1
|
Liu Y, Ao X, Yu W, Zhang Y and Wang J:
Biogenesis, functions, and clinical implications of circular RNAs
in non-small cell lung cancer. Mol Ther Nucleic Acids. 27:50–72.
2021.
|
2
|
Kolakofsky D: Isolation and
characterization of Sendai virus DI-RNAs. Cell. 8:547–555.
1976.
|
3
|
Capel B, Swain A, Nicolis S, Hacker A,
Walter M, Koopman P, Goodfellow P and Lovell-Badge R: Circular
transcripts of the testis-determining gene Sry in adult mouse
testis. Cell. 73:1019–1030. 1993.
|
4
|
Cocquerelle C, Daubersies P, Majerus MA,
Kerckaert JP and Bailleul B: Splicing with inverted order of exons
occurs proximal to large introns. EMBO J. 11:1095–1098. 1992.
|
5
|
Nigro JM, Cho KR, Fearon ER, Kern SE,
Ruppert JM, Oliner JD, Kinzler KW and Vogelstein B: Scrambled
exons. Cell. 64:607–613. 1991.
|
6
|
Schroeder R, Breitenbach M and Schweyen
RJ: Mitochondrial circular RNAs are absent in sporulating cells of
Saccharomyces cerevisiae. Nucleic Acids Res. 11:1735–1746.
1983.
|
7
|
Cocquerelle C, Mascrez B, Hetuin D and
Bailleul B: Mis-splicing yields circular RNA molecules. FASEB J.
7:155–160. 1993.
|
8
|
Zhou X, Ao X, Jia Z, Li Y, Kuang S, Du C,
Zhang J, Wang J and Liu Y: Non-coding RNA in cancer drug
resistance: Underlying mechanisms and clinical applications. Front
Oncol. 12:9518642022.
|
9
|
Zhang L, Zhang Y, Yu F, Li X, Gao H and Li
P: The circRNA-miRNA/RBP regulatory network in myocardial
infarction. Front Pharmacol. 13:9411232022.
|
10
|
Wang M, Yu F, Li P and Wang K: Emerging
Function and clinical significance of Exosomal circRNAs in cancer.
Mol Ther Nucleic Acids. 21:367–383. 2020.
|
11
|
Zhang L, Zhang Y, Wang Y, Zhao Y, Ding H
and Li P: Circular RNAs: Functions and clinical significance in
cardiovascular disease. Front Cell Dev Biol. 8:5840512020.
|
12
|
Ye XM, Hang YW, Lu Y, Li D, Shen F, Guan
P, Dong J, Shi L and Hu W: CircRNA circ-NNT mediates myocardial
ischemia/reperfusion injury through activating pyroptosis by
sponging miR-33a-5p and regulating USP46 expression. Cell Death
Discov. 7:3702021.
|
13
|
Zhao W, Zhang Y and Zhu Y: Circular RNA
circbeta-catenin aggravates the malignant phenotype of
non-small-cell lung cancer via encoding a peptide. J Clin Lab Anal.
35:e239002021.
|
14
|
Hong YL, Qin HF, Li Y, Zhang Y, Zhuang X,
Liu L, Lu K, Li L, Deng X, Liu F, et al: FNDC3B circular RNA
promotes the migration and invasion of gastric cancer cells via the
regulation of E-cadherin and CD44 expression. J Cell Physiol.
