
A potential tumor marker: Chaperonin containing TCP‑1 controls the development of malignant tumors (Review)
- Authors:
- Liming Zheng
- Xingyue Chen
- Li Zhang
- Nannan Qin
- Jiaxing An
- Jiaxing Zhu
- Hai Jin
- Biguang Tuo
-
Affiliations: Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China, Department of Critical Care Medicine of the First People's Hospital of Zunyi (The Third Affiliated Hospital), Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China - Published online on: August 1, 2023 https://doi.org/10.3892/ijo.2023.5554
- Article Number: 106
-
Copyright: © Zheng et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
Showalter AE, Martini AC, Nierenberg D, Hosang K, Fahmi NA, Gopalan P, Khaled AS, Zhang W and Khaled AR: Investigating Chaperonin-Containing TCP-1 subunit 2 as an essential component of the chaperonin complex for tumorigenesis. Sci Rep. 10:7982020. View Article : Google Scholar : PubMed/NCBI | |
Valpuesta JM, Martin-Benito J, Gomez-Puertas P, Carrascosa JL and Willison KR: Structure and function of a protein folding machine: The eukaryotic cytosolic chaperonin CCT. FEBS Lett. 529:11–16. 2002. View Article : Google Scholar : PubMed/NCBI | |
Huang X, Wang X, Cheng C, Cai J, He S, Wang H, Liu F, Zhu C, Ding Z, Huang X, et al: Chaperonin containing TCP1, subunit 8 (CCT8) is upregulated in hepatocellular carcinoma and promotes HCC proliferation. APMIS. 122:1070–1079. 2014.PubMed/NCBI | |
Tracy CM, Gray AJ, Cuellar J, Shaw TS, Howlett AC, Taylor RM, Prince JT, Ahn NG, Valpuesta JM and Willardson BM: Programmed cell death protein 5 interacts with the cytosolic chaperonin containing tailless complex polypeptide 1 (CCT) to regulate beta-tubulin folding. J Biol Chem. 289:4490–4502. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li W, Liu J and Zhao H: Prognostic power of a chaperonin containing TCP-1 subunit genes panel for hepatocellular carcinoma. Front Genet. 12:6688712021. View Article : Google Scholar : PubMed/NCBI | |
Roh SH, Kasembeli M, Bakthavatsalam D, Chiu W and Tweardy DJ: Contribution of the type II chaperonin, TRiC/CCT, to oncogenesis. Int J Mol Sci. 16:26706–26720. 2015. View Article : Google Scholar : PubMed/NCBI | |
Brackley KI and Grantham J: Activities of the chaperonin containing TCP-1 (CCT): Implications for cell cycle progression and cytoskeletal organisation. Cell Stress Chaperones. 14:23–31. 2009. View Article : Google Scholar : | |
Yam AY, Xia Y, Lin HT, Burlingame A, Gerstein M and Frydman J: Defining the TRiC/CCT interactome links chaperonin function to stabilization of newly made proteins with complex topologies. Nat Struct Mol Biol. 15:1255–1262. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Liu P, Zhang Z, Wang J, Cheng Z and Fan C: Identification of CCT3 as a prognostic factor and correlates with cell survival and invasion of head and neck squamous cell carcinoma. Biosci Rep. 41:BSR202111372021. View Article : Google Scholar : PubMed/NCBI | |
Xu G, Bu S, Wang X, Zhang H and Ge H: Suppression of CCT3 inhibits the proliferation and migration in breast cancer cells. Cancer Cell Int. 20:2182020. View Article : Google Scholar : PubMed/NCBI | |
Lopez T, Dalton K and Frydman J: The mechanism and function of group II chaperonins. J Mol Biol. 427:2919–2930. 2015. View Article : Google Scholar : PubMed/NCBI | |
Weng H, Feng X, Lan Y and Zheng Z: TCP1 regulates PI3K/AKT/mTOR signaling pathway to promote proliferation of ovarian cancer cells. J Ovarian Res. 14:822021. View Article : Google Scholar : PubMed/NCBI | |
Dou L and Zhang X: Upregulation of CCT3 promotes cervical cancer progression through FN1. Mol Med Rep. 24:8562021. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Liu C, Zhang X, Huang X, Liang S, Xing F and Tian H: CCT5 induces epithelial-mesenchymal transition to promote gastric cancer lymph node metastasis by activating the Wnt/β-catenin signalling pathway. Br J Cancer. 126:1684–1694. 2022. View Article : Google Scholar : PubMed/NCBI | |
