1
|
Banales JM, Cardinale V, Carpino G,
Marzioni M, Andersen JB, Invernizzi P, Lind GE, Folseraas T, Forbes
SJ, Fouassier L, et al: Expert consensus document:
Cholangiocarcinoma: Current knowledge and future perspectives
consensus statement from the European network for the study of
cholangiocarcinoma (ENS-CCA). Nat Rev Gastroenterol Hepatol.
13:261–280. 2016.
|
2
|
Rizzo A, Carloni R, Frega G, Palloni A, Di
Federico A, Ricci AD, De Luca R, Tavolari S and Brandi G: Intensive
follow-up program and oncological outcomes of biliary tract cancer
patients after curative-intent surgery: A twenty-year experience in
a single tertiary medical center. Curr Oncol. 29:5084–5090.
2022.
|
3
|
Cai Y, Cheng N, Ye H, Li F, Song P and
Tang W: The current management of cholangiocarcinoma: A comparison
of current guidelines. Biosci Trends. 10:92–102. 2016.
|
4
|
Fabris L, Perugorria MJ, Mertens J,
Björkström NK, Cramer T, Lleo A, Solinas A, Sänger H, Lukacs-Kornek
V, Moncsek A, et al: The tumour microenvironment and immune milieu
of cholangiocarcinoma. Liver Int. 39(Suppl 1): S63–S78. 2019.
|
5
|
Xia T, Li K, Niu N, Shao Y, Ding D, Thomas
DL, Jing H, Fujiwara K, Hu H, Osipov A, et al: Immune cell atlas of
cholangiocarcinomas reveals distinct tumor microenvironments and
associated prognoses. J Hematol Oncol. 15:372022.
|
6
|
Liu D, Heij LR, Czigany Z, Dahl E, Lang
SA, Ulmer TF, Luedde T, Neumann UP and Bednarsch J: The role of
tumor-infiltrating lymphocytes in cholangiocarcinoma. J Exp Clin
Cancer Res. 41:1272022.
|
7
|
Mittal D, Gubin MM, Schreiber RD and Smyth
MJ: New insights into cancer immunoediting and its three component
phases-elimination, equilibrium and escape. Curr Opin Immunol.
27:16–25. 2014.
|
8
|
O'Donnell JS, Teng MWL and Smyth MJ:
Cancer immunoediting and resistance to T cell-based immunotherapy.
Nat Rev Clin Oncol. 16:151–167. 2019.
|
9
|
Gubin MM and Vesely MD: Cancer
immunoediting in the era of immuno-oncology. Clin Cancer Res.
28:3917–3928. 2022.
|
10
|
Kelley RK, Ueno M, Yoo C, Finn RS, Furuse
J, Ren Z, Yau T, Klümpen HJ, Chan SL, Ozaka M, et al: Pembrolizumab
in combination with gemcitabine and cisplatin compared with
gemcitabine and cisplatin alone for patients with advanced biliary
tract cancer (KEYNOTE-966): A randomised, double-blind,
placebo-controlled, phase 3 trial. Lancet. 401:1853–1865. 2023.
|
11
|
Sahai V, Griffith KA, Beg MS, Shaib WL,
Mahalingam D, Zhen DB, Deming DA and Zalupski MM: A randomized
phase 2 trial of nivolumab, gemcitabine, and cisplatin or nivolumab
and ipilimumab in previously untreated advanced biliary cancer:
BilT-01. Cancer. 128:3523–3530. 2022.
|
12
|
Monge C, Pehrsson EC, Xie C, Duffy AG,
Mabry D, Wood BJ, Kleiner DE, Steinberg SM, Figg WD, Redd B, et al:
A phase II study of pembrolizumab in combination with capecitabine
and oxaliplatin with molecular profiling in patients with advanced
biliary tract carcinoma. Oncologist. 27:e273–e285. 2022.
|
13
|
Sirica AE and Gores GJ: Desmoplastic
stroma and cholangiocarcinoma: Clinical implications and
therapeutic targeting. Hepatology. 59:2397–2402. 2014.
|
14
|
Montori M, Scorzoni C, Argenziano ME,
Balducci D, De Blasio F, Martini F, Buono T, Benedetti A, Marzioni
M and Maroni L: Cancer-associated fibroblasts in
cholangiocarcinoma: Current knowledge and possible implications for
therapy. J Clin Med. 11:64982022.
|
15
|
Okabe H, Beppu T, Hayashi H, Horino K,
Masuda T, Komori H, Ishikawa S, Watanabe M, Takamori H, Iyama K and
Baba H: Hepatic stellate cells may relate to progression of
intrahepatic cholangiocarcinoma. Ann Surg Oncol. 16:2555–2564.
2009.
|
16
|
Dranoff JA and Wells RG: Portal
fibroblasts: Underappreciated mediators of biliary fibrosis.
Hepatology. 51:1438–1444. 2010.
|
17
|
Quante M, Tu SP, Tomita H, Gonda T, Wang
SS, Takashi S, Baik GH, Shibata W, Diprete B, Betz KS, et al: Bone
marrow-derived myofibroblasts contribute to the mesenchymal stem
cell niche and promote tumor growth. Cancer Cell. 19:257–272.
2011.
|
18
|
Affo S, Nair A, Brundu F, Ravichandra A,
Bhattacharjee S, Matsuda M, Chin L, Filliol A, Wen W, Song X, et
al: Promotion of cholangiocarcinoma growth by diverse
cancer-associated fibroblast subpopulations. Cancer Cell.
39:866–882. 2021.
|
19
|
Mertens JC, Fingas CD, Christensen JD,
Smoot RL, Bronk SF, Werneburg NW, Gustafson MP, Dietz AB, Roberts
LR, Sirica AE and Gores GJ: Therapeutic effects of deleting
cancer-associated fibroblasts in cholangiocarcinoma. Cancer Res.
73:897–907. 2013.
|
20
|
Zhang XF, Dong M, Pan YH, Chen JN, Huang
XQ, Jin Y and Shao CK: Expression pattern of cancer-associated
fibroblast and its clinical relevance in intrahepatic
cholangiocarcinoma. Hum Pathol. 65:92–100. 2017.
|
21
|
Itou RA, Uyama N, Hirota S, Kawada N, Wu
S, Miyashita S, Nakamura I, Suzumura K, Sueoka H, Okada T, et al:
Immunohistochemical characterization of cancer-associated
fibroblasts at the primary sites and in the metastatic lymph nodes
of human intrahepatic cholangiocarcinoma. Hum Pathol. 83:77–89.
2019.
|
22
|
Sirica AE: The role of cancer-associated
myofibroblasts in intrahepatic cholangiocarcinoma. Nat Rev
Gastroenterol Hepatol. 9:44–54. 2011.
|
23
|
Clapéron A, Mergey M, Aoudjehane L,
Ho-Bouldoires TH, Wendum D, Prignon A, Merabtene F, Firrincieli D,
Desbois-Mouthon C, Scatton O, et al: Hepatic myofibroblasts promote
the progression of human cholangiocarcinoma through activation of
epidermal growth factor receptor. Hepatology. 58:2001–2011.
