C, Bao Z and Yu S:
Polo-like kinases as potential targets and PLK2 as a novel
biomarker for the prognosis of human glioblastoma. Aging (Albany
NY). 14:2320–2334. 2022. View Article : Google Scholar : PubMed/NCBI
|
7
|
Alafate W, Xu D, Wu W, Xiang J, Ma X, Xie
W, Bai X, Wang M and Wang J: Loss of PLK2 induces acquired
resistance to temozolomide in GBM via activation of notch
signaling. J Exp Clin Cancer Res. 39:2392020. View Article : Google Scholar : PubMed/NCBI
|
8
|
Boni J, Rubio-Perez C, López-Bigas N,
Fillat C and de la Luna S: The DYRK family of kinases in cancer:
Molecular functions and therapeutic opportunities. Cancers (Basel).
12:21062020. View Article : Google Scholar : PubMed/NCBI
|
9
|
Li Y, Xie X, Jie Z, Zhu L, Yang JY, Ko CJ,
Gao T, Jain A, Jung SY, Baran N, et al: DYRK1a mediates
BAFF-induced noncanonical NF-κB activation to promote autoimmunity
and B-cell leukemo-genesis. Blood. 138:2360–2371. 2021. View Article : Google Scholar : PubMed/NCBI
|
10
|
Li YL, Zhang MM, Wu LW, Liu YH, Zhang ZY,
Zeng LH, Lin NM and Zhang C: DYRK1A reinforces
epithelial-mesenchymal transition and metastasis of hepatocellular
carcinoma via cooperatively activating STAT3 and SMAD. J Biomed
Sci. 29:342022. View Article : Google Scholar : PubMed/NCBI
|
11
|
Recasens A, Humphrey SJ, Ellis M, Hoque M,
Abbassi RH, Chen B, Longworth M, Needham EJ, James DE, Johns TG, et
al: Global phosphoproteomics reveals DYRK1A regulates CDK1 activity
in glioblastoma cells. Cell Death Discov. 7:812021. View Article : Google Scholar : PubMed/NCBI
|
12
|
Kaltheuner IH, Anand K, Moecking J, Düster
R, Wang J, Gray NS and Geyer M: Abemaciclib is a potent inhibitor
of DYRK1A and HIP kinases involved in transcriptional regulation.
Nat Commun. 12:66072021. View Article : Google Scholar : PubMed/NCBI
|
13
|
Ehe BK, Lamson DR, Tarpley M, Onyenwoke
RU, Graves LM and Williams KP: Identification of a DYRK1A-mediated
phosphorylation site within the nuclear localization sequence of
the hedgehog transcription factor GLI1. Biochem Biophys Res Commun.
491:767–772. 2017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Bhansali RS, Rammohan M, Lee P, Laurent
AP, Wen Q, Suraneni P, Yip BH, Tsai YC, Jenni S, Bornhauser B, et
al: DYRK1A regulates B cell acute lymphoblastic leukemia through
phosphorylation of FOXO1 and STAT3. J Clin Invest. 131:e1359372021.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Choi HK and Chung KC: Dyrk1A positively
stimulates ASK1-JNK signaling pathway during apoptotic cell death.
Exp Neurobiol. 20:35–44. 2011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Madhavan S, Zenklusen JC, Kotliarov Y,
Sahni H, Fine HA and Buetow K: Rembrandt: Helping personalized
medicine become a reality through integrative translational
research. Mol Cancer Res. 7:157–167. 2009. View Article : Google Scholar : PubMed/NCBI
|
17
|
Gravendeel LAM, Kouwenhoven MCM, Gevaert
O, de Rooi JJ, Stubbs AP, Duijm JE, Daemen A, Bleeker FE, Bralten
LB, Kloosterhof NK, et al: Intrinsic gene expression profiles of
gliomas are a better predictor of survival than histology. Cancer
Res. 69:9065–9072. 2009. View Article : Google Scholar : PubMed/NCBI
|
18
|
Sun L, Hui AM, Su Q, Vortmeyer A,
Kotliarov Y, Pastorino S, Passaniti A, Menon J, Walling J, Bailey
R, et al: Neuronal and glioma-derived stem cell factor induces
angiogenesis within the brain. Cancer Cell. 9:287–300. 2006.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Tan S, Spear R, Zhao J, Sun X and Wang P:
Comprehensive characterization of a novel E3-related gene signature
with implications in prognosis and immunotherapy of low-grade
gliomas. Front Genet. 13:9050472022. View Article : Google Scholar : PubMed/NCBI
|
20
|
Alafate W, Li X, Zuo J, Zhang H, Xiang J,
Wu W, Xie W, Bai X, Wang M and Wang J: Elevation of CXCL1 indicates
poor prognosis and radioresistance by inducing mesenchymal
transition in glioblastoma. CNS Neurosci Ther. 26:475–485. 2020.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Liu Q, Tang Y, Chen L, Liu N, Lang F, Liu
H, Wang P and Sun X: E3 ligase SCFβTrCP-induced DYRK1A protein
degradation is essential for cell cycle progression in HEK293
cells. J Biol Chem. 291:26399–26409. 2016. View Article : Google Scholar : PubMed/NCBI
|
22
|
Wang P, Zhao J and Sun X: DYRK1A
phosphorylates MEF2D and decreases its transcriptional activity. J
Cell Mol Med. 25:6082–6093. 2021. View Article : Google Scholar : PubMed/NCBI
|
23
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
24
|
Franken NAP, Rodermond HM, Stap J, Haveman
J and van Bree C: Clonogenic assay of cells in vitro. Nat Protoc.