234:19895–19910. 2019.
|
15
|
Jiang T, Xia Y, Lv J, Li B, Li Y, Wang S,
Xuan Z, Xie L, Qiu S, He Z, et al: A novel protein encoded by
circMAPK1 inhibits progression of gastric cancer by suppressing
activation of MAPK signaling. Mol Cancer. 20:662021.
|
16
|
Yang Y, Gao X, Zhang M, Yan S, Sun C, Xiao
F, Huang N, Yang X, Zhao K, Zhou H, et al: Novel Role of FBXW7
Circular RNA in repressing glioma tumorigenesis. J Natl Cancer
Inst. 110:304–315. 2018.
|
17
|
Zhang M, Huang N, Yang X, Luo J, Yan S,
Xiao F, Chen W, Gao X, Zhao K, Zhou H, et al: A novel protein
encoded by the circular form of the SHPRH gene suppresses glioma
tumorigenesis. Oncogene. 37:1805–1814. 2018.
|
18
|
Wang M, Yu F, Zhang Y, Zhang L, Chang W
and Wang K: The Emerging roles of circular RNAs in the
chemoresistance of gastrointestinal cancer. Front Cell Dev Biol.
10:8216092022.
|
19
|
Li F, Cai Y, Deng S, Yang L, Liu N, Chang
X, Jing L, Zhou Y and Li H: A peptide CORO1C-47aa encoded by the
circular noncoding RNA circ-0000437 functions as a negative
regulator in endometrium tumor angiogenesis. J Biol Chem.
297:1011822021.
|
20
|
Peng Y, Xu Y, Zhang X, Deng S, Yuan Y, Luo
X, Hossain MT, Zhu X, Du K, Hu F, et al: A novel protein
AXIN1-295aa encoded by circAXIN1 activates the Wnt/β-catenin
signaling pathway to promote gastric cancer progression. Mol
Cancer. 20:1582021.
|
21
|
Wu X, Xiao S, Zhang M, Yang L, Zhong J, Li
B, Li F, Xia X, Li X, Zhou H, et al: A novel protein encoded by
circular SMO RNA is essential for Hedgehog signaling activation and
glioblastoma tumorigenicity. Genome Biology. 22:332021.
|
22
|
Kos A, Dijkema R, Arnberg AC, van der
Meide PH and Schellekens H: The hepatitis delta (delta) virus
possesses a circular RNA. Nature. 323:558–560. 1986.
|
23
|
Perriman R and Ares M: Circular mRNA can
direct translation of extremely long repeating-sequence proteins in
vivo. RNA. 4:1047–1054. 1998.
|
24
|
Liu GM, Li Q, Zhang PF, Shen SL, Xie WX,
Chen B, Wu J, Hu WJ, Huang XY and Peng BG: Restoration of FBP1
suppressed Snail-induced epithelial to mesenchymal transition in
hepatocellular carcinoma. Cell Death Dis. 9:11322018.
|
25
|
Zheng X, Chen L, Zhou Y, Wang Q, Zheng Z,
Xu B, Wu C, Zhou Q, Hu W, Wu C and Jiang J: A novel protein encoded
by a circular RNA circPPP1R12A promotes tumor pathogenesis and
metastasis of colon cancer via Hippo-YAP signaling. Mol Cancer.
18:472019.
|
26
|
Pan Z, Cai J, Lin J, Zhou H, Peng J, Liang
J, Xia L, Yin Q, Zou B, Zheng J, et al: A novel protein encoded by
circFNDC3B inhibits tumor progression and EMT through regulating
Snail in colon cancer. Mol Cancer. 19:712020.
|
27
|
Legnini I, Di Timoteo G, Rossi F, Morlando
M, Briganti F, Sthandier O, Fatica A, Santini T, Andronache A, Wade
M, et al: Circ-ZNF609 Is a Circular RNA that can be translated and
functions in myogenesis. Mol Cell. 66:22–37.e9. 2017.
|
28
|
Pamudurti NR, Bartok O, Jens M,
Ashwal-Fluss R, Stottmeister C, Ruhe L, Hanan M, Wyler E,
Perez-Hernandez D, Ramberger E, et al: Translation of CircRNAs. Mol
Cell. 66:9–21.e7. 2017.
|
29
|
Yang Y, Fan X, Mao M, Song X, Wu P, Zhang
Y, Jin Y, Yang Y, Chen LL, Wang Y, et al: Extensive translation of
circular RNAs driven by N6-methyladenosine. Cell Res.
