Targeting key RNA methylation enzymes to improve the outcome of colorectal cancer chemotherapy (Review)
- Authors:
- Chiyun Shao
- Yanjie Han
- Yuying Huang
- Zhe Zhang
- Tao Gong
- Yajie Zhang
- Xiaokang Tian
- Mingzhi Fang
- Xuan Han
- Min Li
-
Affiliations: Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, P.R. China, School of Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China - Published online on: December 19, 2023 https://doi.org/10.3892/ijo.2023.5605
- Article Number: 17
-
Copyright : © Shao et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].
This article is mentioned in:
Abstract
Gilbert WV, Bell TA and Schaening C: Messenger RNA modifications: Form, distribution, and function. Science. 352:1408–1412. 2016. | |
Cohn WE: Pseudouridine, a carbon-carbon linked ribonucleoside in ribonucleic acids: Isolation, structure, and chemical characteristics. J Biol Chem. 235:1488–1498. 1960. | |
Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA, Elemento O, Pestova TV, Qian SB and Jaffrey SR: 5′ UTR m(6) A promotes cap-independent translation. Cell. 163:999–1010. 2015. | |
Dawson MA and Kouzarides T: Cancer epigenetics: from mechanism to therapy. Cell. 150:12–27. 2012. | |
Nishiyama A and Nakanishi M: Navigating the DNA methylation landscape of cancer. Trends Genet. 37:1012–1027. 2021. | |
Huang W, Li H, Yu Q, Xiao W and Wang DO: LncRNA-mediated DNA methylation: An emerging mechanism in cancer and beyond. J Exp Clin Cancer Res. 41:1002022. | |
Esteller M: Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet. 8:286–298. 2007. | |
Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE and Jaffrey SR: Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell. 149:1635–1646. 2012. | |
Linder B, Grozhik AV, Olarerin-George AO, Meydan C, Mason CE and Jaffrey SR: Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat Methods. 12:767–772. 2015. | |
Sun T, Wu R and Ming L: The role of m6A RNA methylation in cancer. Biomed Pharmacother. 112:1086132019. | |
Song N, Cui K, Zhang K, Yang J, Liu J, Miao Z, Zhao F, Meng H, Chen L, Chen C, et al: The role of m6A RNA methylation in cancer: Implication for nature products anti-cancer research. Front Pharmacol. 13:9333322022. | |
Li X, Ma S, Deng Y, Yi P and Yu J: Targeting the RNA m6A modification for cancer immunotherapy. Mol Cancer. 21:762022. | |
An Y and Duan H: The role of m6A RNA methylation in cancer metabolism. Mol Cancer. 21:142022. | |
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. | |
Shi JF, Wang L, Ran JC, Wang H, Liu CC, Zhang HZ, Yang L, Shi SS, Jiang LM, Fan JH, et al: Clinical characteristics, medical service utilization, and expenditure for colorectal cancer in China, 2005 to 2014: Overall design and results from a multicenter retrospective epidemiologic survey. Cancer. 127:1880–1893. 2021. | |
Alfarouk KO, Stock CM, Taylor S, Walsh M, Muddathir AK, Verduzco D, Bashir AH, Mohammed OY, Elhassan GO, Harguindey S, et al: Resistance to cancer chemotherapy: Failure in drug response from ADME to P-gp. Cancer Cell Int. 15:712015. | |