2013.
|
24
|
Clapéron A, Mergey M, Nguyen Ho-Bouldoires
TH, Vignjevic D, Wendum D, Chrétien Y, Merabtene F, Frazao A,
Paradis V, Housset C, et al: EGF/EGFR axis contributes to the
progression of cholangiocarcinoma through the induction of an
epithelial-mesenchymal transition. J Hepatol. 61:325–332. 2014.
|
25
|
Ohira S, Sasaki M, Harada K, Sato Y, Zen
Y, Isse K, Kozaka K, Ishikawa A, Oda K, Nimura Y and Nakanuma Y:
Possible regulation of migration of intrahepatic cholangiocarcinoma
cells by interaction of CXCR4 expressed in carcinoma cells with
tumor necrosis factor-alpha and stromal-derived factor-1 released
in stroma. Am J Pathol. 168:1155–1168. 2006.
|
26
|
Gentilini A, Rombouts K, Galastri S,
Caligiuri A, Mingarelli E, Mello T, Marra F, Mantero S, Roncalli M,
Invernizzi P and Pinzani M: Role of the stromal-derived factor-1
(SDF-1)-CXCR4 axis in the interaction between hepatic stellate
cells and cholangiocarcinoma. J Hepatol. 57:813–820. 2012.
|
27
|
McCarthy JB, El-Ashry D and Turley EA:
Hyaluronan, cancer-associated fibroblasts and the tumor
microenvironment in malignant progression. Front Cell Dev Biol.
6:482018.
|
28
|
Cyphert JM, Trempus CS and Garantziotis S:
Size matters: Molecular weight specificity of hyaluronan effects in
cell biology. Int J Cell Biol. 2015:5638182015.
|
29
|
Tian X, Azpurua J, Hine C, Vaidya A,
Myakishev-Rempel M, Ablaeva J, Mao Z, Nevo E, Gorbunova V and
Seluanov A: High-molecular-mass hyaluronan mediates the cancer
resistance of the naked mole rat. Nature. 499:346–349. 2013.
|
30
|
Zhang M, Yang H, Wan L, Wang Z, Wang H, Ge
C, Liu Y, Hao Y, Zhang D, Shi G, et al: Single-cell transcriptomic
architecture and intercellular crosstalk of human intrahepatic
cholangiocarcinoma. J Hepatol. 73:1118–1130. 2020.
|
31
|
Cadamuro M, Nardo G, Indraccolo S,
Dall'olmo L, Sambado L, Moserle L, Franceschet I, Colledan M,
Massani M, Stecca T, et al: Platelet-derived growth factor-D and
Rho GTPases regulate recruitment of cancer-associated fibroblasts
in cholangiocarcinoma. Hepatology. 58:1042–1053. 2013.
|
32
|
Fingas CD, Bronk SF, Werneburg NW, Mott
JL, Guicciardi ME, Cazanave SC, Mertens JC, Sirica AE and Gores GJ:
Myofibroblast-derived PDGF-BB promotes Hedgehog survival signaling
in cholangiocarcinoma cells. Hepatology. 54:2076–2088. 2011.
|
33
|
Cadamuro M, Brivio S, Mertens J, Vismara
M, Moncsek A, Milani C, Fingas C, Cristina Malerba M, Nardo G,
Dall'Olmo L, et al: Platelet-derived growth factor-D enables liver
myofibroblasts to promote tumor lymphangiogenesis in
cholangiocarcinoma. J Hepatol. 70:700–709. 2019.
|
34
|
Wang Z, An J, Zhu D, Chen H, Lin A, Kang
J, Liu W and Kang X: Periostin: An emerging activator of multiple
signaling pathways. J Cell Commun Signal. 16:515–530. 2022.
|
35
|
Yue H, Li W, Chen R, Wang J, Lu X and Li
J: Stromal POSTN induced by TGF-β1 facilitates the migration and
invasion of ovarian cancer. Gynecol Oncol. 160:530–538. 2021.
|
36
|
Chen G, Wang Y, Zhao X, Xie XZ, Zhao JG,
Deng T, Chen ZY, Chen HB, Tong YF, Yang Z, et al: A positive
feedback loop between periostin and TGFβ1 induces and maintains the
stemness of hepatocellular carcinoma cells via AP-2α activation. J
Exp Clin Cancer Res. 40:2182021.
|
37
|
Yu B, Wu K, Wang X, Zhang J, Wang L, Jiang
Y, Zhu X, Chen W and Yan M: Periostin secreted by cancer-associated
fibroblasts promotes cancer stemness in head and neck cancer by
activating protein tyrosine kinase 7. Cell Death Dis.
9:10822018.
|
38
|
Ma H, Wang J, Zhao X, Wu T, Huang Z, Chen
D, Liu Y and Ouyang G: Periostin promotes colorectal tumorigenesis
through integrin-FAK-Src pathway-mediated YAP/TAZ activation. Cell
Rep. 30:793–806.e6. 2020.
|
39
|
Utispan K, Sonongbua J, Thuwajit P,
Chau-In S, Pairojkul C, Wongkham S and Thuwajit C: Periostin
activates integrin α5β1 through a PI3K/AKT-dependent pathway in
invasion of cholangiocarcinoma. Int J Oncol. 41:1110–1118.
2012.
|
40
|
Sonongbua J, Siritungyong S, Thongchot S,
Kamolhan T, Utispan K, Thuwajit P, Pongpaibul A, Wongkham S and
Thuwajit C: Periostin induces epithelial-to-mesenchymal transition
via the integrin α5β1/TWIST-2 axis in cholangiocarcinoma. Oncol
Rep. 43:1147–1158. 2020.
|
41
|
Peng H, Zhu E and Zhang Y: Advances of
cancer-associated fibroblasts in liver cancer. Biomark Res.
10:592022.
|
42
|
Kunk PR, Dougherty SC, Lynch K, Whitehair
R, Meneveau M, Obeid JM, Winters K, Ju JY, Stelow EB, Bauer TW, et
al: Myeloid cell infiltration correlates with prognosis in
cholangiocarcinoma and varies based on tumor location. J
Immunother. 44:254–263. 2021.
|
43
|
Hasita H, Komohara Y, Okabe H, Masuda T,
Ohnishi K, Lei XF, Beppu T, Baba H and Takeya M: Significance of
alternatively activated macrophages in patients with intrahepatic
cholangiocarcinoma. Cancer Sci. 101:1913–1919. 2010.
|
44
|
Charbel A, Tavernar L, Albrecht T,
Brinkmann F, Verheij J, Roos E, Vogel MN, Köhler B, Springfeld C,
Brobeil A, et al: Spatiotemporal analysis of tumour-infiltrating
immune cells in biliary carcinogenesis. Br J Cancer. 127:1603–1614.
2022.
|
45
|
Tu J, Wu F, Chen L, Zheng L, Yang Y, Ying
X, Song J, Chen C, Hu X, Zhao Z and Ji J: Long non-coding RNA PCAT6
induces M2 polarization of macrophages in cholangiocarcinoma via
modulating miR-326 and RhoA-ROCK signaling pathway. Front Oncol.
10:6058772021.
|
46
|
Kitano Y, Okabe H, Yamashita YI, Nakagawa
S, Saito Y, Umezaki N, Tsukamoto M, Yamao T, Yamamura K, Arima K,
et al: Tumour-infiltrating inflammatory and immune cells in
patients with extrahepatic cholangiocarcinoma. Br J Cancer.
118:171–180. 2018.
|
47
|
Paillet J, Kroemer G and Pol JG: Immune
contexture of cholangiocarcinoma. Curr Opin Gastroenterol.
36:70–76. 2020.
|
48
|
Yuan H, Lin Z, Liu Y, Jiang Y, Liu K, Tu
M, Yao N, Qu C and Hong J: Intrahepatic cholangiocarcinoma induced
M2-polarized tumor-associated macrophages facilitate tumor growth
and invasiveness. Cancer Cell Int. 20:5862020.
|
49
|
Bai R, Li Y, Jian L, Yang Y, Zhao L and
Wei M: The hypoxia-driven crosstalk between tumor and
tumor-associated macrophages: Mechanisms and clinical treatment
strategies. Mol Cancer. 21:1772022.
|
50
|
Loilome W, Bungkanjana P, Techasen A,
Namwat N, Yongvanit P, Puapairoj A, Khuntikeo N and Riggins GJ:
Activated macrophages promote Wnt/β-catenin signaling in
cholangiocarcinoma cells. Tumour Biol. 35:5357–5367. 2014.
|
51
|
Cheng H and Li Q: Sevoflurane inhibits
cholangiocarcinoma via Wnt/β-catenin signaling pathway. BMC
Gastroenterol. 23:2792023.
|
52
|
Boulter L, Guest RV, Kendall TJ, Wilson
DH, Wojtacha D, Robson AJ, Ridgway RA, Samuel K, Van Rooijen N,
Barry ST, et al: WNT signaling drives cholangiocarcinoma growth and
can be pharmacologically inhibited. J Clin Invest. 125:1269–1285.
