Immunotherapy for nasopharyngeal carcinoma: Current status and prospects (Review)
- Authors:
- Huageng Huang
- Yuyi Yao
- Xinyi Deng
- Zongyao Huang
- Yungchang Chen
- Zhao Wang
- Huangming Hong
- He Huang
- Tongyu Lin
-
Affiliations: Department of Oncology, Sun Yat‑sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong 510060, P.R. China, Department of Dermatology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China, Department of Oncology, Senior Ward and Phase I Clinical Trial Ward, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, P.R. China - Published online on: July 5, 2023 https://doi.org/10.3892/ijo.2023.5545
- Article Number: 97
-
Copyright: © Huang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Wong KCW, Hui EP, Lo KW, Lam WKJ, Johnson D, Li L, Tao Q, Chan KCA, To KF, King AD, et al: Nasopharyngeal carcinoma: An evolving paradigm. Nat Rev Clin Oncol. 18:679–695. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Renaud S, Lefebvre A, Mordon S, Moralès O and Delhem N: Novel therapies boosting T cell immunity in epstein barr virus-associated nasopharyngeal carcinoma. Int J Mol Sci. 21:42922020. View Article : Google Scholar : PubMed/NCBI | |
Marks JE, Phillips JL and Menck HR: The National Cancer Data Base report on the relationship of race and national origin to the histology of nasopharyngeal carcinoma. Cancer. 83:582–588. 1998. View Article : Google Scholar : PubMed/NCBI | |
Wang HY, Chang YL, To KF, Hwang JS, Mai HQ, Feng YF, Chang ET, Wang CP, Kam MK, Cheah SL, et al: A new prognostic histopathologic classification of nasopharyngeal carcinoma. Chin J Cancer. 35:412016. View Article : Google Scholar : PubMed/NCBI | |
Tsao SW, Yip YL, Tsang CM, Pang PS, Lau VM, Zhang G and Lo KW: Etiological factors of nasopharyngeal carcinoma. Oral Oncol. 50:330–338. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Chang ET, Liu Q, Cai Y, Zhang Z, Chen G, Xie SH, Cao SM, Shao JY, Jia WH, et al: Oral hygiene and risk of nasopharyngeal carcinoma-A Population-based case-control study in China. Cancer Epidemiol Biomarkers Prev. 25:1201–1207. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chang ET, Liu Z, Hildesheim A, Liu Q, Cai Y, Zhang Z, Chen G, Xie SH, Cao SM, Shao JY, et al: Active and passive smoking and risk of nasopharyngeal carcinoma: A population-based case-control study in Southern China. Am J Epidemiol. 185:1272–1280. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xu M, Yao Y, Chen H, Zhang S, Cao SM, Zhang Z, Luo B, Liu Z, Li Z, Xiang T, et al: Genome sequencing analysis identifies Epstein-Barr virus subtypes associated with high risk of nasopharyngeal carcinoma. Nat Genet. 51:1131–1136. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lo KW, Chung GT and To KF: Deciphering the molecular genetic basis of NPC through molecular, cytogenetic, and epigenetic approaches. Semin Cancer Biol. 22:79–86. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tsang CM, Lui VWY, Bruce JP, Pugh TJ and Lo KW: Translational genomics of nasopharyngeal cancer. Semin Cancer Biol. 61:84–100. 2020. View Article : Google Scholar | |
Chen YP, Chan ATC, Le QT, Blanchard P, Sun Y and Ma J: Nasopharyngeal carcinoma. Lancet. 394:64–80. 2019. View Article : Google Scholar : PubMed/NCBI | |
Huang H, Miao J, Xiao X, Hu J, Zhang G, Peng Y, Lu S, Liang Y, Huang S, Han F, et al: Impact on xerostomia for nasopharyngeal carcinoma patients treated with superficial parotid lobe-sparing intensity-modulated radiation therapy (SPLS-IMRT): A prospective phase II randomized controlled study. Radiother Oncol. 175:1–9. 2022. View Article : Google Scholar : PubMed/NCBI | |
Huang H, Miao J, Zhao C and Wang L: Response to Gargi S Sarode, Sachin C Sarode, and Rahul Anand's Letter to the Editor of Radiotherapy and Oncology regarding the paper titled 'Impact on xerostomia for nasopharyngeal carcinoma patients treated with superficial parotid lobe-sparing intensity-modulated radiation therapy (SPLS-IMRT): A prospective phase II randomized controlled study' by Huang et al. Radiother Oncol. 177:2532022. View Article : Google Scholar | |
Wang L, Miao J, Huang H, Chen B, Xiao X, Zhu M, Liang Y, Xiao W, Huang S, Peng Y, et al: Long-term survivals, toxicities and the role of chemotherapy in Early-stage nasopharyngeal carcinoma patients treated with Intensity-modulated radiation therapy: A retrospective study with 15-year Follow-up. Cancer Res Treat. 54:118–129. 2022. View Article : Google Scholar : | |
