Circular RNAs in osteosarcoma: An update of recent studies (Review)
Corrigendum in: /10.3892/ijo.2024.5696
- Authors:
- Le Zeng
- Longzhou Liu
- Wen-Juan Ni
- Fuhua Xie
- Xiao-Min Leng
-
Affiliations: School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China - Published online on: September 6, 2023 https://doi.org/10.3892/ijo.2023.5571
- Article Number: 123
This article is mentioned in:
Abstract
Link MP, Goorin AM, Miser AW, Green AA, Pratt CB, Belasco JB, Pritchard J, Malpas JS, Baker AR, Kirkpatrick JA, et al: The effect of adjuvant chemotherapy on relapse-free survival in patients with osteosarcoma of the extremity. N Engl J Med. 314:1600–1606. 1986. View Article : Google Scholar : PubMed/NCBI | |
Damron TA, Ward WG and Stewart A: Osteosarcoma, chondrosarcoma, and Ewing's sarcoma: National Cancer Data Base report. Clin Orthop Relat Res. 459:40–47. 2007. View Article : Google Scholar : PubMed/NCBI | |
Meyers PA, Healey JH, Chou AJ, Wexler LH, Merola PR, Morris CD, Laquaglia MP, Kellick MG, Abramson SJ and Gorlick R: Addition of pamidronate to chemotherapy for the treatment of osteosarcoma. Cancer. 117:1736–1744. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gaspar N, Occean B, Pacquement H, Bompas E, Bouvier C, Brisse HJ, Castex MP, Cheurfa N, Corradini N, Delaye J, et al: Results of methotrexate-etoposide-ifosfamide based regimen (M-EI) in osteosarcoma patients included in the French OS2006/sarcome-09 study. Eur J Cancer. 88:57–66. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kansara M, Teng MW, Smyth MJ and Thomas DM: Translational biology of osteosarcoma. Nat Rev Cancer. 14:722–735. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sadykova LR, Ntekim AI, Muyangwa-Semenova M, Rutland CS, Jeyapalan JN, Blatt N and Rizvanov AA: Epidemiology and risk factors of osteosarcoma. Cancer Invest. 38:259–269. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kushlinskii NE, Fridman MV and Braga EA: Molecular mechanisms and microRNAs in osteosarcoma pathogenesis. Biochemistry (Mosc). 81:315–328. 2016. View Article : Google Scholar : PubMed/NCBI | |
Saraf AJ, Fenger JM and Roberts RD: Osteosarcoma: Accelerating progress makes for a hopeful future. Front Oncol. 8:42018. View Article : Google Scholar : PubMed/NCBI | |
Chong ZX, Yeap SK and Ho WY: Unraveling the roles of miRNAs in regulating epithelial-to-mesenchymal transition (EMT) in osteosarcoma. Pharmacol Res. 172:1058182021. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Yu X, Yan Y, Wang C and Wang W: PI3K/Akt signaling in osteosarcoma. Clin Chim Acta. 444:182–192. 2015. View Article : Google Scholar : PubMed/NCBI | |
ENCODE Project Consortium, . Birney E, Stamatoyannopoulos JA, Dutta A, Guigó R, Gingeras TR, Margulies EH, Weng Z, Snyder M, Dermitzakis ET, et al: Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature. 447:799–816. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lagos-Quintana M, Rauhut R, Lendeckel W and Tuschl T: Identification of novel genes coding for small expressed RNAs. Science. 294:853–858. 2001. View Article : Google Scholar : PubMed/NCBI | |
Chen L and Yang L: Regulation of circRNA biogenesis. Rna Biol. 12:381–388. 2015. View Article : Google Scholar : PubMed/NCBI | |
Salzman J, Chen RE, Olsen MN, Wang PL and Brown PO: Cell-type specific features of circular RNA expression. PLoS Genet. 9:e10037772013. View Article : Google Scholar : PubMed/NCBI | |
Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, et al: Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 495:333–338. 2013. View Article : Google Scholar : PubMed/NCBI | |
Huang G, Liang M, Liu H, Huang J, Li P, Wang C, Zhang Y, Lin Y and Jiang X: CircRNA hsa_circRNA_104348 promotes hepatocellular carcinoma progression through modulating miR-187-3p/RTKN2 axis and activating Wnt/β-catenin pathway. Cell Death Dis. 11:10652020. View Article : Google Scholar : PubMed/NCBI | |