27:626–641. 2017.
|
30
|
Quintanal-Villalonga A, Molina-Pinelo S,
Cirauqui C, Ojeda-Márquez L, Marrugal Á, Suarez R, Conde E,
Ponce-Aix S, Enguita AB, Carnero A, et al: FGFR1 cooperates with
EGFR in lung cancer oncogenesis, and their combined inhibition
shows improved efficacy. J Thorac Oncol. 14:641–655. 2019.
|
31
|
Ye F, Gao G, Zou Y, Zheng S, Zhang L, Ou
X, Xie X and Tang H: circFBXW7 inhibits malignant progression by
sponging miR-197-3p and encoding a 185-aa protein in
triple-negative breast cancer. Mol Ther Nucleic Acids. 18:88–98.
2019.
|
32
|
Gu C, Wang W, Tang X, Xu T, Zhang Y, Guo
M, Wei R, Wang Y, Jurczyszyn A and Janz S: CHEK1 and
circCHEK1_246aa evoke chromosomal instability and induce bone
lesion formation in multiple myeloma. Mol Cancer. 20:842021.
|
33
|
Zhang XO, Wang HB, Zhang Y, Lu X, Chen LL
and Yang L: Complementary sequence-mediated exon circularization.
Cell. 159:134–147. 2014.
|
34
|
Li Z, Huang C, Bao C, Chen L, Lin M, Wang
X, Zhong G, Yu B, Hu W, Dai L, et al: Exon-intron circular RNAs
regulate transcription in the nucleus. Nat Struct Mol Biol.
22:256–264. 2015.
|
35
|
Wang M, Yu F and Li PF: Noncoding RNAs as
an emerging resistance mechanism to immunotherapies in cancer:
Basic evidence and therapeutic implications. Front Immunol.
14:12687452023.
|
36
|
Zhang L, Wang Y, Zhang Y, Zhao YF and Li
PF: Pathogenic mechanisms and the potential clinical value of
circFoxo3 in cancers. Mol Ther-Nucl Acids. 23:908–917. 2021.
|
37
|
Hansen TB, Jensen TI, Clausen BH, Bramsen
JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function
as efficient microRNA sponges. Nature. 495:384–388. 2013.
|
38
|
Memczak S, Jens M, Elefsinioti A, Torti F,
Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer
M, et al: Circular RNAs are a large class of animal RNAs with
regulatory potency. Nature. 495:333–338. 2013.
|
39
|
Liang ZX, Liu HS, Xiong L, Yang X, Wang
FW, Zeng ZW, He XW, Wu XR and Lan P: A novel NF-κB regulator
encoded by circPLCE1 inhibits colorectal carcinoma progression by
promoting RPS3 ubiquitin-dependent degradation. Mol Cancer.
20:1032021.
|
40
|
Zhang Y, Zhang XO, Chen T, Xiang JF, Yin
QF, Xing YH, Zhu S, Yang L and Chen LL: Circular intronic long
noncoding RNAs. Mol Cell. 51:792–806. 2013.
|
41
|
Sun G, Shen JF, Wei XF and Qi GX: Circular
RNA Foxo3 relieves myocardial Ischemia/Reperfusion injury by
suppressing autophagy via inhibiting HMGB1 by repressing KAT7 in
myocardial infarction. J Inflamm Res. 14:6397–6407. 2021.
|
42
|
Zeng Y, Du WW, Wu Y, Yang Z, Awan FM, Li
X, Yang W, Zhang C, Yang Q, Yee A, et al: A circular RNA binds to
and activates AKT phosphorylation and nuclear localization reducing
apoptosis and enhancing cardiac repair. Theranostics. 7:3842–3855.