Pan JJ, Ng WT, Zong JF, Chan LL, O'Sullivan B, Lin SJ, Sze HC, Chen YB, Choi HC, Guo QJ, et al: Proposal for the 8th edition of the AJCC/UICC staging system for nasopharyngeal cancer in the era of intensity-modulated radiotherapy. Cancer. 122:546–558. 2016. View Article : Google Scholar | |
Chen L, Zhang Y, Lai SZ, Li WF, Hu WH, Sun R, Liu LZ, Zhang F, Peng H, Du XJ, et al: 10-year results of therapeutic ratio by Intensity-modulated radiotherapy versus two-dimensional radiotherapy in patients with nasopharyngeal carcinoma. Oncologist. 24:e38–e45. 2019. View Article : Google Scholar | |
Zhang L, Huang Y, Hong S, Yang Y, Yu G, Jia J, Peng P, Wu X, Lin Q, Xi X, et al: Gemcitabine plus cisplatin versus fluorouracil plus cisplatin in recurrent or metastatic nasopharyngeal carcinoma: A multicentre, randomised, open-label, phase 3 trial. Lancet. 388:1883–1892. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hong S, Zhang Y, Yu G, Peng P, Peng J, Jia J, Wu X, Huang Y, Yang Y, Lin Q, et al: Gemcitabine plus cisplatin versus fluorouracil plus cisplatin as First-line therapy for recurrent or metastatic nasopharyngeal carcinoma: Final overall survival analysis of GEM20110714 phase III study. J Clin Oncol. 39:3273–3282. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hua YJ, Han F, Lu LX, Mai HQ, Guo X, Hong MH, Lu TX and Zhao C: Long-term treatment outcome of recurrent nasopharyngeal carcinoma treated with salvage intensity modulated radiotherapy. Eur J Cancer. 48:3422–3428. 2012. View Article : Google Scholar : PubMed/NCBI | |
Xiao W, Liu S, Tian Y, Guan Y, Huang S, Lin C, Zhao C, Lu T and Han F: Prognostic significance of tumor volume in locally recurrent nasopharyngeal carcinoma treated with salvage intensity-modulated radiotherapy. PLoS One. 10:e01253512015. View Article : Google Scholar : PubMed/NCBI | |
Palucka AK and Coussens LM: The basis of oncoimmunology. Cell. 164:1233–1247. 2016. View Article : Google Scholar : PubMed/NCBI | |
Smith C, Wakisaka N, Crough T, Peet J, Yoshizaki T, Beagley L and Khanna R: Discerning regulation of cis- and trans-presentation of CD8+ T-cell epitopes by EBV-encoded oncogene LMP-1 through self-aggregation. Blood. 113:6148–6152. 2009. View Article : Google Scholar : PubMed/NCBI | |
Münz C, Bickham KL, Subklewe M, Tsang ML, Chahroudi A, Kurilla MG, Zhang D, O'Donnell M and Steinman RM: Human CD4(+) T lymphocytes consistently respond to the latent Epstein-Barr virus nuclear antigen EBNA1. J Exp Med. 191:1649–1660. 2000. View Article : Google Scholar : PubMed/NCBI | |
Lee AZE, Tan LSY and Lim CM: Cellular-based immunotherapy in Epstein-Barr virus induced nasopharyngeal cancer. Oral Oncol. 84:61–70. 2018. View Article : Google Scholar : PubMed/NCBI | |
Outh-Gauer S, Alt M, Le Tourneau C, Augustin J, Broudin C, Gasne C, Denize T, Mirghani H, Fabre E, Ménard M, et al: Immunotherapy in head and neck cancers: A new challenge for immunologists, pathologists and clinicians. Cancer Treat Rev. 65:54–64. 2018. View Article : Google Scholar : PubMed/NCBI | |
Agathanggelou A, Niedobitek G, Chen R, Nicholls J, Yin W and Young LS: Expression of immune regulatory molecules in Epstein-Barr virus-associated nasopharyngeal carcinomas with prominent lymphoid stroma. Evidence for a functional interaction between epithelial tumor cells and infiltrating lymphoid cells. Am J Pathol. 147:1152–1160. 1995.PubMed/NCBI | |
Cui X and Snapper CM: Epstein Barr Virus: Development of vaccines and immune cell therapy for EBV-associated diseases. Front Immunol. 12:7344712021. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Tian WD, Xu X, Nie B, Lu J, Liu X, Zhang B, Dong Q, Sunwoo JB, Li G, et al: Epstein-Barr virus nuclear antigen 1 (EBNA1) protein induction of epithelial-mesenchymal transition in nasopharyngeal carcinoma cells. Cancer. 120:363–372. 2014. View Article : Google Scholar | |
Fu T, Voo KS and Wang RF: Critical role of EBNA1-specific CD4+ T cells in the control of mouse Burkitt lymphoma in vivo. J Clin Invest. 114:542–550. 2004. View Article : Google Scholar : PubMed/NCBI | |
Young LS, Yap LF and Murray PG: Epstein-Barr virus: More than 50 years old and still providing surprises. Nat Rev Cancer. 16:789–802. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yoshizaki T, Kondo S, Endo K, Nakanishi Y, Aga M, Kobayashi E, Hirai N, Sugimoto H, Hatano M, Ueno T, et al: Modulation of the tumor microenvironment by Epstein-Barr virus latent membrane protein 1 in nasopharyngeal carcinoma. Cancer Sci. 109:272–278. 2018. View Article : Google Scholar : | |