2015.
|
53
|
Zhou SL, Dai Z, Zhou ZJ, Chen Q, Wang Z,
Xiao YS, Hu ZQ, Huang XY, Yang GH, Shi YH, et al: CXCL5 contributes
to tumor metastasis and recurrence of intrahepatic
cholangiocarcinoma by recruiting infiltrative intratumoral
neutrophils. Carcinogenesis. 35:597–605. 2014.
|
54
|
Zhou Z, Wang P, Sun R, Li J, Hu Z, Xin H,
Luo C, Zhou J, Fan J and Zhou S: Tumor-associated neutrophils and
macrophages interaction contributes to intrahepatic
cholangiocarcinoma progression by activating STAT3. J Immunother
Cancer. 9:e0019462021.
|
55
|
Pandey G: Tumor-associated macrophages in
solid tumor: Friend or foe. Ann Transl Med. 8:10272020.
|
56
|
Brandau S, Dumitru CA and Lang S: Protumor
and antitumor functions of neutrophil granulocytes. Semin
Immunopathol. 35:163–176. 2013.
|
57
|
Ohms M, Möller S and Laskay T: An attempt
to polarize human neutrophils toward N1 and N2 phenotypes in vitro.
Front Immunol. 11:5322020.
|
58
|
Jaillon S, Ponzetta A, Di Mitri D, Santoni
A, Bonecchi R and Mantovani A: Neutrophil diversity and plasticity
in tumour progression and therapy. Nat Rev Cancer. 20:485–503.
2020.
|
59
|
Mao ZY, Zhu GQ, Xiong M, Ren L and Bai L:
Prognostic value of neutrophil distribution in cholangiocarcinoma.
World J Gastroenterol. 21:4961–4968. 2015.
|
60
|
Branchi V, Jürgensen B, Esser L,
Gonzalez-Carmona M, Weismüller TJ, Strassburg CP, Henn J, Semaan A,
Lingohr P, Manekeller S, et al: Tumor infiltrating neutrophils are
frequently found in adenocarcinomas of the biliary tract and their
precursor lesions with possible impact on prognosis. J Pers Med.
11:2332021.
|
61
|
Parker KH, Beury DW and Ostrand-Rosenberg
S: Myeloid-derived suppressor cells: Critical cells driving immune
suppression in the tumor microenvironment. Adv Cancer Res.
128:95–139. 2015.
|
62
|
Desai R, Coxon AT and Dunn GP: Therapeutic
applications of the cancer immunoediting hypothesis. Semin Cancer
Biol. 78:63–77. 2022.
|
63
|
Qin G, Liu S, Liu J, Hu H, Yang L, Zhao Q,
Li C, Zhang B and Zhang Y: Overcoming resistance to immunotherapy
by targeting GPR84 in myeloid-derived suppressor cells. Signal
Transduct Target Ther. 8:1642023.
|
64
|
Kalathil S, Lugade AA, Miller A, Iyer R
and Thanavala Y: Higher frequencies of GARP(+)CTLA-4(+)Foxp3(+) T
regulatory cells and myeloid-derived suppressor cells in
hepatocellular carcinoma patients are associated with impaired
T-cell functionality. Cancer Res. 73:2435–2444. 2013.
|
65
|
Zhang Q, Ma C, Duan Y, Heinrich B, Rosato
U, Diggs LP, Ma L, Roy S, Fu Q, Brown ZJ, et al: Gut microbiome
directs hepatocytes to recruit MDSCs and promote
cholangiocarcinoma. Cancer Discov. 11:1248–1267. 2021.
|
66
|
Lin Y, Cai Q, Chen Y, Shi T, Liu W, Mao L,
Deng B, Ying Z, Gao Y, Luo H, et al: CAFs shape myeloid-derived
suppressor cells to promote stemness of intrahepatic
cholangiocarcinoma through 5-lipoxygenase. Hepatology. 75:28–42.
2022.
|
67
|
Loeuillard E, Yang J, Buckarma E, Wang J,
Liu Y, Conboy C, Pavelko KD, Li Y, O'Brien D, Wang C, et al:
Targeting tumor-associated macrophages and granulocytic
myeloid-derived suppressor cells augments PD-1 blockade in
cholangiocarcinoma. J Clin Invest. 130:5380–5396. 2020.
|
68
|
Chiossone L, Dumas PY, Vienne M and Vivier
E: Natural killer cells and other innate lymphoid cells in cancer.
Nat Rev Immunol. 18:671–688. 2018.
|
69
|
Hung TH, Hung JT, Wu CE, Huang Y, Lee CW,
Yeh CT, Chung YH, Lo FY, Lai LC, Tung JK, et al: Globo H is a
promising theranostic marker for intrahepatic cholangiocarcinoma.
Hepatol Commun. 6:194–208. 2022.
|
70
|
Morisaki T, Umebayashi M, Kiyota A, Koya
N, Tanaka H, Onishi H and Katano M: Combining cetuximab with killer
lymphocytes synergistically inhibits human cholangiocarcinoma cells
in vitro. Anticancer Res. 32:2249–2256. 2012.
|
71
|
Panwong S, Wathikthinnakon M, Kaewkod T,
Sawasdee N, Tragoolpua Y, Yenchitsomanus PT and Panya A: Cordycepin
sensitizes cholangiocarcinoma cells to be killed by natural
killer-92 (NK-92) cells. Molecules. 26:59732021.
|
72
|
Jung IH, Kim DH, Yoo DK, Baek SY, Jeong
SH, Jung DE, Park SW and Chung YY: In Vivo study of natural killer
(NK) cell cytotoxicity against cholangiocarcinoma in a nude mouse
model. In Vivo. 32:771–781. 2018.
|
73
|
Fukuda Y, Asaoka T, Eguchi H, Yokota Y,
Kubo M, Kinoshita M, Urakawa S, Iwagami Y, Tomimaru Y, Akita H, et
al: Endogenous CXCL9 affects prognosis by regulating
tumor-infiltrating natural killer cells in intrahepatic
cholangiocarcinoma. Cancer Sci. 111:323–333. 2020.
|
74
|
Tsukagoshi M, Wada S, Yokobori T, Altan B,
Ishii N, Watanabe A, Kubo N, Saito F, Araki K, Suzuki H, et al:
Overexpression of natural killer group 2 member D ligands predicts
favorable prognosis in cholangiocarcinoma. Cancer Sci. 107:116–122.
2016.
|
75
|
Melum E, Karlsen TH, Schrumpf E, Bergquist
A, Thorsby E, Boberg KM and Lie BA: Cholangiocarcinoma in primary
sclerosing cholangitis is associated with NKG2D polymorphisms.
Hepatology. 47:90–96. 2008.
|
76
|
Asahi Y, Hatanaka KC, Hatanaka Y, Kamiyama
T, Orimo T, Shimada S, Nagatsu A, Sakamoto Y, Kamachi H, Kobayashi
N, et al: Prognostic impact of CD8+ T cell distribution and its
association with the HLA class I expression in intrahepatic
cholangiocarcinoma. Surg Today. 50:931–940. 2020.
|
77
|
Kim HD, Kim JH, Ryu YM, Kim D, Lee S, Shin
J, Hong SM, Kim KH, Jung DH, Song GW, et al: Spatial distribution
and prognostic implications of tumor-infiltrating FoxP3-CD4+ T
cells in biliary tract cancer. Cancer Res Treat. 53:162–171.