Liu K, Ouyang QY, Zhan Y, Yin H, Liu BX, Tan LM, Liu R, Wu W and Yin JY: Pharmacoepitranscriptomic landscape revealing m6A modification could be a drug-effect biomarker for cancer treatment. Mol Ther Nucleic Acids. 28:464–476. 2022. | |
Pan J, Liu F, Xiao X, Xu R, Dai L, Zhu M, Xu H, Xu Y, Zhao A, Zhou W, et al: METTL3 promotes colorectal carcinoma progression by regulating the m6A-CRB3-Hippo axis. J Exp Clin Cancer Res. 41:192022. | |
Shen C, Xuan B, Yan T, Ma Y, Xu P, Tian X, Zhang X, Cao Y, Ma D, Zhu X, et al: m6A-dependent glycolysis enhances colorectal cancer progression. Mol Cancer. 19:722020. | |
Peng W, Li J, Chen R, Gu Q, Yang P, Qian W, Ji D, Wang Q, Zhang Z, Tang J and Sun Y: Upregulated METTL3 promotes metastasis of colorectal cancer via miR-1246/SPRED2/MAPK signaling pathway. J Exp Clin Cancer Res. 38:3932019. | |
Liu Z, Zou H, Dang Q, Xu H, Liu L, Zhang Y, Lv J, Li H, Zhou Z and Han X: Biological and pharmacological roles of m6A modifications in cancer drug resistance. Mol Cancer. 21:2202022. | |
Yan J, Liu F, Guan Z, Yan X, Jin X, Wang Q, Wang Z, Yan J, Zhang D, Liu Z, et al: Structural insights into DNA N6-adenine methylation by the MTA1 complex. Cell Discov. 9:82023. | |
Yan X, Pei K, Guan Z, Liu F, Yan J, Jin X, Wang Q, Hou M, Tang C and Yin P: AI-empowered integrative structural characterization of m6A methyltransferase complex. Cell Res. 32:1124–1127. 2022. | |
Zhou Z, Lv J, Yu H, Han J, Yang X, Feng D, Wu Q, Yuan B, Lu Q and Yang H: Mechanism of RNA modification N6-methyladenosine in human cancer. Mol Cancer. 19:1042020. | |
Wang Z, Pan Z, Adhikari S, Harada BT, Shen L, Yuan W, Abeywardana T, Al-Hadid Q, Stark JM, He C, et al: m6 A deposition is regulated by PRMT1-mediated arginine methylation of METTL14 in its disordered C-terminal region. EMBO J. 40:e1063092021. | |
Liu X, Du Y, Huang Z, Qin H, Chen J and Zhao Y: Insights into roles of METTL14 in tumors. Cell Prolif. 55:e131682022. | |
Ping XL, Sun BF, Wang L, Xiao W, Yang X, Wang WJ, Adhikari S, Shi Y, Lv Y, Chen YS, et al: Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 24:177–189. 2014. | |
Fan Y, Li X, Sun H, Gao Z, Zhu Z and Yuan K: Role of WTAP in cancer: From mechanisms to the therapeutic potential. Biomolecules. 12:12242022. | |
Yue Y, Liu J, Cui X, Cao J, Luo G, Zhang Z, Cheng T, Gao M, Shu X, Ma H, et al: VIRMA mediates preferential m6A mRNA methylation in 3′UTR and near stop codon and associates with alternative polyadenylation. Cell Discov. 4:102018. | |
Huang L, Liang D, Zhang Y, Chen X, Chen J, Wen C, Liu H, Yang X, Yang X and Lin S: METTL3 promotes colorectal cancer metastasis by promoting the maturation of pri-microRNA-196b. J Cancer Res Clin Oncol. 149:5095–5108. 2023. | |
Zhang F, Su T and Xiao M: RUNX3-regulated circRNA METTL3 inhibits colorectal cancer proliferation and metastasis via miR-107/PER3 axis. Cell Death Dis. 13:5502022. | |