2017.
|
43
|
Zhang Y, Jiang J, Zhang J, Shen H, Wang M,
Guo Z, Zang X, Shi H, Gao J, Cai H, et al: CircDIDO1 inhibits
gastric cancer progression by encoding a novel DIDO1-529aa protein
and regulating PRDX2 protein stability. Mol Cancer. 20:1012021.
|
44
|
Das S, Vera M, Gandin V, Singer RH and
Tutucci E: Intracellular mRNA transport and localized translation.
Nat Rev Mol Cell Biol. 22:483–504. 2021.
|
45
|
Prats AC, David F, Diallo LH, Roussel E,
Tatin F, Garmy-Susini B and Lacazette E: Circular RNA, the key for
translation. Int J Mol Sci. 21:85912020.
|
46
|
Lei M, Zheng G, Ning Q, Zheng J and Dong
D: Translation and functional roles of circular RNAs in human
cancer. Mol Cancer. 19:302020.
|
47
|
Choi JH, Wang W, Park D, Kim SH, Kim KT
and Min KT: IRES-mediated translation of cofilin regulates axonal
growth cone extension and turning. EMBO J. 37:2018.
|
48
|
Fan XJ, Yang Y, Chen CY and Wang ZF:
Pervasive translation of circular RNAs driven by short IRES-like
elements. Nat Commun. 13:37512022.
|
49
|
Yang Y and Wang Z: IRES-mediated
cap-independent translation, a path leading to hidden proteome. J
Mol Cell Biol. 11:911–919. 2019.
|
50
|
Meyer KD, Patil DP, Zhou J, Zinoviev A,
Skabkin MA, Elemento O, Pestova TV, Qian SB and Jaffrey SR: 5′UTR
m(6)A promotes Cap-independent translation. Cell. 163:999–1010.
2015.
|
51
|
Zou Q, Xing P, Wei L and Liu B: Gene2vec:
Gene subsequence embedding for prediction of mammalian
N6-methyladenosine sites from mRNA. Rna. 25:205–218. 2019.
|
52
|
Gu Y, Wu X, Zhang J, Fang Y, Pan Y, Shu Y
and Ma P: The evolving landscape of N6-methyladenosine
modification in the tumor microenvironment. Mol Ther. 29:1703–1715.
2021.
|
53
|
Su T, Huang M, Liao J, Lin S, Yu P, Yang
J, Cai Y, Zhu S, Xu L, Peng Z, et al: Insufficient radiofrequency
ablation promotes hepatocellular carcinoma metastasis through
N6-Methyladenosine mRNA Methylation-Dependent mechanism.
Hepatology. 74:1339–1356. 2021.
|
54
|
Glazar P, Papavasileiou P and Rajewsky N:
circBase: A database for circular RNAs. RNA. 20:1666–1670.
2014.
|
55
|
Liu YC, Li JR, Sun CH, Andrews E, Chao RF,
Lin FM, Weng SL, Hsu SD, Huang CC, Cheng C, et al: CircNet: A
database of circular RNAs derived from transcriptome sequencing
data. Nucleic Acids Res. 44:D209–D215. 2016.
|
56
|
Chen XP, Han P, Zhou T, Guo XJ, Song XF
and Li Y: circRNADb: A comprehensive database for human circular
RNAs with protein-coding annotations. Sci Rep. 6:349852016.
|
57
|
Meng XW, Chen Q, Zhang PJ and Chen M:
CircPro: An integrated tool for the identification of circRNAs with
protein-coding potential. Bioinformatics. 33:3314–3316. 2017.
|
58
|
Sun PS and Li GL: CircCode: A powerful
tool for identifying circRNA coding ability. Front Genetics.
10:9812019.
|
59
|
Rombel IT, Sykes KF, Rayner S and Johnston
SA: ORF-FINDER: A vector for high-throughput gene identification.
Gene. 282:33–41. 2002.
|
60
|
Mokrejs M, Masek T, Vopalensky V, Hlubucek
P, Delbos P and Pospisek M: IRESite-a tool for the examination of
viral and cellular internal ribosome entry sites. Nucleic Acids
Res. 38(Database Issue): D131–D136. 2010.
|
61
|
Wei LY, Chen HR and Su R: M6APred-EL: A
sequence-based predictor for identifying N6-methyladenosine sites
using ensemble learning. Mol Ther Nucleic Acids. 12:635–644.