Lin CL, Lo WF, Lee TH, Ren Y, Hwang SL, Cheng YF, Chen CL, Chang YS, Lee SP, Rickinson AB, et al: Immunization with Epstein-Barr Virus (EBV) peptide-pulsed dendritic cells induces functional CD8+ T-cell immunity and may lead to tumor regression in patients with EBV-positive nasopharyngeal carcinoma. Cancer Res. 62:6952–6958. 2002.PubMed/NCBI | |
Le QT, Colevas AD, O'Sullivan B, Lee AWM, Lee N, Ma B, Siu LL, Waldron J, Lim CM, Riaz N, et al: Current treatment landscape of nasopharyngeal carcinoma and potential trials evaluating the value of immunotherapy. J Natl Cancer Inst. 111:655–663. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gourzones C, Barjon C and Busson P: Host-tumor interactions in nasopharyngeal carcinomas. Semin Cancer Biol. 22:127–136. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li YY, Chung GT, Lui VW, To KF, Ma BB, Chow C, Woo JK, Yip KY, Seo J, Hui EP, et al: Exome and genome sequencing of nasopharynx cancer identifies NF-κB pathway activating mutations. Nat Commun. 8:141212017. View Article : Google Scholar | |
Chen YP, Yin JH, Li WF, Li HJ, Chen DP, Zhang CJ, Lv JW, Wang YQ, Li XM, Li JY, et al: Single-cell transcriptomics reveals regulators underlying immune cell diversity and immune subtypes associated with prognosis in nasopharyngeal carcinoma. Cell Res. 30:1024–1042. 2020. View Article : Google Scholar : PubMed/NCBI | |
Pardoll DM: The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 12:252–264. 2012. View Article : Google Scholar : PubMed/NCBI | |
Francisco LM, Sage PT and Sharpe AH: The PD-1 pathway in tolerance and autoimmunity. Immunol Rev. 236:219–242. 2010. View Article : Google Scholar : PubMed/NCBI | |
Okazaki T, Chikuma S, Iwai Y, Fagarasan S and Honjo T: A rheostat for immune responses: The unique properties of PD-1 and their advantages for clinical application. Nat Immunol. 14:1212–1218. 2013. View Article : Google Scholar : PubMed/NCBI | |
Farkona S, Diamandis EP and Blasutig IM: Cancer immunotherapy: The beginning of the end of cancer? BMC Med. 14:732016. View Article : Google Scholar : PubMed/NCBI | |
Khalil DN, Smith EL, Brentjens RJ and Wolchok JD: The future of cancer treatment: Immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol. 13:273–290. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen L and Han X: Anti-PD-1/PD-L1 therapy of human cancer: Past, present, and future. J Clin Investigation. 125:3384–3391. 2015. View Article : Google Scholar | |
Hsu C, Lee SH, Ejadi S, Even C, Cohen RB, Le Tourneau C, Mehnert JM, Algazi A, van Brummelen EMJ, Saraf S, et al: Safety and antitumor activity of pembrolizumab in patients with programmed death-ligand 1-positive nasopharyngeal carcinoma: Results of the KEYNOTE-028 Study. J Clin Oncol. 35:4050–4056. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ma BBY, Lim WT, Goh BC, Hui EP, Lo KW, Pettinger A, Foster NR, Riess JW, Agulnik M, Chang AYC, et al: Antitumor activity of nivolumab in recurrent and metastatic nasopharyngeal carcinoma: An international, multicenter study of the mayo clinic phase 2 consortium (NCI-9742). J Clin Oncol. 36:1412–1418. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Zhou T, Chen X, Li J, Pan J, He X, Lin L, Shi YR, Feng W, Xiong J, et al: Efficacy, safety, and biomarker analysis of camrelizumab in previously treated recurrent or metastatic nasopharyngeal carcinoma (CAPTAIN study). J Immunother Cancer. 9:e0037902021. View Article : Google Scholar : PubMed/NCBI | |
Fang W, Yang Y, Ma Y, Hong S, Lin L, He X, Xiong J, Li P, Zhao H, Huang Y, et al: Camrelizumab (SHR-1210) alone or in combination with gemcitabine plus cisplatin for nasopharyngeal carcinoma: Results from two single-arm, phase 1 trials. Lancet Oncol. 19:1338–1350. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ma Y, Fang W, Zhang Y, Yang Y, Hong S, Zhao Y, Tendolkar A, Chen L, Xu D, Sheng J, et al: A Phase I/II Open-label study of nivolumab in previously treated advanced or recurrent nasopharyngeal carcinoma and other solid tumors. Oncologist. 24:891–e431. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shen L, Guo J, Zhang Q, Pan H, Yuan Y, Bai Y, Liu T, Zhou Q, Zhao J, Shu Y, et al: Tislelizumab in Chinese patients with advanced solid tumors: An open-label, non-comparative, phase 1/2 study. J Immunother Cancer. 8:e0004372020. View Article : Google Scholar : PubMed/NCBI | |