1:2315–2319. 2006. View Article : Google Scholar
|
25
|
Rozeboom AM and Pak DTS: Identification
and functional characterization of polo-like kinase 2
autoregulatory sites. Neuroscience. 202:147–157. 2012. View Article : Google Scholar
|
26
|
Himpel S, Panzer P, Eirmbter K, Czajkowska
H, Sayed M, Packman LC, Blundell T, Kentrup H, Grötzinger J, Joost
HG and Becker W: Identification of the autophosphorylation sites
and characterization of their effects in the protein kinase DYRK1A.
Biochem J. 359:497–505. 2001. View Article : Google Scholar : PubMed/NCBI
|
27
|
Himpel S, Tegge W, Frank R, Leder S, Joost
HG and Becker W: Specificity determinants of substrate recognition
by the protein kinase DYRK1A. J Biol Chem. 275:2431–2438. 2000.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Ma S, Liu MA, Yuan YLO and Erikson RL: The
serum-inducible protein kinase Snk is a G1 phase polo-like kinase
that is inhibited by the calcium- and integrin-binding protein CIB.
Mol Cancer Res. 1:376–384. 2003.PubMed/NCBI
|
29
|
Göckler N, Jofre G, Papadopoulos C, Soppa
U, Tejedor FJ and Becker W: Harmine specifically inhibits protein
kinase DYRK1A and interferes with neurite formation. FEBS J.
276:6324–6337. 2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Kumar K, Wang P, Sanchez R, Swartz EA,
Stewart AF and DeVita RJ: Development of kinase-selective,
harmine-based DYRK1A inhibitors that induce pancreatic human β-cell
proliferation. J Med Chem. 61:7687–7699. 2018. View Article : Google Scholar : PubMed/NCBI
|
31
|
Mbefo MK, Paleologou KE, Boucharaba A,
Oueslati A, Schell H, Fournier M, Olschewski D, Yin G, Zweckstetter
M, Masliah E, et al: Phosphorylation of synucleins by members of
the polo-like kinase family. J Biol Chem. 285:2807–2822. 2010.
View Article : Google Scholar :
|
32
|
Waxman EA and Giasson BI: Characterization
of kinases involved in the phosphorylation of aggregated
α-synuclein. J Neurosci Res. 89:231–247. 2011. View Article : Google Scholar
|
33
|
Liu H, Sun Q, Chen S, Chen L, Jia W, Zhao
J and Sun X: DYRK1A activates NFATC1 to increase glioblastoma
migration. Cancer Med. 10:6416–6427. 2021. View Article : Google Scholar : PubMed/NCBI
|
34
|
Xia X, Cao F, Yuan X, Zhang Q, Chen W, Yu
Y, Xiao H, Han C and Yao S: Low expression or hypermethylation of
PLK2 might predict favorable prognosis for patients with
glioblastoma multiforme. PeerJ. 7:e79742019. View Article : Google Scholar : PubMed/NCBI
|
35
|
Matthew EM, Yang Z, Peri S, Andrake M,
Dunbrack R, Ross E and El-Deiry WS: Plk2 loss commonly occurs in
colorectal carcinomas but not adenomas: Relationship to mTOR
signaling. Neoplasia. 20:244–255. 2018. View Article : Google Scholar : PubMed/NCBI
|
36
|
Liu LY, Wang W, Zhao LY, Guo B, Yang J,
Zhao XG, Song TS, Huang C and Xu JR: Silencing of polo-like kinase
2 increases cell proliferation and decreases apoptosis in SGC-7901
gastric cancer cells. Mol Med Rep. 11:3033–3038. 2015. View Article : Google Scholar
|
37
|
Pellegrino R, Calvisi DF, Ladu S, Ehemann
V, Staniscia T, Evert M, Dombrowski F, Schirmacher P and Longerich
T: Oncogenic and tumor suppressive roles of polo-like kinases in
human hepatocellular carcinoma. Hepatology. 51:857–868.