Shi K, Yang S, Chen C, Shao B, Guo Y, Wu X, Zhao L, Yang X, Zhang Q, Yuan W and Sun Z: RNA methylation-mediated LINC01559 suppresses colorectal cancer progression by regulating the miR-106b-5p/PTEN axis. Int J Biol Sci. 18:3048–3065. 2022. | |
Xu Q, Lu X, Li J, Feng Y, Tang J, Zhang T, Mao Y, Lan Y, Luo H, Zeng L, et al: Fusobacterium nucleatum induces excess methyltransferase-like 3-mediated microRNA-4717-3p maturation to promote colorectal cancer cell proliferation. Cancer Sci. 113:3787–3800. 2022. | |
Chen S, Zhang L, Li M, Zhang Y, Sun M, Wang L, Lin J, Cui Y, Chen Q, Jin C, et al: Fusobacterium nucleatum reduces METTL3-mediated m6A modification and contributes to colorectal cancer metastasis. Nat Commun. 13:12482022. | |
Chen H, Gao S, Liu W, Wong CC, Wu J, Wu J, Liu D, Gou H, Kang W, Zhai J, et al: RNA N6-methyladenosine methyltransferase METTL3 facilitates colorectal cancer by activating the m6A-GLUT1-mTORC1 axis and is a therapeutic target. Gastroenterology. 160:1284–1300.e16. 2021. | |
Lu S, Han L, Hu X, Sun T, Xu D, Li Y, Chen Q, Yao W, He M, Wang Z, et al: N6-methyladenosine reader IMP2 stabilizes the ZFAS1/OLA1 axis and activates the Warburg effect: Implication in colorectal cancer. J Hematol Oncol. 14:1882021. | |
Sun L, Wan A, Zhou Z, Chen D, Liang H, Liu C, Yan S, Niu Y, Lin Z, Zhan S, et al: RNA-binding protein RALY reprogrammes mitochondrial metabolism via mediating miRNA processing in colorectal cancer. Gut. 70:1698–1712. 2021. | |
Deng R, Cheng Y, Ye S, Zhang J, Huang R, Li P, Liu H, Deng Q, Wu X, Lan P and Deng Y: m6A methyltransferase METTL3 suppresses colorectal cancer proliferation and migration through p38/ERK pathways. Onco Targets Ther. 12:4391–4402. 2019. | |
Chen X, Xu M, Xu X, Zeng K, Liu X, Pan B, Li C, Sun L, Qin J, Xu T, et al: METTL14-mediated N6-methyladenosine modification of SOX4 mRNA inhibits tumor metastasis in colorectal cancer. Mol Cancer. 19:1062020. | |
Hou Y, Zhang X, Yao H, Hou L, Zhang Q, Tao E, Zhu X, Jiang S, Ren Y, Hong X, et al: METTL14 modulates glycolysis to inhibit colorectal tumorigenesis in p53-wild-type cells. EMBO Rep. 24:e563252023. | |
Zhang J, Tsoi H, Li X, Wang H, Gao J, Wang K, Go MY, Ng SC, Chan FK, Sung JJ and Yu J: Carbonic anhydrase IV inhibits colon cancer development by inhibiting the Wnt signalling pathway through targeting the WTAP-WT1-TBL1 axis. Gut. 65:1482–1493. 2016. | |
Li Y, He L, Wang Y, Tan Y and Zhang F: N6-methyladenosine methyltransferase KIAA1429 elevates colorectal cancer aerobic glycolysis via HK2-dependent manner. Bioengineered. 13:11923–11932. 2022. | |
Wei X, Huo Y, Pi J, Gao Y, Rao S, He M, Wei Q, Song P, Chen Y, Lu D, et al: METTL3 preferentially enhances non-m6A translation of epigenetic factors and promotes tumourigenesis. Nat Cell Biol. 24:1278–1290. 2022. | |
Zeng C, Huang W, Li Y and Weng H: Roles of METTL3 in cancer: Mechanisms and therapeutic targeting. J Hematol Oncol. 13:1172020. | |
Collignon E, Cho B, Furlan G, Fothergill-Robinson J, Martin SB, McClymont SA, Ross RL, Limbach PA and Ramalho-Santos M: m6A RNA methylation orchestrates transcriptional dormancy during paused pluripotency. Nat Cell Biol. 25:1279–1289. 2023. | |