Zheng X, Huang M, Xing L, Yang R, Wang X, Jiang R, Zhang L and Chen J: The circRNA circSEPT9 mediated by E2F1 and EIF4A3 facilitates the carcinogenesis and development of triple-negative breast cancer. Mol Cancer. 19:732020. View Article : Google Scholar : PubMed/NCBI | |
Wang N, Lu K, Qu H, Wang H, Chen Y, Shan T, Ge X, Wei Y, Zhou P and Xia J: CircRBM33 regulates IL-6 to promote gastric cancer progression through targeting miR-149. Biomed Pharmacother. 125:1098762020. View Article : Google Scholar : PubMed/NCBI | |
Zhou P, Xie W, Huang HL, Huang RQ, Tian C, Zhu HB, Dai YH and Li ZY: circRNA_100859 functions as an oncogene in colon cancer by sponging the miR-217-HIF-1α pathway. Aging (Albany NY). 12:13338–13353. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xu H, Liu Y, Cheng P, Wang C, Liu Y, Zhou W, Xu Y and Ji G: CircRNA_0000392 promotes colorectal cancer progression through the miR-193a-5p/PIK3R3/AKT axis. J Exp Clin Cancer Res. 39:2832020. View Article : Google Scholar : PubMed/NCBI | |
Arnaiz E, Sole C, Manterola L, Iparraguirre L, Otaegui D and Lawrie CH: CircRNAs and cancer: Biomarkers and master regulators. Semin Cancer Biol. 58:90–99. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function as efficient microRNA sponges. Nature. 495:384–388. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li X, Yang L and Chen L: The biogenesis, functions, and challenges of circular RNAs. Mol Cell. 71:428–442. 2018. View Article : Google Scholar : PubMed/NCBI | |
Pamudurti NR, Bartok O, Jens M, Ashwal-Fluss R, Stottmeister C, Ruhe L, Hanan M, Wyler E, Perez-Hernandez D, Ramberger E, et al: Translation of CircRNAs. Mol Cell. 66:9–21.e7. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li F, Tang H, Zhao S, Gao X, Yang L and Xu J: Circ-E-Cad encodes a protein that promotes the proliferation and migration of gastric cancer via the TGF-β/Smad/C-E-Cad/PI3K/AKT pathway. Mol Carcinog. 62:360–368. 2023. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Wang Z, Su P, Liang Y, Li Z, Zhang H, Song X, Han D, Wang X, Liu Y, et al: circ-EIF6 encodes EIF6-224aa to promote TNBC progression via stabilizing MYH9 and activating the Wnt/beta-catenin pathway. Mol Ther. 30:415–430. 2022. View Article : Google Scholar : PubMed/NCBI | |
Cheng J, Li G, Wang W, Stovall DB, Sui G and Li D: Circular RNAs with protein-coding ability in oncogenesis. Biochim Biophys Acta Rev Cancer. 1878:1889092023. View Article : Google Scholar : PubMed/NCBI | |
Sinha T, Panigrahi C, Das D and Chandra PA: Circular RNA translation, a path to hidden proteome. Wiley Interdiscip Rev RNA. 13:e16852022. View Article : Google Scholar : PubMed/NCBI | |
Sanger HL, Klotz G, Riesner D, Gross HJ and Kleinschmidt AK: Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci USA. 73:3852–3856. 1976. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Li X, Xu D, Chen X, Li S, Zhang L, Chan MTV and Wu WKK: An update on the roles of circular RNAs in osteosarcoma. Cell Prolif. 54:e129362021. View Article : Google Scholar : PubMed/NCBI | |
Kolakofsky D: Isolation and characterization of Sendai virus DI-RNAs. Cell. 8:547–555. 1976. View Article : Google Scholar : PubMed/NCBI | |
Nigro JM, Cho KR, Fearon ER, Kern SE, Ruppert JM, Oliner JD, Kinzler KW and Vogelstein B: Scrambled exons. Cell. 64:607–613. 1991. View Article : Google Scholar : PubMed/NCBI | |
Capel B, Swain A, Nicolis S, Hacker A, Walter M, Koopman P, Goodfellow P and Lovell-Badge R: Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell. 73:1019–1030. 1993. View Article : Google Scholar : PubMed/NCBI | |
Hsu MT and Coca-Prados M: Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature. 280:339–340. 1979. View Article : Google Scholar : PubMed/NCBI | |
Cocquerelle C, Mascrez B, Hétuin D and Bailleul B: Mis-splicing yields circular RNA molecules. FASEB J. 7:155–160. 1993. View Article : Google Scholar : PubMed/NCBI | |