2018.
|
62
|
Zhang YQ and Hamada M: DeepM6ASeq:
Prediction and characterization of m6A-containing sequences using
deep learning. BMC Bioinformatics. 19(Suppl 19): S5242018.
|
63
|
Zhao J, Li Y, Wang C, Zhang H, Zhang H,
Jiang B, Guo X and Song X: IRESbase: A comprehensive database of
experimentally validated internal ribosome entry sites. Genomics
Proteomics Bioinformatics. 18:129–139. 2020.
|
64
|
Wu P, Mo YZ, Peng M, Tang T, Zhong Y, Deng
X, Xiong F, Guo C, Wu X, Li Y, et al: Emerging role of
tumor-related functional peptides encoded by lncRNA and circRNA.
Mol Cancer. 19:222020.
|
65
|
Liu Y, Li Z, Zhang M, Zhou H, Wu X, Zhong
J, Xiao F, Huang N, Yang X, Zeng R, et al: Rolling-translated EGFR
variants sustain EGFR signaling and promote glioblastoma
tumorigenicity. Neuro Oncol. 23:743–756. 2021.
|
66
|
Li Y, Wang Z, Su P, Liang Y, Li Z, Zhang
H, Song X, Han D, Wang X, Liu Y, et al: circ-EIF6 encodes
EIF6-224aa to promote TNBC progression via stabilizing MYH9 and
activating the Wnt/beta-catenin pathway. Mol Ther. 30:415–430.
2022.
|
67
|
Liu L, Liu FB, Huang M, Xie K, Xie QS, Liu
CH, Shen MJ and Huang Q: Circular RNA ciRS-7 promotes the
proliferation and metastasis of pancreatic cancer by regulating
miR-7-mediated EGFR/STAT3 signaling pathway. Hepatobiliary Pancreat
Dis Int. 18:580–586. 2019.
|
68
|
Zhao HD, Zhou QJ and Li XT: Protein bait
hypothesis: CircRNA-Encoded proteins competitively inhibit cognate
functional isoforms. Trends Genet. 37:616–624. 2021.
|
69
|
Wang L, Zhou J, Zhang C, Chen R, Sun Q,
Yang P, Peng C, Tan Y, Jin C, Wang T, et al: A novel tumour
suppressor protein encoded by circMAPK14 inhibits progression and
metastasis of colorectal cancer by competitively binding to MKK6.
Clin Transl Med. 11:e6132021.
|
70
|
Song J, Zheng J, Liu X, Dong W, Yang C,
Wang D, Ruan X, Zhao Y, Liu L, Wang P, et al: A novel protein
encoded by ZCRB1-induced circHEATR5B suppresses aerobic glycolysis
of GBM through phosphorylation of JMJD5. J Exp Clin Cancer Res.
41:1712022.
|
71
|
McKinnon C, Nandhabalan M, Murray SA and
Plaha P: Glioblastoma: Clinical presentation, diagnosis, and
management. BMJ. 374:n15602021.
|
72
|
Broekman ML, Maas SLN, Abels ER, Mempel
TR, Krichevsky AM and Breakefield XO: Multidimensional
communication in the microenvirons of glioblastoma. Nat Rev Neurol.