2021.
|
78
|
Goeppert B, Frauenschuh L, Zucknick M,
Stenzinger A, Andrulis M, Klauschen F, Joehrens K, Warth A, Renner
M, Mehrabi A, et al: Prognostic impact of tumour-infiltrating
immune cells on biliary tract cancer. Br J Cancer. 109:2665–2674.
2013.
|
79
|
Ueno T, Tsuchikawa T, Hatanaka KC,
Hatanaka Y, Mitsuhashi T, Nakanishi Y, Noji T, Nakamura T, Okamura
K, Matsuno Y and Hirano S: Prognostic impact of programmed cell
death ligand 1 (PD-L1) expression and its association with
epithelial-mesenchymal transition in extrahepatic
cholangiocarcinoma. Oncotarget. 9:20034–20047. 2018.
|
80
|
Kasper HU, Drebber U, Stippel DL, Dienes
HP and Gillessen A: Liver tumor infiltrating lymphocytes:
Comparison of hepatocellular and cholangiolar carcinoma. World J
Gastroenterol. 15:5053–5057. 2009.
|
81
|
Kim HD, Jeong S, Park S, Lee YJ, Ju YS,
Kim D, Song GW, Lee JH, Kim SY, Shin J, et al: Implication of
CD69+ CD103+ tissue-resident-like
CD8+ T cells as a potential immunotherapeutic target for
cholangiocarcinoma. Liver Int. 41:764–776. 2021.
|
82
|
Carnevale G, Carpino G, Cardinale V,
Pisciotta A, Riccio M, Bertoni L, Gibellini L, De Biasi S, Nevi L,
Costantini D, et al: Activation of Fas/FasL pathway and the role of
c-FLIP in primary culture of human cholangiocarcinoma cells. Sci
Rep. 7:144192017.
|
83
|
Ye Y, Zhou L, Xie X, Jiang G, Xie H and
Zheng S: Interaction of B7-H1 on intrahepatic cholangiocarcinoma
cells with PD-1 on tumor-infiltrating T cells as a mechanism of
immune evasion. J Surg Oncol. 100:500–504. 2009.
|
84
|
Wu MJ, Shi L, Dubrot J, Merritt J, Vijay
V, Wei TY, Kessler E, Olander KE, Adil R, Pankaj A, et al: Mutant
IDH inhibits IFNγ-TET2 signaling to promote immunoevasion and tumor
maintenance in cholangiocarcinoma. Cancer Discov. 12:812–835.
2022.
|
85
|
Lu JC, Zeng HY, Sun QM, Meng QN, Huang XY,
Zhang PF, Yang X, Peng R, Gao C, Wei CY, et al: Distinct PD-L1/PD1
profiles and clinical implications in intrahepatic
cholangiocarcinoma patients with different risk factors.
Theranostics. 9:4678–4687. 2019.
|
86
|
Tian L, Ma J, Ma L, Zheng B, Liu L, Song
D, Wang Y, Zhang Z, Gao Q, Song K and Wang X: PD-1/PD-L1 expression
profiles within intrahepatic cholangiocarcinoma predict clinical
outcome. World J Surg Oncol. 18:3032020.
|
87
|
Vigano L, Soldani C, Franceschini B,
Cimino M, Lleo A, Donadon M, Roncalli M, Aghemo A, Di Tommaso L and
Torzilli G: Tumor-infiltrating lymphocytes and macrophages in
intrahepatic cholangiocellular carcinoma. Impact on prognosis after
complete surgery. J Gastrointest Surg. 23:2216–2224. 2019.
|
88
|
Goeppert B, Roessler S, Renner M, Singer
S, Mehrabi A, Vogel MN, Pathil A, Czink E, Köhler B, Springfeld C,
et al: Mismatch repair deficiency is a rare but putative
therapeutically relevant finding in non-liver fluke associated
cholangiocarcinoma. Br J Cancer. 120:109–114. 2019.
|
89
|
Whiteside TL: What are regulatory T cells
(Treg) regulating in cancer and why? Semin Cancer Biol. 22:327–334.
2012.
|
90
|
Tan YS, Sansanaphongpricha K, Xie Y,
Donnelly CR, Luo X, Heath BR, Zhao X, Bellile E, Hu H, Chen H, et
al: Mitigating SOX2-potentiated immune escape of head and neck
squamous cell carcinoma with a STING-inducing nanosatellite
vaccine. Clin Cancer Res. 24:4242–4255. 2018.
|
91
|
Ma C, Peng C, Lu X, Ding X, Zhang S, Zou X
and Zhang X: Downregulation of FOXP3 inhibits invasion and immune
escape in cholangiocarcinoma. Biochem Biophys Res Commun.
458:234–239. 2015.
|
92
|
Ma K, Sun Z, Li X, Guo J, Wang Q and Teng
M: Forkhead box M1 recruits FoxP3+ Treg cells to induce
immune escape in hilar cholangiocarcinoma. Immun Inflamm Dis.
10:e7272022.
|
93
|
Sarkar T, Dhar S and Sa G:
Tumor-infiltrating T-regulatory cells adapt to altered metabolism
to promote tumor-immune escape. Curr Res Immunol. 2:132–141.
2021.
|
94
|
Zhang G, Zheng G, Zhang H and Qiu L: MUC1
induces the accumulation of Foxp3+ Treg cells in the
tumor microenvironment to promote the growth and metastasis of
cholangiocarcinoma through the EGFR/PI3K/Akt signaling pathway. Int
Immunopharmacol. 118:1100912023.
|
95
|
Wang H, Li C, Jian Z, Ou Y and Ou J:
TGF-β1 reduces miR-29a expression to promote tumorigenicity and
metastasis of cholangiocarcinoma by targeting HDAC4. PLoS One.
10:e01367032015.
|
96
|
Martín-Sierra C, Martins R, Laranjeira P,
Abrantes AM, Oliveira RC, Tralhão JG, Botelho MF, Furtado E,
Domingues R and Paiva A: Functional impairment of circulating
FcεRI+ monocytes and myeloid dendritic cells in
hepatocellular carcinoma and cholangiocarcinoma patients. Cytometry
B Clin Cytom. 96:490–495. 2019.
|
97
|
Böttcher JP and Reis e Sousa C: The role
of type 1 conventional dendritic cells in cancer immunity. Trends
Cancer. 4:784–792. 2018.
|
98
|
Junking M, Grainok J, Thepmalee C,
Wongkham S and Yenchitsomanus PT: Enhanced cytotoxic activity of
effector T-cells against cholangiocarcinoma by dendritic cells
pulsed with pooled mRNA. Tumour Biol. 39:10104283177333672017.
|
99
|
Thepmalee C, Panya A, Sujjitjoon J,
Sawasdee N, Poungvarin N, Junking M and Yenchitsomanus PT:
Suppression of TGF-β and IL-10 receptors on self-differentiated
dendritic cells by short-hairpin RNAs enhanced activation of
effector T-cells against cholangiocarcinoma cells. Hum Vaccin
Immunother. 16:2318–2327. 2020.
|
100
|
Thepmalee C, Panya A, Junking M,
Chieochansin T and Yenchitsomanus PT: Inhibition of IL-10 and TGF-β
receptors on dendritic cells enhances activation of effector
T-cells to kill cholangiocarcinoma cells. Hum Vaccin Immunother.
14:1423–1431. 2018.
|
101
|
Sung E, Ko M, Won JY, Jo Y, Park E, Kim H,
Choi E, Jung UJ, Jeon J, Kim Y, et al: LAG-3xPD-L1 bispecific
antibody potentiates antitumor responses of T cells through
dendritic cell activation. Mol Ther. 30:2800–2816. 2022.
|
102
|
Zeng FL and Chen JF: Application of immune
checkpoint inhibitors in the treatment of cholangiocarcinoma.