Solé C and Lawrie CH: Circular RNAs and cancer: Opportunities and challenges. Adv Clin Chem. 99:87–146. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF and Sharpless NE: Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 19:141–157. 2013. View Article : Google Scholar : PubMed/NCBI | |
Noto JJ, Schmidt CA and Matera AG: Engineering and expressing circular RNAs via tRNA splicing. Rna Biol. 14:978–984. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, Zhu S, Yang L and Chen LL: Circular intronic long noncoding RNAs. Mol Cell. 51:792–806. 2013. View Article : Google Scholar : PubMed/NCBI | |
Talhouarne GJS and Gall JG: Lariat intronic RNAs in the cytoplasm of vertebrate cells. Proc Natl Acad Sci USA. 115:E7970–E7977. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lu Z, Filonov GS, Noto JJ, Schmidt CA, Hatkevich TL, Wen Y, Jaffrey SR and Matera AG: Metazoan tRNA introns generate stable circular RNAs in vivo. RNA. 21:1554–1565. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Han P, Zhou T, Guo X, Song X and Li Y: circRNADb: A comprehensive database for human circular RNAs with protein-coding annotations. Sci Rep. 6:349852016. View Article : Google Scholar : PubMed/NCBI | |
Tang Z, Li X, Zhao J, Qian F, Feng C, Li Y, Zhang J, Jiang Y, Yang Y, Wang Q and Li C: TRCirc: A resource for transcriptional regulation information of circRNAs. Brief Bioinform. 20:2327–2333. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhao X, Cai Y and Xu J: Circular RNAs: Biogenesis, mechanism, and function in human cancers. Int J Mol Sci. 20:39262019. View Article : Google Scholar : PubMed/NCBI | |
Hansen TB, Wiklund ED, Bramsen JB, Villadsen SB, Statham AL, Clark SJ and Kjems J: miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J. 30:4414–4422. 2011. View Article : Google Scholar : PubMed/NCBI | |
Li B and Li X: Overexpression of hsa_circ_0007534 predicts unfavorable prognosis for osteosarcoma and regulates cell growth and apoptosis by affecting AKT/GSK-3β signaling pathway. Biomed Pharmacother. 107:860–866. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xu B, Yang T, Wang Z, Zhang Y, Liu S and Shen M: CircRNA CDR1as/miR-7 signals promote tumor growth of osteosarcoma with a potential therapeutic and diagnostic value. Cancer Manag Res. 10:4871–4880. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Yan J, Lang X and Zhuang Y: Expression of circ_001569 is upregulated in osteosarcoma and promotes cell proliferation and cisplatin resistance by activating the Wnt/β-catenin signaling pathway. Oncol Lett. 16:5856–5862. 2018.PubMed/NCBI | |
Deng N, Li L, Gao J, Zhou J, Wang Y, Wang C and Liu Y: Hsa_circ_0009910 promotes carcinogenesis by promoting the expression of miR-449a target IL6R in osteosarcoma. Biochem Biophys Res Commun. 495:189–196. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wu Z, Shi W and Jiang C: Overexpressing circular RNA hsa_circ_0002052 impairs osteosarcoma progression via inhibiting Wnt/β-catenin pathway by regulating miR-1205/APC2 axis. Biochem Biophys Res Commun. 502:465–471. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li X, Sun XH, Xu HY, Pan HS, Liu Y and He L: Circ_ORC2 enhances the regulatory effect of miR-19a on its target gene PTEN to affect osteosarcoma cell growth. Biochem Biophys Res Commun. 514:1172–1178. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li S, Pei Y, Wang W, Liu F, Zheng K and Zhang X: Circular RNA 0001785 regulates the pathogenesis of osteosarcoma as a ceRNA by sponging miR-1200 to upregulate HOXB2. Cell Cycle. 18:1281–1291. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ren C, Liu J, Zheng B, Yan P, Sun Y and Yue B: The circular RNA circ-ITCH acts as a tumour suppressor in osteosarcoma via regulating miR-22. Artif Cells Nanomed Biotechnol. 47:3359–3367. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Deng M, Chen L, Wang W, Liu G, Liu D, Han Z and Zhou Y: Circular RNA Circ-03955 promotes epithelial-mesenchymal transition in osteosarcoma by regulating miR-3662/metadherin pathway. Front Oncol. 10:5454602020. View Article : Google Scholar : PubMed/NCBI | |