Peng X, Chen G, Lv B and Lv J: MicroRNA-148a/152 cluster restrains tumor stem cell phenotype of colon cancer via modulating CCT6A. Anticancer Drugs. 33:e610–e621. 2022. View Article : Google Scholar | |
Cox A, Nierenberg D, Camargo O, Lee E, Khaled AS, Mazar J, Boohaker RJ, Westmoreland TJ and Khaled AR: Chaperonin containing TCP-1 (CCT/TRiC) is a novel therapeutic and diagnostic target for neuroblastoma. Front Oncol. 12:9750882022. View Article : Google Scholar : PubMed/NCBI | |
Wang Z: Regulation of cell cycle progression by growth factor-induced cell signaling. Cells. 10:33272021. View Article : Google Scholar : PubMed/NCBI | |
Zatulovskiy E, Zhang S, Berenson DF, Topacio BR and Skotheim JM: Cell growth dilutes the cell cycle inhibitor Rb to trigger cell division. Science. 369:466–471. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hume S, Dianov GL and Ramadan K: A unified model for the G1/S cell cycle transition. Nucleic Acids Res. 48:12483–12501. 2020. View Article : Google Scholar : PubMed/NCBI | |
Temiz E, Koyuncu İ and Sahin E: CCT3 suppression prompts apoptotic machinery through oxidative stress and energy deprivation in breast and prostate cancers. Free Radic Biol Med. 165:88–99. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen S, Tian Y, Ju A, Li B, Fu Y and Luo Y: Suppression of CCT3 inhibits tumor progression by impairing ATP production and cytoplasmic translation in lung adenocarcinoma. Int J Mol Sci. 23:39832022. View Article : Google Scholar : PubMed/NCBI | |
Huang W, Hu H, Zhang Q, Wu X, Wei F, Yang F, Gan L, Wang N, Yang X and Guo AY: Regulatory networks in mechanotransduction reveal key genes in promoting cancer cell stemness and proliferation. Oncogene. 38:6818–6834. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Wang Y, Wei Y, Wu J, Zhang P, Shen S, Saiyin H, Wumaier R, Yang X, Wang C and Yu L: Molecular chaperone CCT3 supports proper mitotic progression and cell proliferation in hepatocellular carcinoma cells. Cancer Lett. 372:101–109. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Chen X, Huang Y, Lin J, Wu Y and Chen Y: TCP1 increases drug resistance in acute myeloid leukemia by suppressing autophagy via activating AKT/mTOR signaling. Cell Death Dis. 12:10582021. View Article : Google Scholar : PubMed/NCBI | |
Wang K, He J, Tu C, Xu H, Zhang X, Lv Y and Song C: Upregulation of CCT3 predicts poor prognosis and promotes cell proliferation via inhibition of ferroptosis and activation of AKT signaling in lung adenocarcinoma. BMC Mol Cell Biol. 23:252022. View Article : Google Scholar : PubMed/NCBI | |
Fu R, Jiang S, Guan Z, Li J, Zhang X and Chen H: Comprehensive analysis of the expression of chaperonin containing TCP1 subunits (CCTs) and their influence on prognosis in hepatocellular carcinoma. Transl Cancer Res. 9:1867–1883. 2020. View Article : Google Scholar : PubMed/NCBI | |
Meng Y, Yang L, Wei X, Luo H, Hu Y, Tao X, He J, Zheng X, Xu Q, Luo K, et al: CCT5 interacts with cyclin D1 promoting lung adenocarcinoma cell migration and invasion. Biochem Biophys Res Commun. 567:222–229. 2021. View Article : Google Scholar : PubMed/NCBI | |
Guest ST, Kratche ZR, Bollig-Fischer A, Haddad R and Ethier SP: Two members of the TRiC chaperonin complex, CCT2 and TCP1 are essential for survival of breast cancer cells and are linked to driving oncogenes. Exp Cell Res. 332:223–235. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li H, Wang L, Cao F, Yu D, Yang J, Yu X, Dong J, Qin JJ and Guan X: Design, synthesis, and biological characterization of a potent STAT3 degrader for the treatment of gastric cancer. Front Pharmacol. 13:9444552022. View Article : Google Scholar : PubMed/NCBI | |