Technol Cancer Res Treat. 20:153303382110399522021.
|
103
|
Halpert MM, Konduri V, Liang D, Chen Y,
Wing JB, Paust S, Levitt JM and Decker WK: Dendritic cell-secreted
cytotoxic T-lymphocyte-associated protein-4 regulates the T-cell
response by downmodulating bystander surface B7. Stem Cells Dev.
25:774–787. 2016.
|
104
|
Sadeghlar F, Vogt A, Mohr RU, Mahn R, van
Beekum K, Kornek M, Weismüller TJ, Branchi V, Matthaei H, Toma M,
et al: Induction of cytotoxic effector cells towards
cholangiocellular, pancreatic, and colorectal tumor cells by
activation of the immune checkpoint CD40/CD40L on dendritic cells.
Cancer Immunol Immunother. 70:1451–1464. 2021.
|
105
|
Djureinovic D, Wang M and Kluger HM:
Agonistic CD40 antibodies in cancer treatment. Cancers (Basel).
13:13022021.
|
106
|
Wu R, Ohara RA, Jo S, Liu TT, Ferris ST,
Ou F, Kim S, Theisen DJ, Anderson DA III, Wong BW, et al:
Mechanisms of CD40-dependent cDC1 licensing beyond costimulation.
Nat Immunol. 23:1536–1550. 2022.
|
107
|
Najafi M, Goradel NH, Farhood B, Salehi E,
Solhjoo S, Toolee H, Kharazinejad E and Mortezaee K: Tumor
microenvironment: Interactions and therapy. J Cell Physiol.
234:5700–5721. 2019.
|
108
|
Ruffolo LI, Jackson KM, Kuhlers PC, Dale
BS, Figueroa Guilliani NM, Ullman NA, Burchard PR, Qin SS, Juviler
PG, Keilson JM, et al: GM-CSF drives myelopoiesis, recruitment and
polarisation of tumour-associated macrophages in cholangiocarcinoma
and systemic blockade facilitates antitumour immunity. Gut.
71:1386–1398. 2022.
|
109
|
Feng M, Jiang W, Kim BYS, Zhang CC, Fu YX
and Weissman IL: Phagocytosis checkpoints as new targets for cancer
immunotherapy. Nat Rev Cancer. 19:568–586. 2019.
|
110
|
Grinberg-Bleyer Y, Oh H, Desrichard A,
Bhatt DM, Caron R, Chan TA, Schmid RM, Klein U, Hayden MS and Ghosh
S: NF-κB c-Rel is crucial for the regulatory T cell immune
checkpoint in cancer. Cell. 170:1096–1108.e13. 2017.
|
111
|
Li Z, Li Y, Gao J, Fu Y, Hua P, Jing Y,
Cai M, Wang H and Tong T: The role of CD47-SIRPα immune checkpoint
in tumor immune evasion and innate immunotherapy. Life Sci.
273:1191502021.
|
112
|
Vaeteewoottacharn K, Kariya R, Pothipan P,
Fujikawa S, Pairojkul C, Waraasawapati S, Kuwahara K, Wongkham C,
Wongkham S and Okada S: Attenuation of CD47-SIRPα signal in
cholangiocarcinoma potentiates tumor-associated macrophage-mediated
phagocytosis and suppresses intrahepatic metastasis. Transl Oncol.
12:217–225. 2019.
|
113
|
Morvan MG and Lanier LL: NK cells and
cancer: You can teach innate cells new tricks. Nature reviews
Cancer. 16:7–19. 2016.
|
114
|
Oliviero B, Varchetta S, Mele D, Pessino
G, Maiello R, Falleni M, Tosi D, Donadon M, Soldani C, Franceschini
B, et al: MICA/B-targeted antibody promotes NK cell-driven tumor
immunity in patients with intrahepatic cholangiocarcinoma.
Oncoimmunology. 11:20359192022.
|
115
|
Boussiotis VA: Molecular and biochemical
aspects of the PD-1 checkpoint pathway. N Engl J Med.
375:1767–1778. 2016.
|
116
|
Sharpe AH and Pauken KE: The diverse
functions of the PD1 inhibitory pathway. Nat Rev Immunol.
18:153–167. 2018.
|
117
|
Azuma T, Yao S, Zhu G, Flies AS, Flies SJ
and Chen L: B7-H1 is a ubiquitous antiapoptotic receptor on cancer
cells. Blood. 111:3635–3643. 2008.
|
118
|
Gato-Cañas M, Zuazo M, Arasanz H,
Ibañez-Vea M, Lorenzo L, Fernandez-Hinojal G, Vera R, Smerdou C,
Martisova E, Arozarena I, et al: PDL1 signals through conserved
sequence motifs to overcome interferon-mediated cytotoxicity. Cell
Rep. 20:1818–1829. 2017.
|
119
|
Hosseini A, Gharibi T, Marofi F, Babaloo Z
and Baradaran B: CTLA-4: From mechanism to autoimmune therapy. Int
Immunopharmacol. 80:1062212020.
|
120
|
Walter D, Herrmann E, Schnitzbauer AA,
Zeuzem S, Hansmann ML, Peveling-Oberhag J and Hartmann S: PD-L1
expression in extrahepatic cholangiocarcinoma. Histopathology.
71:383–392. 2017.
|
121
|
Yu F, Gong L, Mo Z, Wang W, Wu M, Yang J,
Zhang Q, Li L, Yao J and Dong J: Programmed death ligand-1, tumor
infiltrating lymphocytes and HLA expression in Chinese extrahepatic
cholangiocarcinoma patients: Possible immunotherapy implications.
Biosci Trends. 13:58–69. 2019.
|
122
|
Ma K, Wei X, Dong D, Wu Y, Geng Q and Li
E: PD-L1 and PD-1 expression correlate with prognosis in
extrahepatic cholangiocarcinoma. Oncol Lett. 14:250–256. 2017.
|
123
|
Kim H, Kim J, Byeon S, Jang KT, Hong JY,
Lee J, Park SH, Park JO, Park YS, Lim HY, et al: Programmed death
ligand 1 expression as a prognostic marker in patients with
advanced biliary tract cancer. Oncology. 99:365–372. 2021.
|
124
|
Kitano Y, Yamashita YI, Nakao Y, Itoyama
R, Yusa T, Umezaki N, Tsukamoto M, Yamao T, Miyata T, Nakagawa S,
et al: Clinical significance of PD-L1 expression in both cancer and
stroma cells of cholangiocarcinoma patients. Ann Surg Oncol.
27:599–607. 2020.
|
125
|
Xian F, Ren D, Bie J and Xu G: Prognostic
value of programmed cell death ligand 1 expression in patients with
intrahepatic cholangiocarcinoma: a meta-analysis. Front Immunol.
14:11191682023.
|
126
|
Cai Z, Ang X, Xu Z, Li S, Zhang J, Pei C
and Zhou F: A pan-cancer study of PD-1 and CTLA-4 as therapeutic
targets. Transl Cancer Res. 10:3993–4001. 2021.
|
127
|
Guo XJ, Lu JC, Zeng HY, Zhou R, Sun QM,
Yang GH, Pei YZ, Meng XL, Shen YH, Zhang PF, et al: CTLA-4
synergizes with PD1/PD-L1 in the inhibitory tumor microenvironment
of intrahepatic cholangiocarcinoma. Front Immunol.
12:7053782021.
|
128
|
Perkhofer L, Beutel AK and Ettrich TJ:
Immunotherapy: Pancreatic cancer and extrahepatic biliary tract
cancer. Visc Med. 35:28–37. 2019.
|
129
|
Andrews LP, Yano H and Vignali DAA:
Inhibitory receptors and ligands beyond PD-1, PD-L1 and CTLA-4:
breakthroughs or backups. Nat Immunol. 20:1425–1434. 2019.
|
130
|
Robert C, Long GV, Brady B, Dutriaux C,
Maio M, Mortier L, Hassel JC, Rutkowski P, McNeil C,
Kalinka-Warzocha E, et al: Nivolumab in previously untreated
melanoma without BRAF mutation. N Engl J Med. 372:320–330.