Ding S, Zhang G, Gao Y, Chen S and Cao C: Circular RNA hsa_circ_0005909 modulates osteosarcoma progression via the miR-936/HMGB1 axis. Cancer Cell Int. 20:3052020. View Article : Google Scholar : PubMed/NCBI | |
Zhang PR, Ren J, Wan JS, Sun R and Li Y: Circular RNA hsa_circ_0002052 promotes osteosarcoma via modulating miR-382/STX6 axis. Hum Cell. 33:810–818. 2020. View Article : Google Scholar : PubMed/NCBI | |
Du YX, Guo LX, Pan HS, Liang YM and Li X: Circ_ANKIB1 stabilizes the regulation of miR-19b on SOCS3/STAT3 pathway to promote osteosarcoma cell growth and invasion. Hum Cell. 33:252–260. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gao Y, Ma H, Gao Y, Tao K, Fu L, Ren R, Hu X, Kou M, Chen B, Shi J and Wen Y: CircRNA Circ_0001721 promotes the progression of osteosarcoma through miR-372-3p/MAPK7 axis. Cancer Manag Res. 12:8287–8302. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu YP, Wan J, Long F, Tian J and Zhang C: circPVT1 facilitates invasion and metastasis by regulating miR-205-5p/c-FLIP axis in osteosarcoma. Cancer Manag Res. 12:1229–1240. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Liu G, Wu Y, Ma J, Wu H, Xie Z, Chen S, Yang Y, Wang S, Shen P, et al: CircMYO10 promotes osteosarcoma progression by regulating miR-370-3p/RUVBL1 axis to enhance the transcriptional activity of β-catenin/LEF1 complex via effects on chromatin remodeling. Mol Cancer. 18:1502019. View Article : Google Scholar : PubMed/NCBI | |
Li S, Pei Y, Wang W, Liu F, Zheng K and Zhang X: Extracellular nanovesicles-transmitted circular RNA has_circ_0000190 suppresses osteosarcoma progression. J Cell Mol Med. 24:2202–2214. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sun D and Zhu D: Circular RNA hsa_circ_0001649 suppresses the growth of osteosarcoma cells via sponging multiple miRNAs. Cell Cycle. 19:2631–2643. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yang B, Li L, Tong G, Zeng Z, Tan J, Su Z, Liu Z, Lin J, Gao W, Chen J, et al: Circular RNA circ_001422 promotes the progression and metastasis of osteosarcoma via the miR-195-5p/FGF2/PI3K/Akt axis. J Exp Clin Cancer Res. 40:2352021. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Na N, Liu L and Qiu Y: CircRNA hsa_circ_0005909 promotes cell proliferation of osteosarcoma cells by targeting miR-338-3p/HMGA1 axis. Cancer Manag Res. 13:795–803. 2021. View Article : Google Scholar : PubMed/NCBI | |
Bai Y, Li Y, Bai J and Zhang Y: Hsa_circ_0004674 promotes osteosarcoma doxorubicin resistance by regulating the miR-342-3p/FBN1 axis. J Orthop Surg Res. 16:5102021. View Article : Google Scholar : PubMed/NCBI | |
Li S, Liu F, Zheng K, Wang W, Qiu E, Pei Y, Wang S, Zhang J and Zhang X: CircDOCK1 promotes the tumorigenesis and cisplatin resistance of osteogenic sarcoma via the miR-339-3p/IGF1R axis. Mol Cancer. 20:1612021. View Article : Google Scholar : PubMed/NCBI | |
Shi Z, Wang K, Xing Y and Yang X: CircNRIP1 encapsulated by bone marrow mesenchymal stem cell-derived extracellular vesicles aggravates osteosarcoma by modulating the miR-532-3p/AKT3/PI3K/AKT axis. Front Oncol. 11:6581392021. View Article : Google Scholar : PubMed/NCBI | |
Feng ZH, Zheng L, Yao T, Tao SY, Wei XA, Zheng ZY, Zheng BJ, Zhang XY, Huang B, Liu JH, et al: EIF4A3-induced circular RNA PRKAR1B promotes osteosarcoma progression by miR-361-3p-mediated induction of FZD4 expression. Cell Death Dis. 12:10252021. View Article : Google Scholar : PubMed/NCBI | |