14:482–495. 2018.
|
73
|
Caragher SP, Hall RR, Ahsan R and Ahmed
AU: Monoamines in glioblastoma: Complex biology with therapeutic
potential. Neuro Oncol. 20:1014–1025. 2018.
|
74
|
Marin-Bejar O, Marchese FP, Athie A,
Sánchez Y, González J, Segura V, Huang L, Moreno I, Navarro A,
Monzó M, et al: Pint lincRNA connects the p53 pathway with
epigenetic silencing by the Polycomb repressive complex 2. Genome
Biol. 14:R1042013.
|
75
|
Zhang M, Zhao K, Xu X, Yang Y, Yan S, Wei
P, Liu H, Xu J, Xiao F, Zhou H, et al: A peptide encoded by
circular form of LINC-PINT suppresses oncogenic transcriptional
elongation in glioblastoma. Nat Commun. 9:44752018.
|
76
|
Chen FX, Woodfin AR, Gardini A, Rickels
RA, Marshall SA, Smith ER, Shiekhattar R and Shilatifard A: PAF1, a
molecular regulator of promoter-proximal pausing by RNA Polymerase
II. Cell. 162:1003–1015. 2015.
|
77
|
Unk I, Hajdu I, Fatyol K, Szakál B,
Blastyák A, Bermudez V, Hurwitz J, Prakash L, Prakash S and
Haracska L: Human SHPRH is a ubiquitin ligase for
Mms2-Ubc13-dependent polyubiquitylation of proliferating cell
nuclear antigen. Proc Natl Acad Sci USA. 103:18107–18112. 2006.
|
78
|
Chen X, Sun N, Li R, Sang X, Li X, Zhao J,
Han J, Yang J and Ikezoe T: Targeting HLA-F suppresses the
proliferation of glioma cells via a reduction in hexokinase
2-dependent glycolysis. Int J Biol Sci. 17:1263–1276. 2021.
|
79
|
Wang HJ, Hsieh YJ, Cheng WC, Lin CP, Lin
YS, Yang SF, Chen CC, Izumiya Y, Yu JS, Kung HJ and Wang WC: JMJD5
regulates PKM2 nuclear translocation and reprograms
HIF-1alpha-mediated glucose metabolism. Proc Natl Acad Sci USA.
111:279–284. 2014.
|
80
|
Chin YR, Yuan X, Balk SP and Toker A:
PTEN-Deficient tumors depend on AKT2 for maintenance and survival.
Cancer Discov. 4:942–955. 2014.
|
81
|
Zhao HF, Wang J, Shao W, Wu CP, Chen ZP,
To ST and Li WP: Recent advances in the use of PI3K inhibitors for
glioblastoma multiforme: Current preclinical and clinical
development. Mol Cancer. 16:1002017.
|
82
|
Xia X, Li X, Li F, Wu X, Zhang M, Zhou H,
Huang N, Yang X, Xiao F, Liu D, et al: A novel tumor suppressor
protein encoded by circular AKT3 RNA inhibits glioblastoma
tumorigenicity by competing with active phosphoinositide-dependent
Kinase-1. Mol Cancer. 18:1312019.
|
83
|
Furnari FB, Cloughesy TF, Cavenee WK and
Mischel PS: Heterogeneity of epidermal growth factor receptor
signalling networks in glioblastoma. Nat Rev Cancer. 15:302–310.
2015.
|
84
|
Reifenberger G, Wirsching HG,
Knobbe-Thomsen CB and Weller M: Advances in the molecular genetics
of Gliomas-Implications for classification and therapy. Nat Rev
Clin Oncol. 14:434–452. 2017.
|
85
|
Gao X, Xia X, Li F, Zhang M, Zhou H, Wu X,
Zhong J, Zhao Z, Zhao K, Liu D, et al: Circular RNA-encoded
oncogenic E-cadherin variant promotes glioblastoma tumorigenicity
through activation of EGFR-STAT3 signalling. Nat Cell Biol.
23:278–291. 2021.
|
86
|
Filbin MG, Dabral SK, Pazyra-Murphy MF,
Ramkissoon S, Kung AL, Pak E, Chung J, Theisen MA, Sun Y,
Franchetti Y, et al: Coordinate activation of Shh and PI3K
signaling in PTEN-deficient glioblastoma: New therapeutic
opportunities. Nat Med. 19:1518–1523. 2013.
|
87
|
Kool M, Jones DT, Jäger N, Northcott PA,
Pugh TJ, Hovestadt V, Piro RM, Esparza LA, Markant SL, Remke M, et
al: Genome sequencing of SHH medulloblastoma predicts
genotype-related response to smoothened inhibition. Cancer Cell.