2015.
|
131
|
Sharma P, Retz M, Siefker-Radtke A, Baron
A, Necchi A, Bedke J, Plimack ER, Vaena D, Grimm MO, Bracarda S, et
al: Nivolumab in metastatic urothelial carcinoma after platinum
therapy (CheckMate 275): A multicentre, single-arm, phase 2 trial.
Lancet Oncol. 18:312–322. 2017.
|
132
|
El-Khoueiry AB, Sangro B, Yau T, Crocenzi
TS, Kudo M, Hsu C, Kim TY, Choo SP, Trojan J, Welling TH Rd, et al:
Nivolumab in patients with advanced hepatocellular carcinoma
(CheckMate 040): An open-label, non-comparative, phase 1/2 dose
escalation and expansion trial. Lancet. 389:2492–2502. 2017.
|
133
|
Casak SJ, Marcus L, Fashoyin-Aje L, Mushti
SL, Cheng J, Shen YL, Pierce WF, Her L, Goldberg KB, Theoret MR, et
al: FDA approval summary: Pembrolizumab for the first-line
treatment of patients with MSI-H/dMMR advanced unresectable or
metastatic colorectal carcinoma. Clin Cancer Res. 27:4680–4684.
2021.
|
134
|
Nakajima EC, Vellanki PJ, Larkins E,
Chatterjee S, Mishra-Kalyani PS, Bi Y, Qosa H, Liu J, Zhao H,
Biable M, et al: FDA approval summary: Nivolumab in combination
with ipilimumab for the treatment of unresectable malignant pleural
mesothelioma. Clin Cancer Res. 28:446–451. 2022.
|
135
|
Jenkins L, Jungwirth U, Avgustinova A,
Iravani M, Mills A, Haider S, Harper J and Isacke CM:
Cancer-associated fibroblasts suppress CD8+ T-cell infiltration and
confer resistance to immune-checkpoint blockade. Cancer Res.
82:2904–2917. 2022.
|
136
|
Job S, Rapoud D, Dos Santos A, Gonzalez P,
Desterke C, Pascal G, Elarouci N, Ayadi M, Adam R, Azoulay D, et
al: Identification of four immune subtypes characterized by
distinct composition and functions of tumor microenvironment in
intrahepatic cholangiocarcinoma. Hepatology. 72:965–981. 2020.
|
137
|
Ikeda Y, Ono M, Ohmori G, Ameda S, Yamada
M, Abe T, Fujii S, Fujita M and Maeda M: Successful pembrolizumab
treatment of microsatellite instability-high intrahepatic
cholangiocarcinoma: A case report. Clin Case Rep. 9:2259–2263.
2021.
|
138
|
Mody K, Jain P, El-Refai SM, Azad NS,
Zabransky DJ, Baretti M, Shroff RT, Kelley RK, El-Khouiery AB,
Hockenberry AJ, et al: Clinical, genomic, and transcriptomic data
profiling of biliary tract cancer reveals subtype-specific immune
signatures. JCO Precis Oncol. 6:e21005102022.
|
139
|
Le DT, Durham JN, Smith KN, Wang H,
Bartlett BR, Aulakh LK, Lu S, Kemberling H, Wilt C, Luber BS, et
al: Mismatch repair deficiency predicts response of solid tumors to
PD-1 blockade. Science. 357:409–413. 2017.
|
140
|
Liu X, Yao J, Song L, Zhang S, Huang T and
Li Y: Local and abscopal responses in advanced intrahepatic
cholangiocarcinoma with low TMB, MSS, pMMR and negative PD-L1
expression following combined therapy of SBRT with PD-1 blockade. J
Immunother Cancer. 7:2042019.
|
141
|
Mou H, Yu L, Liao Q, Hou X, Wu Y, Cui Q,
Yan N, Ma R, Wang L, Yao M and Wang K: Successful response to the
combination of immunotherapy and chemotherapy in cholangiocarcinoma
with high tumour mutational burden and PD-L1 expression: A case
report. BMC Cancer. 18:11052018.
|
142
|
Piha-Paul SA, Oh DY, Ueno M, Malka D,
Chung HC, Nagrial A, Kelley RK, Ros W, Italiano A, Nakagawa K, et
al: Efficacy and safety of pembrolizumab for the treatment of
advanced biliary cancer: Results from the KEYNOTE-158 and
KEYNOTE-028 studies. Int J Cancer. 147:2190–2198. 2020.
|
143
|
Kim RD, Chung V, Alese OB, El-Rayes BF, Li
D, Al-Toubah TE, Schell MJ, Zhou JM, Mahipal A, Kim BH and Kim DW:
A phase 2 multi-institutional study of nivolumab for patients with
advanced refractory biliary tract cancer. JAMA Oncol. 6:888–894.
2020.
|
144
|
Ueno M, Ikeda M, Morizane C, Kobayashi S,
Ohno I, Kondo S, Okano N, Kimura K, Asada S, Namba Y, et al:
Nivolumab alone or in combination with cisplatin plus gemcitabine
in Japanese patients with unresectable or recurrent biliary tract
cancer: A non-randomised, multicentre, open-label, phase 1 study.
Lancet Gastroenterol Hepatol. 4:611–621. 2019.
|
145
|
Doki Y, Ueno M, Hsu CH, Oh DY, Park K,
Yamamoto N, Ioka T, Hara H, Hayama M, Nii M, et al: Tolerability
and efficacy of durvalumab, either as monotherapy or in combination
with tremelimumab, in patients from Asia with advanced biliary
tract, esophageal, or head-and-neck cancer. Cancer Med.
11:2550–2560. 2022.
|
146
|
Lan Y, Zhang D, Xu C, Hance KW, Marelli B,
Qi J, Yu H, Qin G, Sircar A, Hernández VM, et al: Enhanced
preclinical antitumor activity of M7824, a bifunctional fusion
protein simultaneously targeting PD-L1 and TGF-β. Sci Transl Med.
10:eaan54882018.
|
147
|
Yoo C, Oh DY, Choi HJ, Kudo M, Ueno M,
Kondo S, Chen LT, Osada M, Helwig C, Dussault I and Ikeda M: Phase
I study of bintrafusp alfa, a bifunctional fusion protein targeting
TGF-β and PD-L1, in patients with pretreated biliary tract cancer.
J Immunother Cancer. 8:e0005642020.
|
148
|
Klein O, Kee D, Nagrial A, Markman B,
Underhill C, Michael M, Jackett L, Lum C, Behren A, Palmer J, et
al: Evaluation of combination nivolumab and ipilimumab
immunotherapy in patients with advanced biliary tract cancers:
Subgroup analysis of a phase 2 nonrandomized clinical trial. JAMA
Oncol. 6:1405–1409. 2020.
|
149
|
Floudas CS, Xie C, Brar G, Morelli MP,
Fioravanti S, Walker M, Mabry-Hrones D, Wood BJ, Levy EB,
Krishnasamy VP and Greten TF: Combined immune checkpoint inhibition
(ICI) with tremelimumab and durvalumab in patients with advanced
hepatocellular carcinoma (HCC) or biliary tract carcinomas (BTC). J
Clin Oncol. 37(4 Suppl): S3362019.
|
150
|
Oh DY, Lee KH, Lee DW, Yoon J, Kim TY,
Bang JH, Nam AR, Oh KS, Kim JM, Lee Y, et al: Gemcitabine and
cisplatin plus durvalumab with or without tremelimumab in
chemotherapy-naive patients with advanced biliary tract cancer: An
open-label, single-centre, phase 2 study. Lancet Gastroenterol
Hepatol. 7:522–532. 2022.