Wang FH, Wei XL, Feng J, Li Q, Xu N, Hu XC, Liao W, Jiang Y, Lin XY, Zhang QY, et al: Efficacy, safety, and correlative biomarkers of toripalimab in previously treated recurrent or metastatic nasopharyngeal carcinoma: A phase II clinical trial (POLARIS-02). J Clin Oncol. 39:704–712. 2021. View Article : Google Scholar : PubMed/NCBI | |
Even C, Wang HM, Li SH, Ngan RK, Dechaphunkul A, Zhang L, Yen CJ, Chan PC, Chakrabandhu S, Ma BBY, et al: Phase II, randomized study of spartalizumab (PDR001), an Anti-PD-1 antibody, versus chemotherapy in patients with recurrent/metastatic nasopharyngeal cancer. Clin Cancer Res. 27:6413–6423. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ding X, Zhang WJ, You R, Zou X, Wang ZQ, Ouyang YF, Peng L, Liu YP, Duan CY, Yang Q, et al: Camrelizumab plus apatinib in patients with recurrent or metastatic nasopharyngeal carcinoma: An Open-label, Single-arm, phase II study. J Clin Oncol. 41:2571–2582. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Qu S, Li J, Hu C, Xu M, Li W, Zhou T, Shen L, Wu H, Lang J, et al: Camrelizumab versus placebo in combination with gemcitabine and cisplatin as first-line treatment for recurrent or metastatic nasopharyngeal carcinoma (CAPTAIN-1st): A multi-centre, randomised, double-blind, phase 3 trial. Lancet Oncol. 22:1162–1174. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mai HQ, Chen QY, Chen D, Hu C, Yang K, Wen J, Li J, Shi YR, Jin F, Xu R, et al: Toripalimab or placebo plus chemotherapy as first-line treatment in advanced nasopharyngeal carcinoma: A multicenter randomized phase 3 trial. Nat Med. 27:1536–1543. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hua Y, You R, Wang Z, Huang P, Lin M, Ouyang Y, Xie Y, Zou X, Liu Y, Duan C, et al: Toripalimab plus intensity-modulated radiotherapy for recurrent nasopharyngeal carcinoma: An open-label single-arm, phase II trial. J Immunother Cancer. 9:e0032902021. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Niu X, Liu P, Ou D, Zhu Y and Wang X: Is immune therapy plus chemotherapy more effective than immune therapy alone for unresectable recurrent nasopharyngeal carcinoma? Front Immunol. 12:7626632021. View Article : Google Scholar : PubMed/NCBI | |
Postow MA, Callahan MK and Wolchok JD: Immune checkpoint blockade in cancer therapy. J Clin Oncol. 33:1974–1982. 2015. View Article : Google Scholar : PubMed/NCBI | |
Buchbinder E and Hodi FS: Cytotoxic T lymphocyte antigen-4 and immune checkpoint blockade. J Clin Investigation. 125:3377–3383. 2015. View Article : Google Scholar | |
Yang Y, Li X, Ma Z, Wang C, Yang Q, Byrne-Steele M, Hong R, Min Q, Zhou G, Cheng Y, et al: CTLA-4 expression by B-1a B cells is essential for immune tolerance. Nat Commun. 12:5252021. View Article : Google Scholar : PubMed/NCBI | |
Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Rutkowski P, Lao CD, Cowey CL, Schadendorf D, Wagstaff J, Dummer R, et al: Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 381:1535–1546. 2019. View Article : Google Scholar : PubMed/NCBI | |
El-Khoueiry AB, Sangro B, Yau T, Crocenzi TS, Kudo M, Hsu C, Kim TY, Choo SP, Trojan J, Welling THR, et al: Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): An open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 389:2492–2502. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kelley RK, Sangro B, Harris W, Ikeda M, Okusaka T, Kang YK, Qin S, Tai DW, Lim HY, Yau T, et al: Safety, Efficacy, and pharmacodynamics of tremelimumab plus durvalumab for patients with unresectable hepatocellular carcinoma: Randomized expansion of a phase I/II study. J Clin Oncol. 39:2991–3001. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xiao M, Qi F, Chen X, Luo Z, Zhang L, Zheng C, Hu S, Jiang X, Zhou M and Tang J: Functional polymorphism of cytotoxic T-lymphocyte antigen 4 and nasopharyngeal carcinoma susceptibility in a Chinese population. Int J Immunogenet. 37:27–32. 2010. View Article : Google Scholar | |
Ahmed MM, Gebriel MG, Morad EA, Saber IM, Elwan A, Salah M, Fakhr AE, Shalaby AM and Alabiad MA: Expression of immune checkpoint regulators, cytotoxic T-lymphocyte Antigen-4, and programmed Death-Ligand 1 in Epstein-Barr Virus-associated Nasopharyngeal Carcinoma. Appl Immunohistochem Mol Morphol. 29:401–408. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yu X, Huang X, Chen X, Liu J, Wu C, Pu Q, Wang Y, Kang X and Zhou L: Characterization of a novel anti-human lymphocyte activation gene 3 (LAG-3) antibody for cancer immunotherapy. MAbs. 11:1139–1148. 2019. View Article : Google Scholar : PubMed/NCBI | |