Kasembeli M, Lau WC, Roh SH, Eckols TK, Frydman J, Chiu W and Tweardy DJ: Modulation of STAT3 folding and function by TRiC/CCT chaperonin. PLoS Biol. 12:e10018442014. View Article : Google Scholar : PubMed/NCBI | |
Vallin J, Córdoba-Beldad CM and Grantham J: Sequestration of the transcription factor STAT3 by the molecular chaperone CCT: A potential mechanism for modulation of STAT3 phosphorylation. J Mol Biol. 433:1669582021. View Article : Google Scholar : PubMed/NCBI | |
Bocchini CE, Nahmod K, Katsonis P, Kim S, Kasembeli MM, Freeman A, Lichtarge O, Makedonas G and Tweardy DJ: Protein stabilization improves STAT3 function in autosomal dominant hyper-IgE syndrome. Blood. 128:3061–3072. 2016. View Article : Google Scholar : PubMed/NCBI | |
Carr AC, Khaled AS, Bassiouni R, Flores O, Nierenberg D, Bhatti H, Vishnubhotla P, Manuel JP, Santra S and Khaled AR: Targeting chaperonin containing TCP1 (CCT) as a molecular therapeutic for small cell lung cancer. Oncotarget. 8:110273–110288. 2017. View Article : Google Scholar | |
Qian T, Cui L, Liu Y, Cheng Z, Quan L, Zeng T, Huang W, Dai Y, Chen J, Liu L, et al: High expression of chaperonin-containing TCP1 subunit 3 may induce dismal prognosis in multiple myeloma. Pharmacogenomics J. 20:563–573. 2020. View Article : Google Scholar : PubMed/NCBI | |
Danni X, Jiangzheng Z, Huamao S, Yinglian P, Changcheng Y and Yanda L: Chaperonin containing TCP1 subunit 3 (CCT3) promotes cisplatin resistance of lung adenocarcinoma cells through targeting the Janus kinase 2/signal transducers and activators of transcription 3 (JAK2/STAT3) pathway. Bioengineered. 12:7335–7347. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cui X, Hu ZP, Li Z, Gao PJ and Zhu JY: Overexpression of chaperonin containing TCP1, subunit 3 predicts poor prognosis in hepatocellular carcinoma. World J Gastroenterol. 21:8588–8604. 2015. View Article : Google Scholar : PubMed/NCBI | |
Morimoto E, Inagaki K, Komatsubara M, Terasaka T, Itoh Y, Fujisawa S, Sasaki E, Nishiyama Y, Hara T and Wada J: Effects of Wnt-β-Catenin signaling and sclerostin on the phenotypes of rat pheochromocytoma PC12 cells. J Endocr Soc. 6:bvac1212022. View Article : Google Scholar | |
Li W, Xu Y, Wang X, Cao G, Bu W, Wang X, Fang Z, Xu Y, Dong M and Tao Q: circCCT3 modulates vascular endothelial growth factor A and Wnt signaling to enhance colorectal cancer metastasis through sponging miR-613. DNA Cell Biol. 39:118–125. 2020. View Article : Google Scholar | |
Qu H, Zhu F, Dong H, Hu X and Han M: Upregulation of CCT-3 induces breast cancer cell proliferation through miR-223 competition and Wnt/β-Catenin signaling pathway activation. Front Oncol. 10:5331762020. View Article : Google Scholar | |
Tang N, Cai X, Peng L, Liu H and Chen Y: TCP1 regulates Wnt7b/β-catenin pathway through P53 to influence the proliferation and migration of hepatocellular carcinoma cells. Signal Transduct Target Ther. 5:1692020. View Article : Google Scholar | |
Wang Q, Huang WR, Chih WY, Chuang KP, Chang CD, Wu Y, Huang Y and Liu HJ: Cdc20 and molecular chaperone CCT2 and CCT5 are required for the Muscovy duck reovirus p10.8-induced cell cycle arrest and apoptosis. Vet Microbiol. 235:151–163. 2019. View Article : Google Scholar : PubMed/NCBI | |
Rivlin N, Katz S, Doody M, Sheffer M, Horesh S, Molchadsky A, Koifman G, Shetzer Y, Goldfinger N, Rotter V and Geiger T: Rescue of embryonic stem cells from cellular transformation by proteomic stabilization of mutant p53 and conversion into WT conformation. Proc Natl Acad Sci USA. 111:7006–7011. 2014. View Article : Google Scholar : PubMed/NCBI | |