|
151
|
Oh DY, Lee KH, Lee DW, Kim TY, Bang JH,
Nam AR, Lee Y, Zhang Q, Rebelatto M, Li W and Kim JW: Phase II
study assessing tolerability, efficacy, and biomarkers for
durvalumab (D) ± tremelimumab (T) and gemcitabine/cisplatin
(GemCis) in chemo-naïve advanced biliary tract cancer (aBTC). J
Clin Oncol. 38(15 Suppl): S45202020.
|
152
|
Feng K, Liu Y, Zhao Y, Yang Q, Dong L, Liu
J, Li X, Zhao Z, Mei Q and Han W: Efficacy and biomarker analysis
of nivolumab plus gemcitabine and cisplatin in patients with
unresectable or metastatic biliary tract cancers: Results from a
phase II study. J Immunother Cancer. 8:e0003672020.
|
153
|
Boilève A, Hilmi M, Gougis P, Cohen R,
Rousseau B, Blanc JF, Ben Abdelghani M, Castanié H, Dahan L,
Tougeron D, et al: Triplet combination of durvalumab, tremelimumab,
and paclitaxel in biliary tract carcinomas: Safety run-in results
of the randomized IMMUNOBIL PRODIGE 57 phase II trial. Eur J
Cancer. 143:55–63. 2021.
|
154
|
Arkenau HT, Martin-Liberal J, Calvo E,
Penel N, Krebs MG, Herbst RS, Walgren RA, Widau RC, Mi G, Jin J, et
al: Ramucirumab plus pembrolizumab in patients with previously
treated advanced or metastatic biliary tract cancer: Nonrandomized,
open-label, phase I trial (JVDF). Oncologist. 23:1407–e136.
2018.
|
155
|
Yarchoan M, Cope L, Ruggieri AN, Anders
RA, Noonan AM, Goff LW, Goyal L, Lacy J, Li D, Patel AK, et al:
Multicenter randomized phase II trial of atezolizumab with or
without cobimetinib in biliary tract cancers. J Clin Invest.
131:e1526702021.
|
156
|
Lin J, Yang X, Long J, Zhao S, Mao J, Wang
D, Bai Y, Bian J, Zhang L, Yang X, et al: Pembrolizumab combined
with lenvatinib as non-first-line therapy in patients with
refractory biliary tract carcinoma. Hepatobiliary Surg Nutr.
9:414–424. 2020.
|
157
|
Xie C, Duffy AG, Mabry-Hrones D, Wood B,
Levy E, Krishnasamy V, Khan J, Wei JS, Agdashian D, Tyagi M, et al:
Tremelimumab in combination with microwave ablation in patients
with refractory biliary tract cancer. Hepatology. 69:2048–2060.
2019.
|
158
|
Leem G, Jang SI, Cho JH, Jo JH, Lee HS,
Chung MJ, Park JY, Bang S, Yoo DK, Cheon HC, et al: Safety and
efficacy of allogeneic natural killer cells in combination with
pembrolizumab in patients with chemotherapy-refractory biliary
tract cancer: A multicenter open-label phase 1/2a trial. Cancers
(Basel). 14:42292022.
|
159
|
Sterner RC and Sterner RM: CAR-T cell
therapy: Current limitations and potential strategies. Blood Cancer
J. 11:692021.
|
160
|
Sangsuwannukul T, Supimon K, Sujjitjoon J,
Phanthaphol N, Chieochansin T, Poungvarin N, Wongkham S, Junking M
and Yenchitsomanus PT: Anti-tumour effect of the fourth-generation
chimeric antigen receptor T cells targeting CD133 against
cholangiocarcinoma cells. Inte Int Immunopharmacol.
89:1070692020.
|
161
|
Guo Y, Feng K, Liu Y, Wu Z, Dai H, Yang Q,
Wang Y, Jia H and Han W: Phase I study of chimeric antigen
receptor-modified T cells in patients with EGFR-positive advanced
biliary tract cancers. Clin Cancer Res. 24:1277–1286. 2018.
|
162
|
Feng KC, Guo YL, Liu Y, Dai HR, Wang Y, Lv
HY, Huang JH, Yang QM and Han WD: Cocktail treatment with
EGFR-specific and CD133-specific chimeric antigen receptor-modified
T cells in a patient with advanced cholangiocarcinoma. J Hematol
Oncol. 10:42017.
|
163
|
Alnaggar M, Xu Y, Li J, He J, Chen J, Li
M, Wu Q, Lin L, Liang Y, Wang X, et al: Allogenic Vγ9Vδ2 T cell as
new potential immunotherapy drug for solid tumor: A case study for
cholangiocarcinoma. J Immunother Cancer. 7:362019.
|
164
|
Tran E, Turcotte S, Gros A, Robbins PF, Lu
YC, Dudley ME, Wunderlich JR, Somerville RP, Hogan K, Hinrichs CS,
et al: Cancer immunotherapy based on mutation-specific CD4+ T cells
in a patient with epithelial cancer. Science. 344:641–645.
2014.
|
165
|
Zhang T, Chen J, Niu L, Liu Y, Ye G, Jiang
M and Qi Z: Clinical safety and efficacy of locoregional therapy
combined with adoptive transfer of allogeneic γδ T cells for
advanced hepatocellular carcinoma and intrahepatic
cholangiocarcinoma. J Vasc Interv Radiol. 33:19–27.e3. 2022.
|
166
|
Shimizu K, Kotera Y, Aruga A, Takeshita N,
Takasaki K and Yamamoto M: Clinical utilization of postoperative
dendritic cell vaccine plus activated T-cell transfer in patients
with intrahepatic cholangiocarcinoma. J Hepatobiliary Pancreat Sci.
19:171–178. 2012.
|
167
|
Shimizu K, Kotera Y, Aruga A, Takeshita N,
Katagiri S, Ariizumi S, Takahashi Y, Yoshitoshi K, Takasaki K and
Yamamoto M: Postoperative dendritic cell vaccine plus activated
T-cell transfer improves the survival of patients with invasive
hepatocellular carcinoma. Hum Vaccin Immunother. 10:970–976.
2014.
|
168
|
Vonderheide RH: CD40 agonist antibodies in
cancer immunotherapy. Annu Rev Med. 71:47–58. 2020.
|
169
|
Hegde S, Krisnawan VE, Herzog BH, Zuo C,
Breden MA, Knolhoff BL, Hogg GD, Tang JP, Baer JM, Mpoy C, et al:
Dendritic cell paucity leads to dysfunctional immune surveillance
in pancreatic cancer. Cancer Cell. 37:289–307.e9. 2020.
|
170
|
Zhang J, Li Y, Yang S, Zhang L and Wang W:
Anti-CD40 mAb enhanced efficacy of anti-PD1 against osteosarcoma. J
Bone Oncol. 17:1002452019.
|
171
|
Leblond MM, Tillé L, Nassiri S, Gilfillan
CB, Imbratta C, Schmittnaegel M, Ries CH, Speiser DE and Verdeil G:
CD40 agonist restores the antitumor efficacy of anti-PD1 therapy in
muscle-invasive bladder cancer in an IFN I/II-mediated manner.