Li JJ, Xiong MY, Sun TY, Ji CB, Guo RT, Li YW and Guo HY: CircFAM120B knockdown inhibits osteosarcoma tumorigenesis via the miR-1205/PTBP1 axis. Aging (Albany NY). 13:23831–23841. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gao Y, Liu C, Zhao X, Liu C, Bi W and Jia J: hsa_circ_0000006 induces tumorigenesis through miR-361-3p targeting immunoglobulin-like domains protein 1 (LRIG1) in osteosarcoma. Ann Transl Med. 9:12422021. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Yu GY, Liu G and Liu WD: Circular RNA circ_0002137 regulated the progression of osteosarcoma through regulating miR-433-3p/IGF1R axis. J Cell Mol Med. 26:1806–1816. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Wang J, Li Y and Zhao Y: Circ_0051079 silencing inhibits the malignant phenotypes of osteosarcoma cells by the TRIM66/Wnt/β-catenin pathway in a miR-625-5p-dependent manner. J Bone Oncol. 35:1004362022. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Yuan J, Zhang Q, Ren Z, Li G and Tian R: Circ_0016347 modulates proliferation, migration, invasion, cell cycle, and apoptosis of osteosarcoma cells via the miR-661/IL6R axis. Autoimmunity. 55:264–274. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Qiu G, Luo Y, Li S, Xu Y, Zhang Y, Hu J, Li P, Pan H and Wang Y: Circular RNA ROCK1, a novel circRNA, suppresses osteosarcoma proliferation and migration via altering the miR-532-5p/PTEN axis. Exp Mol Med. 54:1024–1037. 2022. View Article : Google Scholar : PubMed/NCBI | |
Peng L, Liu Q, Wu T, Li P, Cai Y, Wei X, Zeng Y, Ye J, Chen P, Huang J and Lin H: Hsa_circ_0087302, a circular RNA, affects the progression of osteosarcoma via the Wnt/β-catenin signaling pathway. Int J Med Sci. 19:1377–1387. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang D, Wang Y, Wang H, Yang Y, Li L, Liu Y and Yin X: Hsa_circ_0000591 drives osteosarcoma glycolysis and progression by sequestering miR-194-5p and elevating HK2 expression. Clin Exp Pharmacol Physiol. 50:463–475. 2023. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Zheng L, Yang L, Chen D, Ren G, Yan X and Pu J: Hsa_circ_0020378 targets miR-556-5p/MAPK1 to regulate osteosarcoma cell proliferation and migration. Gene. 856:1471352023. View Article : Google Scholar : PubMed/NCBI | |
Gong Z, Shen P, Wang H, Zhu J, Liang K, Wang K, Mi Y, Shen S, Fang X and Liu G: A novel circular RNA circRBMS3 regulates proliferation and metastasis of osteosarcoma by targeting miR-424-eIF4B/YRDC axis. Aging (Albany NY). 15:1564–1590. 2023. View Article : Google Scholar : PubMed/NCBI | |
Trang NTN, Lai CY, Tsai HC, Huang YL, Liu SC, Tsai CH, Fong YC, Tzeng HE and Tang CH: Apelin promotes osteosarcoma metastasis by upregulating PLOD2 expression via the Hippo signaling pathway and hsa_circ_0000004/miR-1303 axis. Int J Biol Sci. 19:412–425. 2023. View Article : Google Scholar : PubMed/NCBI | |
Luo Y, Yang B, Yuan X and Zheng J: Silencing circUSP48 suppresses osteosarcoma progression by regulating the miR-335/smad nuclear interacting protein 1 pathway. J Clin Lab Anal. 37:e248282023. View Article : Google Scholar : PubMed/NCBI | |
Xu L, Duan J, Li M, Zhou C and Wang Q: Circ_0000253 promotes the progression of osteosarcoma via the miR-1236-3p/SP1 axis. J Pharm Pharmacol. 75:227–235. 2023. View Article : Google Scholar : PubMed/NCBI | |
Qi X, Zhang DH, Wu N, Xiao JH, Wang X and Ma W: ceRNA in cancer: Possible functions and clinical implications. J Med Genet. 52:710–718. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu T, Song Z and Gai Y: Circular RNA circ_0001649 acts as a prognostic biomarker and inhibits NSCLC progression via sponging miR-331-3p and miR-338-5p. Biochem Biophys Res Commun. 503:1503–1509. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Hou J, Zhang X, Xu G, Wang Y, Shen L, Wu Y, Li Y and Yao L: Circ-XPO1 upregulates XPO1 expression by sponging multiple miRNAs to facilitate osteosarcoma cell progression. Exp Mol Pathol. 117:1045532020. View Article : Google Scholar : PubMed/NCBI | |
Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O, Fatica A, Santini T, Andronache A, Wade M, et al: Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell. 66:22–37.e9. 2017. View Article : Google Scholar : PubMed/NCBI | |
Imataka H, Olsen HS and Sonenberg N: A new translational regulator with homology to eukaryotic translation initiation factor 4G. EMBO J. 16:817–825. 1997. View Article : Google Scholar : PubMed/NCBI | |
Morino S, Imataka H, Svitkin YV, Pestova TV and Sonenberg N: Eukaryotic translation initiation factor 4E (eIF4E) binding site and the middle one-third of eIF4GI constitute the core domain for cap-dependent translation, and the C-terminal one-third functions as a modulatory region. Mol Cell Biol. 20:468–477. 2000. View Article : Google Scholar : PubMed/NCBI | |
Liberman N, Gandin V, Svitkin YV, David M, Virgili G, Jaramillo M, Holcik M, Nagar B, Kimchi A and Sonenberg N: DAP5 associates with eIF2β and eIF4AI to promote internal ribosome entry site driven translation. Nucleic Acids Res. 43:3764–3775. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lamphear BJ, Kirchweger R, Skern T and Rhoads RE: Mapping of functional domains in eukaryotic protein synthesis initiation factor 4G (eIF4G) with picornaviral proteases. Implications for cap-dependent and cap-independent translational initiation. J Biol Chem. 270:21975–21983. 1995. View Article : Google Scholar : PubMed/NCBI | |
Hellen CU and Sarnow P: Internal ribosome entry sites in eukaryotic mRNA molecules. Gene Dev. 15:1593–1612. 2001. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Zhao K, Xu X, Yang Y, Yan S, Wei P, Liu H, Xu J, Xiao F, Zhou H, et al: A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma. Nat Commun. 9:44752018. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, Jin Y, Yang Y, Chen LL, Wang Y, et al: Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res. 27:626–641. 2017. View Article : Google Scholar : PubMed/NCBI | |
He L, Man C, Xiang S, Yao L, Wang X and Fan Y: Circular RNAs' cap-independent translation protein and its roles in carcinomas. Mol Cancer. 20:1192021. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Li Z, Zhang M, Zhou H, Wu X, Zhong J, Xiao F, Huang N, Yang X, Zeng R, et al: Rolling-translated EGFR variants sustain EGFR signaling and promote glioblastoma tumorigenicity. Neuro Oncol. 23:743–756. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ye F, Gao G, Zou Y, Zheng S, Zhang L, Ou X, Xie X and Tang H: circFBXW7 inhibits malignant progression by sponging miR-197-3p and encoding a 185-aa protein in triple-negative breast cancer. Mol Ther Nucleic Acids. 18:88–98. 2019. View Article : Google Scholar : PubMed/NCBI | |
Pan Z, Cai J, Lin J, Zhou H, Peng J, Liang J, Xia L, Yin Q, Zou B, Zheng J, et al: A novel protein encoded by circFNDC3B inhibits tumor progression and EMT through regulating Snail in colon cancer. Mol Cancer. 19:712020. View Article : Google Scholar : PubMed/NCBI | |
Weigelt CM, Sehgal R, Tain LS, Cheng J, Eßer J, Pahl A, Dieterich C, Grönke S and Partridge L: An insulin-sensitive circular RNA that regulates lifespan in Drosophila. Mol Cell. 79:268–279.e5. 2020. View Article : Google Scholar : PubMed/NCBI | |
Duan JL, Chen W, Xie JJ, Zhang ML, Nie RC, Liang H, Mei J, Han K, Xiang ZC, Wang FW, et al: A novel peptide encoded by N6-methyladenosine modified circMAP3K4 prevents apoptosis in hepatocellular carcinoma. Mol Cancer. 21:932022. View Article : Google Scholar : PubMed/NCBI | |
Song R, Ma S, Xu J, Ren X, Guo P, Liu H, Li P, Yin F, Liu M, Wang Q, et al: A novel polypeptide encoded by the circular RNA ZKSCAN1 suppresses HCC via degradation of mTOR. Mol Cancer. 22:162023. View Article : Google Scholar : PubMed/NCBI | |
Peng Y, Xu Y, Zhang X, Deng S, Yuan Y, Luo X, Hossain MT, Zhu X, Du K, Hu F, et al: A novel protein AXIN1-295aa encoded by circAXIN1 activates the Wnt/β-catenin signaling pathway to promote gastric cancer progression. Mol Cancer. 20:1582021. View Article : Google Scholar : PubMed/NCBI | |