Trinidad AG, Muller PA, Cuellar J, Klejnot M, Nobis M, Valpuesta JM and Vousden KH: Interaction of p53 with the CCT complex promotes protein folding and wild-type p53 activity. Mol Cell. 50:805–817. 2013. View Article : Google Scholar : PubMed/NCBI | |
Monteith J and McMahon SB: p53: The TRiC is knowing when to fold 'em. Mol Cell. 50:781–782. 2013. View Article : Google Scholar : PubMed/NCBI | |
Arsic N, Slatter T, Gadea G, Villain E, Fournet A, Kazantseva M, Allemand F, Sibille N, Seveno M, de Rossi S, et al: Δ133p53β isoform pro-invasive activity is regulated through an aggregation-dependent mechanism in cancer cells. Nat Commun. 12:54632021. View Article : Google Scholar | |
Lee SC and Chan J: Proteomic identification of chaperonin-containing tail-less complex polypeptide-1 gamma subunit as a p53-responsive protein in colon cancer cells. Cancer Genomics Proteomics. 9:101–108. 2012.PubMed/NCBI | |
Ooe A, Kato K and Noguchi S: Possible involvement of CCT5, RGS3, and YKT6 genes up-regulated in p53-mutated tumors in resistance to docetaxel in human breast cancers. Breast Cancer Res Treat. 101:305–315. 2007. View Article : Google Scholar | |
Liu Q, Liu J, He N, Zhang M, Wu L, Chen X, Zhu J, Ran F, Chen Q and Zhang H: CRISPR/Cas12a coupling with magnetic nanoparticles and cascaded strand displacement reaction for ultrasensitive fluorescence determination of exosomal miR-21. Molecules. 27:53382022. View Article : Google Scholar : PubMed/NCBI | |
Ke L, Ma H, Zhang Q, Wang Y, Xia P, Yu L, Lv W and Hu J: The pattern of lymph node metastasis in peripheral pulmonary nodules patients and risk prediction models. Front Surg. 9:9813132022. View Article : Google Scholar : PubMed/NCBI | |
Shao F, Chen Y, Xu H, Chen X, Zhou J, Wu Y, Tang Y, Wang Z, Zhang R, Lange T, et al: Metabolic obesity phenotypes and risk of lung cancer: A prospective cohort study of 450,482 UK biobank participants. Nutrients. 14:33702022. View Article : Google Scholar : PubMed/NCBI | |
Villalobos-Manzo R, Ríos-Castro E, Hernández-Hernández JM, Oza G, Medina MA and Tapia-Ramírez J: Identification of transferrin receptor 1 (TfR1) overexpressed in lung cancer cells, and internalization of magnetic Au-CoFe(2)O(4) core-shell nanoparticles functionalized with its ligand in a cellular model of small cell lung cancer (SCLC). Pharmaceutics. 14:17152022. View Article : Google Scholar : PubMed/NCBI | |
Xu M and Gong J: Prognostic signature, immune features, and therapeutic responses of a novel ubiquitination-related gene signature in lung adenocarcinoma. J Oncol. 2022:25246492022. View Article : Google Scholar : PubMed/NCBI | |
Platini H, Ferdinand E, Kohar K, Prayogo SA, Amirah S, Komariah M and Maulana S: Neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio as prognostic markers for advanced non-small-cell lung cancer treated with immunotherapy: A systematic review and meta-analysis. Medicina (Kaunas). 58:10692022. View Article : Google Scholar : PubMed/NCBI | |
Zhou F, Qian C, Chen T and Zang X: MiR-96-5p facilitates lung adenocarcinoma cell phenotypes by inhibiting FHL1. Comput Math Methods Med. 2022:78912222022. View Article : Google Scholar : PubMed/NCBI | |
Hu S, Cao P, Kong K, Han P, Yue J, Deng Y, Li F and Zhao B: circCNN2 accelerates cell proliferation and invasion in lung squamous cell carcinoma via regulating miR-184/E2F1 and Activating MAPK signaling pathway. Dis Markers. 2022:63290972022. View Article : Google Scholar : PubMed/NCBI | |
Barak D, Engelberg S, Assaraf YG and Livney YD: Selective targeting and eradication of various human non-small cell lung cancer cell lines using self-assembled aptamer-decorated nanoparticles. Pharmaceutics. 14:16502022. View Article : Google Scholar : PubMed/NCBI | |