Lin S, Choe J, Du P, Triboulet R and Gregory RI: The m(6)A methyltransferase METTL3 promotes translation in human cancer cells. Mol Cell. 62:335–345. 2016. | |
Wang JL, Chen ZF, Chen HM, Wang MY, Kong X, Wang YC, Sun TT, Hong J, Zou W, Xu J and Fang JY: Elf3 drives β-catenin transactivation and associates with poor prognosis in colorectal cancer. Cell Death Dis. 5:e12632014. | |
Xiang Y, Guo Z, Zhu P, Chen J and Huang Y: Traditional Chinese medicine as a cancer treatment: Modern perspectives of ancient but advanced science. Cancer Med. 8:1958–1975. 2019. | |
Xin T, Zhang Y, Pu X, Gao R, Xu Z and Song J: Trends in herbgenomics. Sci China Life Sci. 62:288–308. 2019. | |
Wang YN, Zou M, Wang D, Zhang ZK, Qu LP, Xu J, Shi CD and Gao F: An exploratory study on TCM syndrome differentiation in preoperative patients with colorectal cancer assisted by laboratory indicators. Heliyon. 8:e102072022. | |
Wang CY, Ding HZ, Tang X and Li ZG: Comparative analysis of immune function, hemorheological alterations and prognosis in colorectal cancer patients with different traditional Chinese medicine syndromes. Cancer Biomark. 21:701–710. 2018. | |
Zhang X, Wang X, Shi R, Ran X, He X and Dou D: Effective substances and mechanism of red ginseng on rats with spleen-deficiency syndrome based on the substance and energy metabolism as well as the 'brain-gut' axis. J Ethnopharmacol. 311:1164382023. | |
Lu Y, Zhou C, Zhu M, Fu Z, Shi Y, Li M, Wang W, Zhu S, Jiang B, Luo Y and Su S: Traditional chinese medicine syndromes classification associates with tumor cell and microenvironment heterogeneity in colorectal cancer: A single cell RNA sequencing analysis. Chin Med. 16:1332021. | |
Liu WW, Zhang ZY, Wang F and Wang H: Emerging roles of m6A RNA modification in cancer therapeutic resistance. Exp Hematol Oncol. 12:212023. | |
Ma SC, Zhang JQ, Yan TH, Miao MX, Cao YM, Cao YB, Zhang LC and Li L: Novel strategies to reverse chemoresistance in colorectal cancer. Cancer Med. 12:11073–11096. 2023. | |
Zou Z, Sepich-Poore C, Zhou X, Wei J and He C: The mechanism underlying redundant functions of the YTHDF proteins. Genome Biol. 24:172023. | |
Chen L, Gao Y, Xu S, Yuan J, Wang M, Li T and Gong J: N6-methyladenosine reader YTHDF family in biological processes: Structures, roles, and mechanisms. Front Immunol. 14:11626072023. | |
Sarraf G and Chhabra R: Emerging role of mRNA methylation in regulating the hallmarks of cancer. Biochimie. 206:61–72. 2023. | |
Chang G, Shi L, Ye Y, Shi H, Zeng L, Tiwary S, Huse JT, Huo L, Ma L, Ma Y, et al: YTHDF3 Induces the translation of m6A-enriched gene transcripts to promote breast cancer brain metastasis. Cancer Cell. 38:857–871. 2020. | |
Hao W, Dian M, Zhou Y, Zhong Q, Pang W, Li Z, Zhao Y, Ma J, Lin X, Luo R, et al: Autophagy induction promoted by m6A reader YTHDF3 through translation upregulation of FOXO3 mRNA. Nat Commun. 13:58452022. | |