Woo SR, Turnis ME, Goldberg MV, Bankoti J, Selby M, Nirschl CJ, Bettini ML, Gravano DM, Vogel P, Liu CL, et al: Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 72:917–927. 2012. View Article : Google Scholar | |
Anderson AC, Joller N and Kuchroo VK: Lag-3, Tim-3, and TIGIT: Co-inhibitory receptors with specialized functions in immune regulation. Immunity. 44:989–1004. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tawbi HA, Schadendorf D, Lipson EJ, Ascierto PA, Matamala L, Castillo Gutiérrez E, Rutkowski P, Gogas HJ, Lao CD, De Menezes JJ, et al: Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma. N Engl J Med. 386:24–34. 2022. View Article : Google Scholar : PubMed/NCBI | |
Solinas C, De Silva P, Bron D, Willard-Gallo K and Sangiolo D: Significance of TIM3 expression in cancer: From biology to the clinic. Semin Oncol. 46:372–379. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen TC, Chen CH, Wang CP, Lin PH, Yang TL, Lou PJ, Ko JY, Wu CT and Chang YL: The immunologic advantage of recurrent nasopharyngeal carcinoma from the viewpoint of Galectin-9/Tim-3-related changes in the tumour microenvironment. Sci Rep. 7:103492017. View Article : Google Scholar : PubMed/NCBI | |
Das M, Zhu C and Kuchroo VK: Tim-3 and its role in regulating anti-tumor immunity. Immunol Rev. 276:97–111. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yang R, Sun L, Li CF, Wang YH, Yao J, Li H, Yan M, Chang WC, Hsu JM, Cha JH, et al: Galectin-9 interacts with PD-1 and TIM-3 to regulate T cell death and is a target for cancer immunotherapy. Nat Commun. 12:8322021. View Article : Google Scholar : PubMed/NCBI | |
Zhang CX, Huang DJ, Baloche V, Zhang L, Xu JX, Li BW, Zhao XR, He J, Mai HQ, Chen QY, et al: Galectin-9 promotes a suppressive microenvironment in human cancer by enhancing STING degradation. Oncogenesis. 9:652020. View Article : Google Scholar : PubMed/NCBI | |
Rotte A, Jin JY and Lemaire V: Mechanistic overview of immune checkpoints to support the rational design of their combinations in cancer immunotherapy. Ann Oncol. 29:71–83. 2018. View Article : Google Scholar | |
Shannon-Lowe C and Rowe M: Epstein Barr virus entry; kissing and conjugation. Curr Opin Virol. 4:78–84. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cohen JI: Vaccine development for epstein-barr virus. Adv Exp Med Biol. 1045:477–493. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jean-Pierre V, Lupo J, Buisson M, Morand P and Germi R: Main targets of interest for the development of a prophylactic or therapeutic epstein-barr virus vaccine. Front Microbiol. 12:7016112021. View Article : Google Scholar : PubMed/NCBI | |
Cui X, Cao Z, Sen G, Chattopadhyay G, Fuller DH, Fuller JT, Snapper DM, Snow AL, Mond JJ and Snapper CM: A novel tetrameric gp350 1-470 as a potential Epstein-Barr virus vaccine. Vaccine. 31:3039–3045. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cui X, Cao Z, Chen Q, Arjunaraja S, Snow AL and Snapper CM: Rabbits immunized with Epstein-Barr virus gH/gL or gB recombinant proteins elicit higher serum virus neutralizing activity than gp350. Vaccine. 34:4050–4055. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cui X, Cao Z, Ishikawa Y, Cui S, Imadome KI and Snapper CM: Immunization with Epstein-barr virus core fusion machinery envelope proteins elicit high titers of neutralizing activities and protect humanized mice from lethal dose EBV challenge. Vaccines (Basel). 9:2852021. View Article : Google Scholar : PubMed/NCBI | |
Dasari V, Sinha D, Neller MA, Smith C and Khanna R: Prophylactic and therapeutic strategies for Epstein-Barr virus-associated diseases: Emerging strategies for clinical development. Expert Rev Vaccines. 18:457–474. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li F, Song D, Lu Y, Zhu H, Chen Z and He X: Delayed-type hypersensitivity (DTH) immune response related with EBV-DNA in nasopharyngeal carcinoma treated with autologous dendritic cell vaccination after radiotherapy. J Immunother. 36:208–214. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chia WK, Wang WW, Teo M, Tai WM, Lim WT, Tan EH, Leong SS, Sun L, Chen JJ, Gottschalk S, et al: A phase II study evaluating the safety and efficacy of an adenovirus-ΔLMP1-LMP2 transduced dendritic cell vaccine in patients with advanced metastatic nasopharyngeal carcinoma. Ann Oncol. 23:997–1005. 2012. View Article : Google Scholar | |