Skonieczna M, Kasprzycka A, Jelen M and Morak-Mlodawska B: Tri- and pentacyclic azaphenothiazine as pro-apoptotic agents in lung carcinoma with a protective potential to healthy cell lines. Molecules. 27:52552022. View Article : Google Scholar : PubMed/NCBI | |
Cui XY, Park SH and Park WH: Anti-cancer effects of auranofin in human lung cancer cells by increasing intracellular ROS levels and depleting GSH levels. Molecules. 27:52072022. View Article : Google Scholar : PubMed/NCBI | |
Shi H, Zhang Y, Wang Y, Fang P, Liu Y and Li W: Restraint of chaperonin containing T-complex protein-1 subunit 3 has antitumor roles in non-small cell lung cancer via affection of YAP1. Toxicol Appl Pharmacol. 439:1159262022. View Article : Google Scholar : PubMed/NCBI | |
Liu YJ, Chang YJ, Kuo YT and Liang PH: Targeting β-tubulin/CCT-β complex induces apoptosis and suppresses migration and invasion of highly metastatic lung adenocarcinoma. Carcinogenesis. 41:699–710. 2020. View Article : Google Scholar | |
Ying Z, Tian H, Li Y, Lian R, Li W, Wu S, Zhang HZ, Wu J, Liu L, Song J, et al: CCT6A suppresses SMAD2 and promotes prometastatic TGF-β signaling. J Clin Invest. 127:1725–1740. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Wang X, Xu L, Lin Y and Zhang J: CCT6A and CHCHD2 are coamplified with EGFR and associated with the unfavorable clinical outcomes of lung adenocarcinoma. Dis Markers. 2022:15601992022.PubMed/NCBI | |
Zhang T, Shi W, Tian K and Kong Y: Chaperonin containing t-complex polypeptide 1 subunit 6A correlates with lymph node metastasis, abnormal carcinoembryonic antigen and poor survival profiles in non-small cell lung carcinoma. World J Surg Oncol. 18:1562020. View Article : Google Scholar : PubMed/NCBI | |
Tewelde B, Tamire M and Kaba M: Breast self-examination practice and predictors among female secondary school teachers in Addis Ababa, Ethiopia: Using the health belief model. BMC Womens Health. 22:3172022. View Article : Google Scholar : PubMed/NCBI | |
Liu N, Yang DW, Wu YX, Xue WQ, Li DH, Zhang JB, He YQ and Jia WH: Burden, trends, and risk factors for breast cancer in China from 1990 to 2019 and its predictions until 2034: An up-to-date overview and comparison with those in Japan and South Korea. BMC Cancer. 22:8262022. View Article : Google Scholar : PubMed/NCBI | |
de Freitas GB, Penteado L, Miranda MM, Filassi JR, Baracat EC and Linhares IM: The circulating 70 kDa heat shock protein (HSPA1A) level is a potential biomarker for breast carcinoma and its progression. Sci Rep. 12:130122022. View Article : Google Scholar | |
Tang M, O'Grady S, Crown J and Duffy MJ: MYC as a therapeutic target for the treatment of triple-negative breast cancer: Preclinical investigations with the novel MYC inhibitor, MYCi975. Breast Cancer Res Treat. 195:105–115. 2022. View Article : Google Scholar : PubMed/NCBI | |
Tam S, Al-Zubaidi Y, Rahman MK, Bourget K, Zhou F and Murray M: The ixabepilone and vandetanib combination shows synergistic activity in docetaxel-resistant MDA-MB-231 breast cancer cells. Pharmacol Rep. 74:998–1010. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kotani H, Masuda N, Yamashita T, Naito Y, Taira T, Inoue K, Takahashi M, Yonemori K, Toyoizumi S, Mori Y, et al: Efficacy and safety of talazoparib in Japanese patients with germline BRCA-mutated locally advanced or metastatic breast cancer: Results of the phase 1 dose-expansion study. Breast Cancer. 29:1088–1098. 2022. View Article : Google Scholar : PubMed/NCBI | |
Xu WX, Song W, Jiang MP, Yang SJ, Zhang J, Wang DD and Tang JH: Systematic characterization of expression profiles and prognostic values of the eight subunits of the chaperonin TRiC in breast cancer. Front Genet. 12:6378872021. View Article : Google Scholar : PubMed/NCBI | |