Wang S, Gao S, Zeng Y, Zhu L, Mo Y, Wong CC, Bao Y, Su P, Zhai J, Wang L, et al: N6-methyladenosine reader YTHDF1 promotes ARHGEF2 translation and RhoA signaling in colorectal cancer. Gastroenterology. 162:1183–1196. 2022. | |
Ning Z, Wu Z, Zhang F, Yang M, Lu Z, Yu B, Long F, Guo Y, Yang K, Hu G, et al: GMEB2 promotes the growth of colorectal cancer by activating ADRM1 transcription and NF-κB signalling and is positively regulated by the m6A reader YTHDF1. Cancers (Basel). 14:60462022. | |
Ni W, Yao S, Zhou Y, Liu Y, Huang P, Zhou A, Liu J, Che L and Li J: Long noncoding RNA GAS5 inhibits progression of colorectal cancer by interacting with and triggering YAP phosphorylation and degradation and is negatively regulated by the m6A reader YTHDF3. Mol Cancer. 18:1432019. | |
Li T, Hu PS, Zuo Z, Lin JF, Li X, Wu QN, Chen ZH, Zeng ZL, Wang F, Zheng J, et al: METTL3 facilitates tumor progression via an m6A-IGF2BP2-dependent mechanism in colorectal carcinoma. Mol Cancer. 18:1122019. | |
Liu X, He H, Zhang F, Hu X, Bi F, Li K, Yu H, Zhao Y, Teng X, Li J, et al: m6A methylated EphA2 and VEGFA through IGF2BP2/3 regulation promotes vasculogenic mimicry in colorectal cancer via PI3K/AKT and ERK1/2 signaling. Cell Death Dis. 13:4832022. | |
Zhao Y and Peng H: The role of N6-methyladenosine (m6A) methylation modifications in hematological malignancies. Cancers (Basel). 14:3322022. | |
Qu X and Shi Y: Bile reflux and bile acids in the progression of gastric intestinal metaplasia. Chin Med J (Engl). 135:1664–1672. 2022. | |
Li H, Wu H, Wang Q, Ning S, Xu S and Pang D: Dual effects of N6-methyladenosine on cancer progression and immunotherapy. Mol Ther Nucleic Acids. 24:25–39. 2021. | |
Liu C, Yang S, Zhang Y, Wang C, Du D, Wang X, Liu T and Liang G: Emerging roles of N6-methyladenosine demethylases and its interaction with environmental toxicants in digestive system cancers. Cancer Manag Res. 13:7101–7114. 2021. | |
Uddin MB, Wang Z and Yang C: Dysregulations of functional RNA modifications in cancer, cancer stemness and cancer therapeutics. Theranostics. 10:3164–3189. 2020. | |
Relier S, Ripoll J, Guillorit H, Amalric A, Achour C, Boissière F, Vialaret J, Attina A, Debart F, Choquet A, et al: FTO-mediated cytoplasmic m6Am demethylation adjusts stem-like properties in colorectal cancer cell. Nat Commun. 12:17162021. | |
Ruan DY, Li T, Wang YN, Meng Q, Li Y, Yu K, Wang M, Lin JF, Luo LZ, Wang DS, et al: FTO downregulation mediated by hypoxia facilitates colorectal cancer metastasis. Oncogene. 40:5168–5181. 2021. | |
Ballester V, Taylor WR, Slettedahl SW, Mahoney DW, Yab TC, Sinicrope FA, Boland CR, Lidgard GP, Cruz-Correa MR, Smyrk TC, et al: Novel methylated DNA markers accurately discriminate Lynch syndrome associated colorectal neoplasia. Epigenomics. 12:2173–2187. 2020. | |
Li N, Kang Y, Wang L, Huff S, Tang R, Hui H, Agrawal K, Gonzalez GM, Wang Y, Patel SP and Rana TM: ALKBH5 regulates anti-PD-1 therapy response by modulating lactate and suppressive immune cell accumulation in tumor microenvironment. Proc Natl Acad Sci USA. 117:20159–20170. 2020. | |