Jiang T, Xia Y, Lv J, Li B, Li Y, Wang S, Xuan Z, Xie L, Qiu S, He Z, et al: A novel protein encoded by circMAPK1 inhibits progression of gastric cancer by suppressing activation of MAPK signaling. Mol Cancer. 20:662021. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Zhou X, Geng X, Zhang Y, Wang J, Wang Y, Jing J, Zhou X and Pan W: Circular RNA hsa_circ_0006401 promotes proliferation and metastasis in colorectal carcinoma. Cell Death Dis. 12:4432021. View Article : Google Scholar : PubMed/NCBI | |
Liang ZX, Liu HS, Xiong L, Yang X, Wang FW, Zeng ZW, He XW, Wu XR and Lan P: A novel NF-κB regulator encoded by circPLCE1 inhibits colorectal carcinoma progression by promoting RPS3 ubiquitin-dependent degradation. Mol Cancer. 20:1032021. View Article : Google Scholar : PubMed/NCBI | |
Gao X, Xia X, Li F, Zhang M, Zhou H, Wu X, Zhong J, Zhao Z, Zhao K, Liu D, et al: Circular RNA-encoded oncogenic E-cadherin variant promotes glioblastoma tumorigenicity through activation of EGFR-STAT3 signalling. Nat Cell Biol. 23:278–291. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xia X, Li X, Li F, Wu X, Zhang M, Zhou H, Huang N, Yang X, Xiao F, Liu D, et al: A novel tumor suppressor protein encoded by circular AKT3 RNA inhibits glioblastoma tumorigenicity by competing with active phosphoinositide-dependent kinase-1. Mol Cancer. 18:1312019. View Article : Google Scholar : PubMed/NCBI | |
Zheng X, Chen L, Zhou Y, Wang Q, Zheng Z, Xu B, Wu C, Zhou Q, Hu W, Wu C and Jiang J: A novel protein encoded by a circular RNA circPPP1R12A promotes tumor pathogenesis and metastasis of colon cancer via Hippo-YAP signaling. Mol Cancer. 18:472019. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Jian W, Luo Q and Fang L: CircSEMA4B inhibits the progression of breast cancer by encoding a novel protein SEMA4B-211aa and regulating AKT phosphorylation. Cell Death Dis. 13:7942022. View Article : Google Scholar : PubMed/NCBI | |
Abdelmohsen K, Panda AC, Munk R, Grammatikakis I, Dudekula DB, De S, Kim J, Noh JH, Kim KM, Martindale JL and Gorospe M: Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol. 14:361–369. 2017. View Article : Google Scholar : PubMed/NCBI | |
Du WW, Yang W, Chen Y, Wu ZK, Foster FS, Yang Z, Li X and Yang BB: Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur Heart J. 38:1402–1412. 2017.PubMed/NCBI | |
Li X, Liu CX, Xue W, Zhang Y, Jiang S, Yin QF, Wei J, Yao RW, Yang L and Chen LL: Coordinated circRNA biogenesis and function with NF90/NF110 in viral infection. Mol Cell. 67:214–227.e7. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L, et al: Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 22:256–264. 2015. View Article : Google Scholar : PubMed/NCBI | |
Conn VM, Hugouvieux V, Nayak A, Conos SA, Capovilla G, Cildir G, Jourdain A, Tergaonkar V, Schmid M, Zubieta C and Conn SJ: A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation. Nat Plants. 3:170532017. View Article : Google Scholar : PubMed/NCBI | |
Liu CX and Chen LL: Circular RNAs: Characterization, cellular roles, and applications. Cell. 185:2016–2034. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hirano T, Ishihara K and Hibi M: Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene. 19:2548–2556. 2000. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Liao S, Bennett S, Tang H, Song D, Wood D, Zhan X and Xu J: STAT3 and its targeting inhibitors in osteosarcoma. Cell Prolif. 54:e129742021. View Article : Google Scholar : PubMed/NCBI | |
DiDonato JA, Mercurio F and Karin M: NF-κB and the link between inflammation and cancer. Immunol Rev. 246:379–400. 2012. View Article : Google Scholar : PubMed/NCBI | |
Dolcet X, Llobet D, Pallares J and Matias-Guiu X: NF-kB in development and progression of human cancer. Virchows Arch. 446:475–482. 2005. View Article : Google Scholar : PubMed/NCBI | |