Huang K, Zeng Y, Xie Y, Huang L and Wu Y: Bioinformatics analysis of the prognostic value of CCT6A and associated signalling pathways in breast cancer. Mol Med Rep. 19:4344–4352. 2019.PubMed/NCBI | |
Macario AJL and Conway de Macario E: Chaperonins in cancer: Expression, function, and migration in extracellular vesicles. Semin Cancer Biol. 86(Pt 1): 26–35. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu Q, Qi Y, Kong X, Wang X, Zhang W, Zhai J, Yang Y, Fang Y and Wang J: Molecular and clinical characterization of CCT2 expression and prognosis via large-scale transcriptome profile of breast cancer. Front Oncol. 11:6144972021. View Article : Google Scholar : PubMed/NCBI | |
Ghozlan H, Showalter A, Lee E, Zhu X and Khaled AR: Chaperonin-Containing TCP1 Complex (CCT) promotes breast cancer growth through correlations with key cell cycle regulators. Front Oncol. 11:6638772021. View Article : Google Scholar : PubMed/NCBI | |
Bassiouni R, Nemec KN, Iketani A, Flores O, Showalter A, Khaled AS, Vishnubhotla P, Sprung RW Jr, Kaittanis C, Perez JM and Khaled AR: Chaperonin Containing TCP-1 protein level in breast cancer cells predicts therapeutic application of a cytotoxic peptide. Clin Cancer Res. 22:4366–4379. 2016. View Article : Google Scholar : PubMed/NCBI | |
Satriano L, Lewinska M, Rodrigues PM, Banales JM and Andersen JB: Metabolic rearrangements in primary liver cancers: Cause and consequences. Nat Rev Gastroenterol Hepatol. 16:748–766. 2019. View Article : Google Scholar : PubMed/NCBI | |
Trefts E, Gannon M and Wasserman DH: The liver. Curr Biol. 27:R1147–R1151. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cheng ML, Nakib D, Perciani CT and MacParland SA: The immune niche of the liver. Clin Sci (Lond). 135:2445–2466. 2021. View Article : Google Scholar : PubMed/NCBI | |
Villanueva A: Hepatocellular carcinoma. N Engl J Med. 380:1450–1462. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gao YX, Yang TW, Yin JM, Yang PX, Kou BX, Chai MY, Liu XN and Chen DX: Progress and prospects of biomarkers in primary liver cancer (Review). Int J Oncol. 57:54–66. 2020.PubMed/NCBI | |
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hepatocellular carcinoma. Nat Rev Dis Primers. 7:72021. View Article : Google Scholar : PubMed/NCBI | |
Moon H, Park H, Chae MJ, Choi HJ, Kim DY and Ro SW: Activated TAZ induces liver cancer in collaboration with EGFR/HER2 signaling pathways. BMC Cancer. 22:4232022. View Article : Google Scholar : PubMed/NCBI | |
Keenan BP, Fong L and Kelley RK: Immunotherapy in hepatocellular carcinoma: The complex interface between inflammation, fibrosis, and the immune response. J Immunother Cancer. 7:2672019. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Lu Z and Zhao X: Tumorigenesis, diagnosis, and therapeutic potential of exosomes in liver cancer. J Hematol Oncol. 12:1332019. View Article : Google Scholar : PubMed/NCBI | |
Mintz KJ and Leblanc RM: The use of nanotechnology to combat liver cancer: Progress and perspectives. Biochim Biophys Acta Rev Cancer. 1876:1886212021. View Article : Google Scholar : PubMed/NCBI | |
Anwanwan D, Singh SK, Singh S, Saikam V and Singh R: Challenges in liver cancer and possible treatment approaches. Biochim Biophys Acta Rev Cancer. 1873:1883142010. View Article : Google Scholar | |
Rebouissou S and Nault JC: Advances in molecular classification and precision oncology in hepatocellular carcinoma. J Hepatol. 72:215–229. 2020. View Article : Google Scholar : PubMed/NCBI | |
Qian EN, Han SY, Ding SZ and Lv X: Expression and diagnostic value of CCT3 and IQGAP3 in hepatocellular carcinoma. Cancer Cell Int. 16:552016. View Article : Google Scholar : PubMed/NCBI | |
Wang F, Wang R, Li Q, Qu X, Hao Y, Yang J, Zhao H, Wang Q, Li G, Zhang F, et al: A transcriptome profile in hepatocellular carcinomas based on integrated analysis of microarray studies. Diagn Pathol. 12:42017. View Article : Google Scholar : PubMed/NCBI | |