Wang YQ, Li HZ, Gong WW, Chen YY, Zhu C, Wang L, Zhong JM and Du LB: Cancer incidence and mortality in Zhejiang Province, Southeast China, 2016: A population-based study. Chin Med J (Engl). 134:1959–1966. 2021. | |
Chen HM, Lin CC, Chen WS, Jiang JK, Yang SH, Chang SC, Ho CL, Yang CC, Huang SC, Chao Y, et al: Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) is a prognostic biomarker and associated with chemotherapy responsiveness in colorectal cancer. Int J Mol Sci. 22:69402021. | |
Hanahan D: Hallmarks of cancer: New dimensions. Cancer Discov. 12:31–46. 2022. | |
Yang W, Wang Y, Tao C, Li Y, Cao S and Yang X: CRNDE silencing promotes apoptosis and enhances cisplatin sensitivity of colorectal carcinoma cells by inhibiting the Akt/mTORC1-mediated Warburg effect. Oncol Lett. 23:702022. | |
Wei TT, Lin YT, Tang SP, Luo CK, Tsai CT, Shun CT and Chen CC: Metabolic targeting of HIF-1α potentiates the therapeutic efficacy of oxaliplatin in colorectal cancer. Oncogene. 39:414–427. 2020. | |
Peng L, Jiang J, Chen HN, Zhou L, Huang Z, Qin S, Jin P, Luo M, Li B, Shi J, et al: Redox-sensitive cyclophilin A elicits chemoresistance through realigning cellular oxidative status in colorectal cancer. Cell Rep. 37:1100692021. | |
Zhang K, Zhang T, Yang Y, Tu W, Huang H, Wang Y, Chen Y, Pan K and Chen Z: N6-methyladenosine-mediated LDHA induction potentiates chemoresistance of colorectal cancer cells through metabolic reprogramming. Theranostics. 12:4802–4817. 2022. | |
Yang Z, Quan Y, Chen Y, Huang Y, Huang R, Yu W, Wu D, Ye M, Min Z and Yu B: Knockdown of RNA N6-methyladenosine methyltransferase METTL3 represses Warburg effect in colorectal cancer via regulating HIF-1α. Signal Transduct Target Ther. 6:892021. | |
Han S, Zhu L, Zhu Y, Meng Y, Li J, Song P, Yousafzai NA, Feng L, Chen M, Wang Y, et al: Targeting ATF4-dependent pro-survival autophagy to synergize glutaminolysis inhibition. Theranostics. 11:8464–8479. 2021. | |
Chen P, Liu XQ, Lin X, Gao LY, Zhang S and Huang X: Targeting YTHDF1 effectively re-sensitizes cisplatin-resistant colon cancer cells by modulating GLS-mediated glutamine metabolism. Mol Ther Oncolytics. 20:228–239. 2021. | |
Rehman SK, Haynes J, Collignon E, Brown KR, Wang Y, Nixon AML, Bruce JP, Wintersinger JA, Singh Mer A, Lo EBL, et al: Colorectal Cancer cells enter a diapause-like DTP state to survive chemotherapy. Cell. 184:226–242.e21. 2021. | |
Wang Y, Yang L, Zhang J, Zhou M, Shen L, Deng W, Liang L, Hu R, Yang W, Yao Y, et al: Radiosensitization by irinotecan is attributed to G2/M phase arrest, followed by enhanced apoptosis, probably through the ATM/Chk/Cdc25C/Cdc2 pathway in p53-mutant colorectal cancer cells. Int J Oncol. 53:1667–1680. 2018. | |
Lin Z, Wan AH, Sun L, Liang H, Niu Y, Deng Y, Yan S, Wang QP, Bu X, Zhang X, et al: N6-methyladenosine demethylase FTO enhances chemo-resistance in colorectal cancer through SIVA1-mediated apoptosis. Mol Ther. 31:517–534. 2023. | |