Hui EP, Taylor GS, Jia H, Ma BB, Chan SL, Ho R, Wong WL, Wilson S, Johnson BF, Edwards C, et al: Phase I trial of recombinant modified vaccinia ankara encoding Epstein-Barr viral tumor antigens in nasopharyngeal carcinoma patients. Cancer Res. 73:1676–1688. 2013. View Article : Google Scholar : PubMed/NCBI | |
Taylor GS, Jia H, Harrington K, Lee LW, Turner J, Ladell K, Price DA, Tanday M, Matthews J, Roberts C, et al: A recombinant modified vaccinia ankara vaccine encoding Epstein-Barr Virus (EBV) target antigens: A phase I trial in UK patients with EBV-positive cancer. Clin Cancer Res. 20:5009–5022. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Lu J, He ML, Li Z, Zhang B, Zhou LH, Li Q, Li G, Wang L, Tian WD, et al: Antitumor effects of interferon-alpha on cell growth and metastasis in human nasopharyngeal carcinoma. Curr Cancer Drug Targets. 12:561–570. 2012. View Article : Google Scholar : PubMed/NCBI | |
Andtbacka RH, Kaufman HL, Collichio F, Amatruda T, Senzer N, Chesney J, Delman KA, Spitler LE, Puzanov I, Agarwala SS, et al: Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol. 33:2780–2788. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu RY, Zhou L, Zhang YL, Huang BJ, Ke ML, Chen JM, Li LX, Fu X, Wu JX and Huang W: An oncolytic adenovirus enhances antiangiogenic and antitumoral effects of a replication-deficient adenovirus encoding endostatin by rescuing its selective replication in nasopharyngeal carcinoma cells. Biochem Biophys Res Commun. 442:171–176. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang JN, Hu P, Zeng MS and Liu RB: Anti-tumor effect of oncolytic herpes simplex virus G47delta on human nasopharyngeal carcinoma. Chin J Cancer. 30:831–841. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chua D, Huang J, Zheng B, Lau SY, Luk W, Kwong DL, Sham JS, Moss D, Yuen KY, Im SW, et al: Adoptive transfer of autologous Epstein-Barr virus-specific cytotoxic T cells for nasopharyngeal carcinoma. Int J Cancer. 94:73–80. 2001. View Article : Google Scholar : PubMed/NCBI | |
Comoli P, De Palma R, Siena S, Nocera A, Basso S, Del Galdo F, Schiavo R, Carminati O, Tagliamacco A, Abbate GF, et al: Adoptive transfer of allogeneic Epstein-Barr virus (EBV)-specific cytotoxic T cells with in vitro antitumor activity boosts LMP2-specific immune response in a patient with EBV-related nasopharyngeal carcinoma. Ann Oncol. 15:113–117. 2004. View Article : Google Scholar | |
Straathof KC, Bollard CM, Popat U, Huls MH, Lopez T, Morriss MC, Gresik MV, Gee AP, Russell HV, Brenner MK, et al: Treatment of nasopharyngeal carcinoma with Epstein-Barr virus-specific T lymphocytes. Blood. 105:1898–1904. 2005. View Article : Google Scholar | |
Comoli P, Pedrazzoli P, Maccario R, Basso S, Carminati O, Labirio M, Schiavo R, Secondino S, Frasson C, Perotti C, et al: Cell therapy of stage IV nasopharyngeal carcinoma with autologous Epstein-Barr virus-targeted cytotoxic T lymphocytes. J Clin Oncol. 23:8942–8949. 2005. View Article : Google Scholar : PubMed/NCBI | |
Louis CU, Straathof K, Bollard CM, Ennamuri S, Gerken C, Lopez TT, Huls MH, Sheehan A, Wu MF, Liu H, et al: Adoptive transfer of EBV-specific T cells results in sustained clinical responses in patients with locoregional nasopharyngeal carcinoma. J Immunother. 33:983–990. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lutzky VP, Crooks P, Morrison L, Stevens N, Davis JE, Corban M, Hall D, Panizza B, Coman WB, Coman S, et al: Cytotoxic T cell adoptive immunotherapy as a treatment for nasopharyngeal carcinoma. Clin Vaccine Immunol. 21:256–259. 2014. View Article : Google Scholar : | |
Eom HS, Choi BK, Lee Y, Lee H, Yun T, Kim YH, Lee JJ and Kwon BS: Phase I clinical trial of 4-1BB-based adoptive T-cell therapy for epstein-barr virus (EBV)-positive tumors. J Immunother. 39:140–148. 2016. View Article : Google Scholar : PubMed/NCBI | |
Louis CU, Straathof K, Bollard CM, Gerken C, Huls MH, Gresik MV, Wu MF, Weiss HL, Gee AP, Brenner MK, et al: Enhancing the in vivo expansion of adoptively transferred EBV-specific CTL with lymphodepleting CD45 monoclonal antibodies in NPC patients. Blood. 113:2442–2450. 2009. View Article : Google Scholar : | |