Yunna C, Mengru H, Lei W and Weidong C: Macrophage M1/M2 polarization. Eur J Pharmacol. 877:1730902020. View Article : Google Scholar : PubMed/NCBI | |
Wong N, Chan A, Lee SW, Lam E, To KF, Lai PB, Li XN, Liew CT and Johnson PJ: Positional mapping for amplified DNA sequences on 1q21-q22 in hepatocellular carcinoma indicates candidate genes over-expression. J Hepatol. 38:298–306. 2003. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Huang L, Zhu Y, He Y, Zhang W, Lei T, Xuan J, Xiao B, Li L, Zhou Q and Sun Z: Exploring the expression and prognostic value of the TCP1 ring complex in hepatocellular carcinoma and overexpressing its subunit 5 Promotes HCC tumorigenesis. Front Oncol. 11:7396602021. View Article : Google Scholar : PubMed/NCBI | |
Zeng G, Wang J and Huang Y, Lian Y, Chen D, Wei H, Lin C and Huang Y: Overexpressing CCT6A contributes to cancer cell growth by affecting the G1-To-S phase transition and predicts a negative prognosis in hepatocellular carcinoma. Onco Targets Ther. 12:10427–10439. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shaath H, Vishnubalaji R, Elango R, Kardousha A, Islam Z, Qureshi R, Alam T, Kolatkar PR and Alajez NM: Long non-coding RNA and RNA-binding protein interactions in cancer: Experimental and machine learning approaches. Semin Cancer Biol. 86(Pt 3): 325–345. 2022. View Article : Google Scholar : PubMed/NCBI | |
Pereira B, Billaud M and Almeida R: RNA-Binding proteins in cancer: Old players and new actors. Trends Cancer. 3:506–528. 2017. View Article : Google Scholar : PubMed/NCBI | |
Iino K, Mitobe Y, Ikeda K, Takayama KI, Suzuki T, Kawabata H, Suzuki Y, Horie-Inoue K and Inoue S: RNA-binding protein NONO promotes breast cancer proliferation by post-transcriptional regulation of SKP2 and E2F8. Cancer Sci. 111:148–159. 2020. View Article : Google Scholar | |
Sondergaard JN, Sommerauer C, Atanasoai I, Hinte LC, Geng K, Guiducci G, Brautigam L, Aouadi M, Stojic L, Barragan I and Kutter C: CCT3-LINC00326 axis regulates hepatocarcinogenic lipid metabolism. Gut. 71:2081–2092. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Xu L and Sun C: Comprehensive characterization of cancer genes in hepatocellular carcinoma genomes. Oncol Lett. 15:1503–1510. 2018.PubMed/NCBI | |
Xu J, Zhang Y, Liu C, Yan P and Yang Z: Roles of the miR-139-5p/CCT5 axis in hepatocellular carcinoma: A bioinformatic analysis. Int J Med Sci. 18:3556–3564. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zayegh O, Hmidi ZS, Nawlo AA, Al-Mouakeh A, Amin B, Banjah B, Chammout A and Alsayid M: Awareness and knowledge of colorectal cancer screening among medical students at the university of aleppo: A cross-sectional study. Avicenna J Med. 12:54–60. 2022. View Article : Google Scholar : PubMed/NCBI | |
Cummings A, Foster R, Calman L, Permyakova NV, Bridges J, Wiseman T, Corbett T, Smith PWF and Foster C: Quality of life and health status in older adults (>/=65 years) up to five years following colorectal cancer treatment: Findings from the ColoREctal Wellbeing (CREW) cohort study. PLoS One. 17:e02700332022. View Article : Google Scholar | |
La Vecchia S and Sebastián C: Metabolic pathways regulating colorectal cancer initiation and progression. Semin Cell Dev Biol. 98:63–70. 2020. View Article : Google Scholar | |
Liu X, Yang K, Li Z and Liu J: MMP2 polymorphisms and colorectal cancer susceptibility in a Chinese Han Population. Int J Gen Med. 15:6009–6019. 2022. View Article : Google Scholar : PubMed/NCBI | |
Pan S, Mei W, Huang L, Tao Y, Xu J and Ruan Y: Prediction of postoperative survival in young colorectal cancer patients: A cohort study based on the SEER database. J Immunol Res. 2022:27366762022. View Article : Google Scholar : PubMed/NCBI | |