2010.PubMed/NCBI
|
38
|
Benetatos L, Dasoula A, Hatzimichael E,
Syed N, Voukelatou M, Dranitsaris G, Bourantas KL and Crook T:
Polo-like kinase 2 (SNK/PLK2) is a novel epigenetically regulated
gene in acute myeloid leukemia and myelodysplastic syndromes:
Genetic and epigenetic interactions. Ann Hematol. 90:1037–1045.
2011. View Article : Google Scholar : PubMed/NCBI
|
39
|
Matsumoto T, Wang P, Ma W, Sung HJ, Matoba
S and Hwang PM: Polo-like kinases mediate cell survival in
mitochondrial dysfunction. Proc Natl Acad Sci USA. 106:14542–14546.
2009. View Article : Google Scholar : PubMed/NCBI
|
40
|
Chang J, Cizmecioglu O, Hoffmann I and
Rhee K: PLK2 phosphorylation is critical for CPAP function in
procentriole formation during the centrosome cycle. EMBO J.
29:2395–2406. 2010. View Article : Google Scholar : PubMed/NCBI
|
41
|
Inglis KJ, Chereau D, Brigham EF, Chiou
SS, Schöbel S, Frigon NL, Yu M, Caccavello RJ, Nelson S, Motter R,
et al: Polo-like kinase 2 (PLK2) phosphorylates alpha-synuclein at
serine 129 in central nervous system. J Biol Chem. 284:2598–2602.
2009. View Article : Google Scholar :
|
42
|
Malinge S, Bliss-Moreau M, Kirsammer G,
Diebold L, Chlon T, Gurbuxani S and Crispino JD: Increased dosage
of the chromosome 21 ortholog Dyrk1a promotes megakaryoblastic
leukemia in a murine model of down syndrome. J Clin Invest.
122:948–962. 2012. View Article : Google Scholar : PubMed/NCBI
|
43
|
Soppa U, Schumacher J, Florencio Ortiz V,
Pasqualon T, Tejedor FJ and Becker W: The down syndrome-related
protein kinase DYRK1A phosphorylates p27(Kip1) and cyclin D1 and
induces cell cycle exit and neuronal differentiation. Cell Cycle.
13:2084–2100. 2014. View Article : Google Scholar : PubMed/NCBI
|
44
|
Luna J, Boni J, Cuatrecasas M, Bofill-De
Ros X, Núñez-Manchón E, Gironella M, Vaquero EC, Arbones ML, de la
Luna S and Fillat C: DYRK1A modulates c-MET in pancreatic ductal
adenocarcinoma to drive tumour growth. Gut. 68:1465–1476. 2019.
View Article : Google Scholar
|
45
|
MacDonald J, Ramos-Valdes Y, Perampalam P,
Litovchick L, DiMattia GE and Dick FA: A systematic analysis of
negative growth control implicates the DREAM complex in cancer cell
dormancy. Mol Cancer Res. 15:371–381. 2017. View Article : Google Scholar
|
46
|
Li Y, Zhou D, Xu S, Rao M, Zhang Z, Wu L,
Zhang C and Lin N: DYRK1A suppression restrains Mcl-1 expression
and sensitizes NSCLC cells to Bcl-2 inhibitors. Cancer Biol Med.
17:387–400. 2020. View Article : Google Scholar : PubMed/NCBI
|
47
|
Li YL, Ding K, Hu X, Wu LW, Zhou DM, Rao
MJ, Lin NM and Zhang C: DYRK1A inhibition suppresses STAT3/EGFR/Met
signalling and sensitizes EGFR wild-type NSCLC cells to AZD9291. J
Cell Mol Med. 23:7427–7437. 2019. View Article : Google Scholar : PubMed/NCBI
|
48
|
Kottakis F, Polytarchou C, Foltopoulou P,
Sanidas I, Kampranis SC and Tsichlis PN: FGF-2 regulates cell
proliferation, migration, and angiogenesis through an
NDY1/KDM2B-miR-101-EZH2 pathway. Mol Cell. 43:285–298. 2011.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Martin CE, Nguyen A, Kang MK, Kim RH, Park
NH and Shin KH: DYRK1A is required for maintenance of cancer
stemness, contributing to tumorigenic potential in
oral/oropharyngeal squamous cell carcinoma. Exp Cell Res.