Li J, Chen F, Peng Y, Lv Z, Lin X, Chen Z and Wang H: N6-methyladenosine regulates the expression and secretion of TGFbeta1 to affect the epithelial-mesenchymal transition of cancer cells. Cells. 9:2962020. | |
Yang M, Sun M and Zhang H: The interaction between epigenetic changes, EMT, and exosomes in predicting metastasis of colorectal cancers (CRC). Front Oncol. 12:8798482022. | |
Sabouni E, Nejad MM, Mojtabavi S, Khoshduz S, Mojtabavi M, Nadafzadeh N, Nikpanjeh N, Mirzaei S, Hashemi M, Aref AR, et al: Unraveling the function of epithelial-mesenchymal transition (EMT) in colorectal cancer: Metastasis, therapy response, and revisiting molecular pathways. Biomed Pharmacother. 160:1143952023. | |
Oskarsson T, Batlle E and Massagué J: Metastatic stem cells: Sources, niches, and vital pathways. Cell Stem Cell. 14:306–321. 2014. | |
Liu X, Su K, Sun X, Jiang Y, Wang L, Hu C, Zhang C, Lu M, Du X and Xing B: Sec62 promotes stemness and chemoresistance of human colorectal cancer through activating Wnt/β-catenin pathway. J Exp Clin Cancer Res. 40:1322021. | |
Zhang Y, Kang M, Zhang B, Meng F, Song J, Kaneko H, Shimamoto F and Tang B: m6A modification-mediated CBX8 induction regulates stemness and chemosensitivity of colon cancer via upregulation of LGR5. Mol Cancer. 18:1852019. | |
Bai Y, Yang C, Wu R, Huang L, Song S, Li W, Yan P, Lin C, Li D and Zhang Y: YTHDF1 regulates tumorigenicity and cancer stem cell-like activity in human colorectal carcinoma. Front Oncol. 9:3322019. | |
Mauri G, Arena S, Siena S, Bardelli A and Sartore-Bianchi A: The DNA damage response pathway as a land of therapeutic opportunities for colorectal cancer. Ann Oncol. 31:1135–1147. 2020. | |
Catalano F, Borea R, Puglisi S, Boutros A, Gandini A, Cremante M, Martelli V, Sciallero S and Puccini A: Targeting the DNA damage response pathway as a novel therapeutic strategy in colorectal cancer. Cancers (Basel). 14:13882022. | |
Zhang C, Chen L, Peng D, Jiang A, He Y, Zeng Y, Xie C, Zhou H, Luo X, Liu H, et al: METTL3 and N6-methyladenosine promote homologous recombination-mediated repair of DSBs by modulating DNA-RNA hybrid accumulation. Mol Cell. 79:425–442.e7. 2020. | |
Li M, Xia M, Zhang Z, Tan Y, Li E, Guo Z, Fang M, Zhu Y and Hu Z: METTL3 antagonizes 5-FU chemotherapy and confers drug resistance in colorectal carcinoma. Int J Oncol. 61:1062022. | |
Zhang SH QQLP: METTL3-mediated m6A modification in oxaliplatin resistance in colorectal cancer. J Chongqing Med Univ. 47:pp. 941–947. 2022, (In Chinese). https://kns.cnki.net/kcms/detail/detail.aspx?FileName=ZQYK202208010&DbName=DKFX2022. View Article : Google Scholar | |
Yankova E, Blackaby W, Albertella M, Rak J, De Braekeleer E, Tsagkogeorga G, Pilka ES, Aspris D, Leggate D, Hendrick AG, et al: Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature. 593:597–601. 2021. | |
Sun Y, Shen W, Hu S, Lyu Q, Wang Q, Wei T, Zhu W and Zhang J: METTL3 promotes chemoresistance in small cell lung cancer by inducing mitophagy. J Exp Clin Cancer Res. 42:652023. | |