Sims GP, Rowe DC, Rietdijk ST, Herbst R and Coyle AJ: HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol. 28:367–388. 2010. View Article : Google Scholar : PubMed/NCBI | |
Porta C, Paglino C and Mosca A: Targeting PI3K/Akt/mTOR signaling in cancer. Front Oncol. 4:642014. View Article : Google Scholar : PubMed/NCBI | |
Gill J and Gorlick R: Advancing therapy for osteosarcoma. Nat Rev Clin Oncol. 18:609–624. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xi Y and Chen Y: PTEN plays dual roles as a tumor suppressor in osteosarcoma cells. J Cell Biochem. 118:2684–2692. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liau SS, Jazag A and Whang EE: HMGA1 is a determinant of cellular invasiveness and in vivo metastatic potential in pancreatic adenocarcinoma. Cancer Res. 66:11613–11622. 2006. View Article : Google Scholar : PubMed/NCBI | |
Cai Y, Cai T and Chen Y: Wnt pathway in osteosarcoma, from oncogenic to therapeutic. J Cell Biochem. 115:625–631. 2014. View Article : Google Scholar : PubMed/NCBI | |
McQueen P, Ghaffar S, Guo Y, Rubin EM, Zi X and Hoang BH: The Wnt signaling pathway: Implications for therapy in osteosarcoma. Expert Rev Anticanc. 11:1223–1232. 2011. View Article : Google Scholar : PubMed/NCBI | |
Guo Y, Zi X, Koontz Z, Kim A, Xie J, Gorlick R, Holcombe RF and Hoang BH: Blocking Wnt/LRP5 signaling by a soluble receptor modulates the epithelial to mesenchymal transition and suppresses met and metalloproteinases in osteosarcoma Saos-2 cells. J Orthop Res. 25:964–971. 2007. View Article : Google Scholar : PubMed/NCBI | |
Duan H, Yan Z, Chen W, Wu Y, Han J, Guo H and Qiao J: TET1 inhibits EMT of ovarian cancer cells through activating Wnt/β-catenin signaling inhibitors DKK1 and SFRP2. Gynecol Oncol. 147:408–417. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Natino D, Qin Z, Wang D, Tian Z, Cai X, Wang B and He X: Identification and functional characterization of circRNA-0008717 as an oncogene in osteosarcoma through sponging miR-203. Oncotarget. 9:22288–22300. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kun-Peng Z, Xiao-Long M and Chun-Lin Z: Overexpressed circPVT1, a potential new circular RNA biomarker, contributes to doxorubicin and cisplatin resistance of osteosarcoma cells by regulating ABCB1. Int J Biol Sci. 14:321–330. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lei S and Xiang L: Up-regulation of circRNA hsa_circ_0003074 expression is a reliable diagnostic and prognostic biomarker in patients with osteosarcoma. Cancer Manag Res. 12:9315–9325. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lin Y, Jewell BE, Gingold J, Lu L, Zhao R, Wang LL and Lee DF: Osteosarcoma: Molecular pathogenesis and iPSC modeling. Trends Mol Med. 23:737–755. 2017. View Article : Google Scholar : PubMed/NCBI | |
Corre I, Verrecchia F, Crenn V, Redini F and Trichet V: The osteosarcoma microenvironment: A complex but targetable ecosystem. Cells. 9:9762020. View Article : Google Scholar : PubMed/NCBI | |
Meng X, Li X, Zhang P, Wang J, Zhou Y and Chen M: Circular RNA: An emerging key player in RNA world. Brief Bioinform. 18:547–557. 2017.PubMed/NCBI | |
Xi Y, Fowdur M, Liu Y, Wu H, He M and Zhao J: Differential expression and bioinformatics analysis of circRNA in osteosarcoma. Biosci Rep. 39:BSR201815142019. View Article : Google Scholar : PubMed/NCBI | |
Yanbin Z and Jing Z: CircSAMD4A accelerates cell proliferation of osteosarcoma by sponging miR-1244 and regulating MDM2 mRNA expression. Biochem Biophys Res Commun. 516:102–111. 2019. View Article : Google Scholar : PubMed/NCBI | |
Xie C, Chen B, Wu B, Guo J, Shi Y and Cao Y: CircSAMD4A regulates cell progression and epithelial-mesenchymal transition by sponging miR-342-3p via the regulation of FZD7 expression in osteosarcoma. Int J Mol Med. 46:107–118. 2020.PubMed/NCBI |