Li J, Ma X, Chakravarti D, Shalapour S and DePinho RA: Genetic and biological hallmarks of colorectal cancer. Genes Dev. 35:787–820. 2021. View Article : Google Scholar : PubMed/NCBI | |
Dienstmann R, Vermeulen L, Guinney J, Kopetz S, Tejpar S and Tabernero J: Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer. Nat Rev Cancer. 17:79–92. 2017. View Article : Google Scholar : PubMed/NCBI | |
Watson AJ and Collins PD: Colon cancer: A civilization disorder. Dig Dis. 29:222–228. 2011. View Article : Google Scholar : PubMed/NCBI | |
Goldstein DA, Zeichner SB, Bartnik CM, Neustadter E and Flowers CR: Metastatic colorectal cancer: A systematic review of the value of current therapies. Clin Colorectal Cancer. 15:1–6. 2016. View Article : Google Scholar : | |
Siegel RL, Miller KD and Jemal A: Cancer statistics, 2016. CA Cancer J Clin. 66:7–30. 2016. View Article : Google Scholar : PubMed/NCBI | |
Qian-Lin Z, Ting-Feng W, Qi-Feng C, Min-Hua Z and Ai-Guo L: Inhibition of cytosolic chaperonin CCTζ-1 expression depletes proliferation of colorectal carcinoma in vitro. J Surg Oncol. 102:419–423. 2010. View Article : Google Scholar : PubMed/NCBI | |
Coghlin C, Carpenter B, Dundas SR, Lawrie LC, Telfer C and Murray GI: Characterization and over-expression of chaperonin t-complex proteins in colorectal cancer. J Pathol. 210:351–357. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yokota S, Yamamoto Y, Shimizu K, Momoi H, Kamikawa T, Yamaoka Y, Yanagi H, Yura T and Kubota H: Increased expression of cytosolic chaperonin CCT in human hepatocellular and colonic carcinoma. Cell Stress Chaperones. 6:345–350. 2001. View Article : Google Scholar | |
Yang X, Tong Y, Ye W and Chen L: HOXB2 increases the proliferation and invasiveness of colon cancer cells through the upregulation of CCT6A. Mol Med Rep. 25:1742022. View Article : Google Scholar : PubMed/NCBI | |
Liu YJ, Kumar V, Lin YF and Liang PH: Disrupting CCT-β : β-tubulin selectively kills CCT-β overexpressed cancer cells through MAPKs activation. Cell Death Dis. 8:e30522017. View Article : Google Scholar | |
Park SH, Jeong S, Kim BR, Jeong YA, Kim JL, Na YJ, Jo MJ, Yun HK, Kim DY, Kim BG, et al: Activating CCT2 triggers Gli-1 activation during hypoxic condition in colorectal cancer. Oncogene. 39:136–150. 2020. View Article : Google Scholar | |
Sun H, Wang Y, Jing HY, Yang XY, Shi XX, Zhang JH, Yu YX, Gao L, Wang XY, Li WH and Yu L: Chaperonin-Containing TCP1 Subunit 6A Is a prognostic potential biomarker that correlates with the presence of immune infiltrates in colorectal cancer. Front Genet. 12:6298562021. View Article : Google Scholar : PubMed/NCBI | |
Hu J, Han C, Zhong J, Liu H, Liu R, Luo W, Chen P and Ling F: Dynamic network biomarker of pre-exhausted CD8(+) T cells contributed to T cell exhaustion in colorectal cancer. Front Immunol. 12:6911422021. View Article : Google Scholar : PubMed/NCBI | |
Lu L, Li ZJ, Li LF, Wu WK, Shen J, Zhang L, Chan RL, Yu L, Liu YW, Ren SX, et al: Vascular-targeted TNFα improves tumor blood vessel function and enhances antitumor immunity and chemotherapy in colorectal cancer. J Control Release. 210:134–146. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lu L, Li ZJ, Li LF, Shen J, Zhang L, Li MX, Xiao ZG, Wang JH and Cho CH: A novel vascular-targeting peptide for gastric cancer delivers low-dose TNFα to normalize the blood vessels and improve the anti-cancer efficiency of 5-fluorouracil. Peptides. 97:54–63. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liao Q, Ren Y, Yang Y, Zhu X, Zhi Y, Zhang Y, Chen Y, Ding Y and Zhao L: CCT8 recovers WTp53-suppressed cell cycle evolution and EMT to promote colorectal cancer progression. Oncogenesis. 10:842021. View Article : Google Scholar : PubMed/NCBI |