Deng LJ, Deng WQ, Fan SR, Chen MF, Qi M, Lyu WY, Qi Q, Tiwari AK, Chen JX, Zhang DM and Chen ZS: m6A modification: recent advances, anticancer targeted drug discovery and beyond. Mol Cancer. 21:522022. | |
Chen Y, Wu R, Chen W, Liu Y, Liao X, Zeng B, Guo G, Lou F, Xiang Y, Wang Y and Wang X: Curcumin prevents obesity by targeting TRAF4-induced ubiquitylation in m6 A-dependent manner. EMBO Rep. 22:e521462021. | |
Weng W and Goel A: Curcumin and colorectal cancer: An update and current perspective on this natural medicine. Semin Cancer Biol. 80:73–86. 2022. | |
Su P, Yang Y, Wang G, Chen X and Ju Y: Curcumin attenuates resistance to irinotecan via induction of apoptosis of cancer stem cells in chemoresistant colon cancer cells. Int J Oncol. 53:1343–1353. 2018. | |
Gan Z, Wei W, Wu J, Zhao Y, Zhang L, Wang T and Zhong X: Resveratrol and curcumin improve intestinal mucosal integrity and decrease m6A RNA methylation in the intestine of weaning piglets. ACS Omega. 4:17438–17446. 2019. | |
Hernández-Caballero ME, Sierra-Ramírez JA, Villalobos-Valencia R and Seseña-Méndez E: Potential of Kalanchoe pinnata as a cancer treatment adjuvant and an epigenetic regulator. Molecules. 27:64252022. | |
Zhu D, Li A, Lv Y and Fan Q: Traditional Chinese medicine: A class of potentially reliable epigenetic drugs. Front Pharmacol. 13:9070312022. | |
Sun K, Du Y, Hou Y, Zhao M, Li J, Du Y, Zhang L, Chen C, Yang H, Yan F and Su R: Saikosaponin D exhibits anti-leukemic activity by targeting FTO/m6A signaling. Theranostics. 11:5831–5846. 2021. | |
Xu W, Xie S, Chen X, Pan S, Qian H and Zhu X: Effects of quercetin on the efficacy of various chemotherapeutic drugs in cervical cancer cells. Drug Des Devel Ther. 15:577–588. 2021. | |
Wu R, Yao Y, Jiang Q, Cai M, Liu Q, Wang Y and Wang X: Epigallocatechin gallate targets FTO and inhibits adipogenesis in an mRNA m6A-YTHDF2-dependent manner. Int J Obes (Lond). 42:1378–1388. 2018. | |
Jiao Y, Williams A and Wei N: Quercetin ameliorated insulin resistance via regulating METTL3-mediated N6-methyladenosine modification of PRKD2 mRNA in skeletal muscle and C2C12 myocyte cell line. Nutr Metab Cardiovasc Dis. 32:2655–2668. 2022. | |
Phan T, Nguyen VH, Su R, Li Y, Qing Y, Qin H, Cho H, Jiang L, Wu X, Chen J, et al: Targeting fat mass and obesity-associated protein mitigates human colorectal cancer growth in vitro and in a murine model. Front Oncol. 13:10876442023. | |
Du Y, Yuan Y, Xu L, Zhao F, Wang W, Xu Y and Tian X: Discovery of METTL3 small molecule inhibitors by virtual screening of natural products. Front Pharmacol. 13:8781352022. | |
Manna S, Samal P, Basak R, Mitra A, Roy AK, Kundu R, Ahir A, Roychowdhury A and Hazra D: Amentoflavone and methyl hesperidin, novel lead molecules targeting epitranscriptomic modulator in acute myeloid leukemia: In silico drug screening and molecular dynamics simulation approach. J Mol Model. 29:92022. | |
Deng S, Zhang J, Su J, Zuo Z, Zeng L, Liu K, Zheng Y, Huang X, Bai R, Zhuang L, et al: RNA m6A regulates transcription via DNA demethylation and chromatin accessibility. Nat Genet. 54:1427–1437. 2022. |