Secondino S, Zecca M, Licitra L, Gurrado A, Schiavetto I, Bossi P, Locati L, Schiavo R, Basso S, Baldanti F, et al: T-cell therapy for EBV-associated nasopharyngeal carcinoma: Preparative lymphodepleting chemotherapy does not improve clinical results. Ann Oncol. 23:435–441. 2012. View Article : Google Scholar | |
Smith C, Tsang J, Beagley L, Chua D, Lee V, Li V, Moss DJ, Coman W, Chan KH, Nicholls J, et al: Effective treatment of metastatic forms of Epstein-Barr virus-associated nasopharyngeal carcinoma with a novel adenovirus-based adoptive immunotherapy. Cancer Res. 72:1116–1125. 2012. View Article : Google Scholar : PubMed/NCBI | |
Smith C, Lee V, Schuessler A, Beagley L, Rehan S, Tsang J, Li V, Tiu R, Smith D, Neller MA, et al: Pre-emptive and therapeutic adoptive immunotherapy for nasopharyngeal carcinoma: Phenotype and effector function of T cells impact on clinical response. Oncoimmunol. 6:e12733112017. View Article : Google Scholar | |
Huang J, Fogg M, Wirth LJ, Daley H, Ritz J, Posner MR, Wang FC and Lorch JH: Epstein-Barr virus-specific adoptive immunotherapy for recurrent, metastatic nasopharyngeal carcinoma. Cancer. 123:2642–2650. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chia WK, Teo M, Wang WW, Lee B, Ang SF, Tai WM, Chee CL, Ng J, Kan R, Lim WT, et al: Adoptive T-cell transfer and chemotherapy in the first-line treatment of metastatic and/or locally recurrent nasopharyngeal carcinoma. Mol Ther. 22:132–139. 2014. View Article : Google Scholar : | |
Al-Rajhi N, Soudy H, Ahmed SA, Elhassan T, Mohammed SF, Khoja HA and Ghebeh H: CD3+T-lymphocyte infiltration is an independent prognostic factor for advanced nasopharyngeal carcinoma. BMC Cancer. 20:2402020. View Article : Google Scholar : PubMed/NCBI | |
Li J, Chen QY, He J, Li ZL, Tang XF, Chen SP, Xie CM, Li YQ, Huang LX, Ye SB, et al: Phase I trial of adoptively transferred tumor-infiltrating lymphocyte immunotherapy following concurrent chemoradiotherapy in patients with locoregionally advanced nasopharyngeal carcinoma. Oncoimmunology. 4:e9765072015. View Article : Google Scholar : PubMed/NCBI | |
Introna M: CIK as therapeutic agents against tumors. J Autoimmun. 85:32–44. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li JJ, Gu MF, Pan K, Liu LZ, Zhang H, Shen WX and Xia JC: Autologous cytokine-induced killer cell transfusion in combination with gemcitabine plus cisplatin regimen chemotherapy for metastatic nasopharyngeal carcinoma. J Immunother. 35:189–195. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Pan K, Liu LZ, Li YQ, Gu MF, Zhang H, Shen WX, Xia JC and Li JJ: Sequential Cytokine-induced killer cell immunotherapy enhances the efficacy of the gemcitabine plus cisplatin chemotherapy regimen for metastatic nasopharyngeal carcinoma. PLoS One. 10:e01306202015. View Article : Google Scholar : PubMed/NCBI | |
Lim CM, Liou A, Poon M, Koh LP, Tan LK, Loh KS, Petersson BF, Ting E, Campana D, Goh BC, et al: Phase I study of expanded natural killer cells in combination with cetuximab for recurrent/metastatic nasopharyngeal carcinoma. Cancer Immunol Immunother. 71:2277–2286. 2022. View Article : Google Scholar : PubMed/NCBI | |
Depil S, Duchateau P, Grupp SA, Mufti G and Poirot L: 'Off-the-shelf' allogeneic CAR T cells: Development and challenges. Nat Rev Drug Discov. 19:185–199. 2020. View Article : Google Scholar : PubMed/NCBI | |
Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, Braunschweig I, Oluwole OO, Siddiqi T, Lin Y, et al: Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. The New England journal of medicine. 2017.377:2531–44. View Article : Google Scholar : PubMed/NCBI | |
Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, Bader P, Verneris MR, Stefanski HE, Myers GD, et al: Tisagenlecleucel in Children and Young adults with B-cell lymphoblastic leukemia. N Engl J Med. 378:439–448. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang M, Munoz J, Goy A, Locke FL, Jacobson CA, Hill BT, Timmerman JM, Holmes H, Jaglowski S, Flinn IW, et al: KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N Engl J Med. 382:1331–1342. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kamdar M, Solomon SR, Arnason J, Johnston PB, Glass B, Bachanova V, Ibrahimi S, Mielke S, Mutsaers P, Hernan dez-Ilizaliturri F, et al: Lisocabtagene maraleucel versus standard of care with salvage chemotherapy followed by autologous stem cell transplantation as second-line treatment in patients with relapsed or refractory large B-cell lymphoma (TRANSFORM): Results from an interim analysis of an open-label, randomised, phase 3 trial. Lancet. 399:2294–2308. 2022. View Article : Google Scholar : PubMed/NCBI | |