Cancer Immunol Res. 8:1180–1192. 2020.
|
172
|
Ma HS, Poudel B, Torres ER, Sidhom JW,
Robinson TM, Christmas B, Scott B, Cruz K, Woolman S, Wall VZ, et
al: A CD40 agonist and PD-1 antagonist antibody reprogram the
microenvironment of nonimmunogenic tumors to allow T-cell-mediated
anticancer activity. Cancer Immunol Res. 7:428–442. 2019.
|
173
|
Moreno V, Perets R, Peretz-Yablonski T,
Fourneau N, Girgis S, Guo Y, Hellemans P, Verona R, Pendás N, Xia
Q, et al: A phase 1 study of intravenous mitazalimab, a CD40
agonistic monoclonal antibody, in patients with advanced solid
tumors. Invest New Drugs. 41:93–104. 2023.
|
174
|
Humphreys EH, Williams KT, Adams DH and
Afford SC: Primary and malignant cholangiocytes undergo CD40
mediated Fas dependent apoptosis, but are insensitive to direct
activation with exogenous Fas ligand. PLoS One. 5:e140372010.
|
175
|
Diggs LP, Ruf B, Ma C, Heinrich B, Cui L,
Zhang Q, McVey JC, Wabitsch S, Heinrich S, Rosato U, et al:
CD40-mediated immune cell activation enhances response to anti-PD-1
in murine intrahepatic cholangiocarcinoma. J Hepatol. 74:1145–1154.
2021.
|
176
|
O'Hara MH, O'Reilly EM, Rosemarie M,
Varadhachary G, Wainberg ZA, Ko A, Fisher GA, Rahma O, Lyman JP,
Cabanski CR, et al: Abstract CT004: A phase Ib study of CD40
agonistic monoclonal antibody APX005M together with gemcitabine
(Gem) and nab-paclitaxel (NP) with or without nivolumab (Nivo) in
untreated metastatic ductal pancreatic adenocarcinoma (PDAC)
patients. Cancer Res. 79(13 Suppl): CT0042019.
|
177
|
Lin Y, Peng L, Dong L, Liu D, Ma J, Lin J,
Chen X, Lin P, Song G, Zhang M, et al: Geospatial immune
heterogeneity reflects the diverse tumor-immune interactions in
intrahepatic cholangiocarcinoma. Cancer Discov. 12:2350–2371.
2022.
|
178
|
Morse MA, Gwin WR III and Mitchell DA:
Vaccine therapies for cancer: Then and now. Target Oncol.
16:121–152. 2021.
|
179
|
Goldstein D, Lemech C and Valle J: New
molecular and immunotherapeutic approaches in biliary cancer. ESMO
Open. 2(Suppl 1): e0001522017.
|
180
|
Koido S, Kan S, Yoshida K, Yoshizaki S,
Takakura K, Namiki Y, Tsukinaga S, Odahara S, Kajihara M, Okamoto
M, et al: Immunogenic modulation of cholangiocarcinoma cells by
chemoimmunotherapy. Anticancer Res. 34:6353–6361. 2014.
|
181
|
Kaida M, Morita-Hoshi Y, Soeda A, Wakeda
T, Yamaki Y, Kojima Y, Ueno H, Kondo S, Morizane C, Ikeda M, et al:
Phase 1 trial of Wilms tumor 1 (WT1) peptide vaccine and
gemcitabine combination therapy in patients with advanced
pancreatic or biliary tract cancer. J Immunother. 34:92–99.
2011.
|
182
|
Yamamoto K, Ueno T, Kawaoka T, Hazama S,
Fukui M, Suehiro Y, Hamanaka Y, Ikematsu Y, Imai K, Oka M and
Hinoda Y: MUC1 peptide vaccination in patients with advanced
pancreas or biliary tract cancer. Anticancer Res. 25:3575–3579.
2005.
|
183
|
Aruga A, Takeshita N, Kotera Y, Okuyama R,
Matsushita N, Ohta T, Takeda K and Yamamoto M: Long-term
vaccination with multiple peptides derived from cancer-testis
antigens can maintain a specific T-cell response and achieve
disease stability in advanced biliary tract cancer. Clin Cancer
Res. 19:2224–2231. 2013.
|
184
|
Aruga A, Takeshita N, Kotera Y, Okuyama R,
Matsushita N, Ohta T, Takeda K and Yamamoto M: Phase I clinical
trial of multiple-peptide vaccination for patients with advanced
biliary tract cancer. J Transl Med. 12:612014.
|
185
|
Yoshitomi M, Yutani S, Matsueda S, Ioji T,
Komatsu N, Shichijo S, Yamada A, Itoh K, Sasada T and Kinoshita H:
Personalized peptide vaccination for advanced biliary tract cancer:
IL-6, nutritional status and pre-existing antigen-specific immunity
as possible biomarkers for patient prognosis. Exp Ther Med.
3:463–469. 2012.
|
186
|
Lepisto AJ, Moser AJ, Zeh H, Lee K,
Bartlett D, McKolanis JR, Geller BA, Schmotzer A, Potter DP,
Whiteside T, et al: A phase I/II study of a MUC1 peptide pulsed
autologous dendritic cell vaccine as adjuvant therapy in patients
with resected pancreatic and biliary tumors. Cancer Ther.
6:955–964. 2008.
|
187
|
Kobayashi M, Sakabe T, Abe H, Tanii M,
Takahashi H, Chiba A, Yanagida E, Shibamoto Y, Ogasawara M,
Tsujitani S, et al: Dendritic cell-based immunotherapy targeting
synthesized peptides for advanced biliary tract cancer. J
Gastrointest Surg. 17:1609–1617. 2013.
|
188
|
Hochnadel I, Hoenicke L, Petriv N, Neubert
L, Reinhard E, Hirsch T, Alfonso JCL, Suo H, Longerich T, Geffers
R, et al: Safety and efficacy of prophylactic and therapeutic
vaccine based on live-attenuated Listeria monocytogenes in
hepatobiliary cancers. Oncogene. 41:2039–2053. 2022.
|
189
|
Miao L, Zhang Y and Huang L: mRNA vaccine
for cancer immunotherapy. Mol Cancer. 20:412021.
|
190
|
Huang X, Tang T, Zhang G and Liang T:
Identification of tumor antigens and immune subtypes of
cholangiocarcinoma for mRNA vaccine development. Mol Cancer.
20:502021.
|
191
|
Izquierdo-Sanchez L, Lamarca A, La Casta
A, Buettner S, Utpatel K, Klümpen HJ, Adeva J, Vogel A, Lleo A,
Fabris L, et al: Cholangiocarcinoma landscape in Europe:
Diagnostic, prognostic and therapeutic insights from the ENSCCA
Registry. J Hepatol. 76:1109–1121. 2022.
|
192
|
Walker NJ, Crockett PW, Nyska A, Brix AE,
Jokinen MP, Sells DM, Hailey JR, Easterling M, Haseman JK, Yin M,
et al: Dose-additive carcinogenicity of a defined mixture of
'dioxin-like compounds'. Environ Health Perspect. 113:43–48.
2005.
|
193
|
National Toxicology Program: Toxicology
and carcinogenesis studies of 2,3',4,4',5-pentachlorobiphenyl (PCB
118) (CAS No. 31508-00-6) in female harlan Sprague-Dawley rats
(gavage studies). Natl Toxicol Program Tech Rep Ser. 1–174.
2010.
|
194
|
Lowery MA, Ptashkin R, Jordan E, Berger
MF, Zehir A, Capanu M, Kemeny NE, O'Reilly EM, El-Dika I, Jarnagin
WR, et al: Comprehensive molecular profiling of intrahepatic and
extrahepatic cholangiocarcinomas: Potential targets for
intervention. Clin Cancer Res. 24:4154–4161. 2018.
|
195
|
Weinberg BA, Xiu J, Lindberg MR, Shields
AF, Hwang JJ, Poorman K, Salem ME, Pishvaian MJ, Holcombe RF,
Marshall JL and Morse MA: Molecular profiling of biliary cancers
reveals distinct molecular alterations and potential therapeutic
targets. J Gastrointest Oncol. 10:652–662. 2019.
|
196
|
Kendall T, Verheij J, Gaudio E, Evert M,
Guido M, Goeppert B and Carpino G: Anatomical, histomorphological
and molecular classification of cholangiocarcinoma. Liver Int.
39(Suppl 1): S7–S18. 2019.
|