405:1126562021. View Article : Google Scholar : PubMed/NCBI
|
50
|
Guard SE, Poss ZC, Ebmeier CC, Pagratis M,
Simpson H, Taatjes DJ and Old WM: The nuclear interactome of DYRK1A
reveals a functional role in DNA damage repair. Sci Rep.
9:65392019. View Article : Google Scholar : PubMed/NCBI
|
51
|
Pozo N, Zahonero C, Fernández P, Liñares
JM, Ayuso A, Hagiwara M, Pérez A, Ricoy JR, Hernández-Laín A,
Sepúlveda JM and Sánchez-Gómez P: Inhibition of DYRK1A destabilizes
EGFR and reduces EGFR-dependent glioblastoma growth. J Clin Invest.
123:2475–2487. 2013. View Article : Google Scholar : PubMed/NCBI
|
52
|
Lee SB, Frattini V, Bansal M, Castano AM,
Sherman D, Hutchinson K, Bruce JN, Califano A, Liu G, Cardozo T, et
al: An ID2-dependent mechanism for VHL inactivation in cancer.
Nature. 529:172–177. 2016. View Article : Google Scholar : PubMed/NCBI
|
53
|
Litovchick L, Florens LA, Swanson SK,
Washburn MP and DeCaprio JA: DYRK1A protein kinase promotes
quiescence and senescence through DREAM complex assembly. Genes
Dev. 25:801–813. 2011. View Article : Google Scholar : PubMed/NCBI
|
54
|
Guo X, Williams JG, Schug TT and Li X:
DYRK1A and DYRK3 promote cell survival through phosphorylation and
activation of SIRT1. J Biol Chem. 285:13223–13232. 2010. View Article : Google Scholar : PubMed/NCBI
|
55
|
Zhang L, Li D and Yu S: Pharmacological
effects of harmine and its derivatives: A review. Arch Pharm Res.
43:1259–1275. 2020. View Article : Google Scholar : PubMed/NCBI
|
56
|
Lee Walmsley D, Murray JB, Dokurno P,
Massey AJ, Benwell K, Fiumana A, Foloppe N, Ray S, Smith J,
Surgenor AE, et al: Fragment-derived selective inhibitors of
dual-specificity kinases DYRK1A and DYRK1B. J Med Chem.
64:8971–8991. 2021. View Article : Google Scholar : PubMed/NCBI
|
57
|
Zhou Q, Reekie TA, Abbassi RH, Venkata DI,
Font JS, Ryan RM, Rendina LM, Munoz L and Kassiou M: Flexible
analogues of azaindole DYRK1A inhibitors elicit cytotoxicity in
glioblastoma cells*. Aust J Chem. 71:789–797. 2018. View Article : Google Scholar
|
58
|
Hu ZB, Liao XH, Xu ZY, Yang X, Dong C, Jin
AM and Lu H: PLK2 phosphorylates and inhibits enriched TAp73 in
human osteosarcoma cells. Cancer Med. 5:74–87. 2016. View Article : Google Scholar
|
59
|
Landré V, Antonov A, Knight R and Melino
G: p73 promotes glioblastoma cell invasion by directly activating
POSTN (periostin) expression. Oncotarget. 7:11785–11802. 2016.
View Article : Google Scholar : PubMed/NCBI
|
60
|
Brandes AA, Tosoni A, Spagnolli F, Frezza
G, Leonardi M, Calbucci F and Franceschi E: Disease progression or
pseudo-progression after concomitant radiochemotherapy treatment:
Pitfalls in neurooncology. Neuro Oncol. 10:361–367. 2008.
View Article : Google Scholar : PubMed/NCBI
|
61
|
DeAngelis LM, Delattre JY and Posner JB:
Radiation-induced dementia in patients cured of brain metastases.
Neurology. 39:789–796. 1989. View Article : Google Scholar : PubMed/NCBI
|
62
|
Sheline GE, Wara WM and Smith V:
Therapeutic irradiation and brain injury. Int J Radiat Oncol Biol
Phys. 6:1215–1228. 1980. View Article : Google Scholar : PubMed/NCBI
|
63
|
Kim DE, Byeon HE, Kim DH, Kim SG and Yim
H: Plk2-mediated phosphorylation and translocalization of Nrf2
activates anti-inflammation through p53/Plk2/p21cip1
signaling in acute kidney injury. Cell Biol Toxicol. Jul
16–2022.Epub ahead of print.
|
64
|
Awuah WA, Toufik AR, Yarlagadda R,
Mikhailova T, Mehta A, Huang H, Kundu M, Lopes L, Benson S, Mykola
L, et al: Exploring the role of Nrf2 signaling in glioblastoma
multiforme. Discov Oncol. 13:942022. View Article : Google Scholar : PubMed/NCBI
|