Munshi NC, Anderson LD Jr, Shah N, Madduri D, Berdeja J, Lonial S, Raje N, Lin Y, Siegel D, Oriol A, et al: Idecabtagene Vicleucel in relapsed and refractory multiple myeloma. N Engl J Med. 384:705–716. 2021. View Article : Google Scholar : PubMed/NCBI | |
Berdeja JG, Madduri D, Usmani SZ, Jakubowiak A, Agha M, Cohen AD, Stewart AK, Hari P, Htut M, Lesokhin A, et al: Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): A phase 1b/2 open-label study. Lancet. 398:314–324. 2021. View Article : Google Scholar : PubMed/NCBI | |
Brown CE and Mackall CL: CAR T cell therapy: Inroads to response and resistance. Nat Rev Immunol. 19:73–74. 2019. View Article : Google Scholar : PubMed/NCBI | |
Guo X, Zheng H, Luo W, Zhang Q, Liu J and Yao K: 5T4-specific chimeric antigen receptor modification promotes the immune efficacy of cytokine-induced killer cells against nasopharyngeal carcinoma stem cell-like cells. Sci Rep. 7:48592017. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Chen RJ, Huang XC, Tang GX, Kuai XW, Zhang MJ, Zhang DW, Tang Q, Zhu J and Feng ZQ: Construction of latent membrane protein 2A chimeric antigen receptor-T cells and their lethal effects on nasopharyngeal carcinoma cells. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 53:925–930. 2018.In Chinese. PubMed/NCBI | |
Tang X, Zhou Y, Li W, Tang Q, Chen R, Zhu J and Feng Z: T cells expressing a LMP1-specific chimeric antigen receptor mediate antitumor effects against LMP1-positive nasopharyngeal carcinoma cells in vitro and in vivo. J Biomed Res. 28:468–475. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tang X, Tang Q, Mao Y, Huang X, Jia L, Zhu J and Feng Z: CD137 Co-stimulation improves the antitumor effect of LMP1-specific chimeric antigen receptor T cells in vitro and in vivo. Onco Targets Ther. 12:9341–9350. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Pan C, Song W, Liu D, Li Z and Zheng L: Novel strategies for immuno-oncology breakthroughs with cell therapy. Biomarker Res. 9:622021. View Article : Google Scholar | |
Tsimberidou AM, Van Morris K, Vo HH, Eck S, Lin YF, Rivas JM and Andersson BS: T-cell receptor-based therapy: An innovative therapeutic approach for solid tumors. J Hematol Oncol. 14:1022021. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Liu Z, Wei W and Li Y: TCR engineered T cells for solid tumor immunotherapy. Exp Hematol Oncol. 11:382022. View Article : Google Scholar : PubMed/NCBI | |
Nathan P, Hassel JC, Rutkowski P, Baurain JF, Butler MO, Schlaak M, Sullivan RJ, Ochsenreither S, Dummer R, Kirkwood JM, et al: Overall survival benefit with tebentafusp in metastatic uveal melanoma. N Engl J Med. 385:1196–1206. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xie G, Dong H, Liang Y, Ham JD, Rizwan R and Chen J: CAR-NK cells: A promising cellular immunotherapy for cancer. EBioMedicine. 59:1029752020. View Article : Google Scholar : PubMed/NCBI | |
Klichinsky M, Ruella M, Shestova O, Lu XM, Best A, Zeeman M, Schmierer M, Gabrusiewicz K, Anderson NR, Petty NE, et al: Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat Biotechnol. 38:947–953. 2020. View Article : Google Scholar : PubMed/NCBI | |
Turrini R, Merlo A, Martorelli D, Faè DA, Sommaggio R, Montagner IM, Barbieri V, Marin O, Zanovello P, Dolcetti R, et al: A BARF1-specific mAb as a new immunotherapeutic tool for the management of EBV-related tumors. Oncoimmunology. 6:e13043382017. View Article : Google Scholar : PubMed/NCBI | |
Ahmed M, Lopez-Albaitero A, Pankov D, Santich BH, Liu H, Yan S, Xiang J, Wang P, Hasan AN, Selvakumar A, et al: TCR-mimic bispecific antibodies targeting LMP2A show potent activity against EBV malignancies. JCI Insight. 3:e978052018. View Article : Google Scholar : PubMed/NCBI | |
Smith C, McGrath M, Neller MA, Matthews KK, Crooks P, Le Texier L, Panizza B, Porceddu S and Khanna R: Complete response to PD-1 blockade following EBV-specific T-cell therapy in metastatic nasopharyngeal carcinoma. NPJ Precision Oncol. 5:242021. View Article : Google Scholar | |
Rezaei R, Esmaeili Gouvarchin Ghaleh H, Farzanehpour M, Dorostkar R, Ranjbar R, Bolandian M, Mirzaei Nodooshan M and Ghorbani Alvanegh A: Combination therapy with CAR T cells and oncolytic viruses: A new era in cancer immunotherapy. Cancer Gene Ther. 29:647–660. 2022. View Article : Google Scholar |