25:393–405. 2014.
|
88
|
Xie J: Hedgehog signaling pathway:
Development of antagonists for cancer therapy. Curr Oncol Rep.
10:107–113. 2008.
|
89
|
Bianchini G, Balko JM, Mayer IA, Sanders
ME and Gianni L: Triple-negative breast cancer: Challenges and
opportunities of a heterogeneous disease. Nat Rev Clin Oncol.
13:674–690. 2016.
|
90
|
Li J, Ma M, Yang X, Zhang M, Luo J, Zhou
H, Huang N, Xiao F, Lai B, Lv W and Zhang N: Circular HER2 RNA
positive triple negative breast cancer is sensitive to Pertuzumab.
Mol Cancer. 19:1422020.
|
91
|
Du Y, Zhang JY, Gong LP, Feng ZY, Wang D,
Pan YH, Sun LP, Wen JY, Chen GF, Liang J, et al: Hypoxia-induced
ebv-circLMP2A promotes angiogenesis in EBV-associated gastric
carcinoma through the KHSRP/VHL/HIF1 α/VEGFA pathway. Cancer Lett.
526:259–272. 2022.
|
92
|
Ji L, Jiang B, Jiang X, Charlat O, Chen A,
Mickanin C, Bauer A, Xu W, Yan X and Cong F: The SIAH E3 ubiquitin
ligases promote Wnt/β-catenin signaling through mediating
Wnt-induced Axin degradation. Genes Dev. 31:904–915. 2017.
|
93
|
Futterer A, de Celis J, Navajas R,
Almonacid L, Gutiérrez J, Talavera-Gutiérrez A, Pacios-Bras C,
Bernascone I, Martin-Belmonte F and Martinéz-A C: DIDO as a
switchboard that regulates Self-Renewal and differentiation in
embryonic stem cells. Stem Cell Rep. 8:1062–1075. 2017.
|
94
|
Kang DH, Lee DJ, Lee S, Lee SY, Jun Y, Kim
Y, Kim Y, Lee JS, Lee DK, Lee S, et al: Interaction of tankyrase
and peroxiredoxin II is indispensable for the survival of
colorectal cancer cells. Nat Commun. 8:402017.
|
95
|
Park YH, Kim SU, Kwon TH, Kim JM, Song IS,
Shin HJ, Lee BK, Bang DH, Lee SJ, Lee DS, et al: Peroxiredoxin II
promotes hepatic tumorigenesis through cooperation with
Ras/Forkhead box M1 signaling pathway. Oncogene. 35:3503–3513.
2016.
|
96
|
Fang JY and Richardson BC: The MAPK
signalling pathways and colorectal cancer. Lancet Oncol. 6:322–327.
2005.
|
97
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018.
|
98
|
Yin F, Dong J, Kang LI and Liu X:
Hippo-YAP signaling in digestive system tumors. Am J Cancer Res.
11:2495–2507. 2021.
|
99
|
Cai C, Rajaram M, Zhou X, Liu Q, Marchica
J, Li J, Powers RS, et al: Activation of multiple cancer pathways
and tumor maintenance function of the 3q amplified oncogene FNDC3B.
Cell Cycle. 11:1773–1781. 2012.
|
100
|
Liu HW, Bi JM, Dong W, Yang M, Shi J,
Jiang N, Lin T and Huang J: Invasion-related circular RNA
circFNDC3B inhibits bladder cancer progression through the
miR-1178-3p/G3BP2/SRC/FAK axis. Mol Cancer. 17:1612018.
|
101
|
Dong C, Yuan T, Wu Y, Wang Y, Fan TW,
Miriyala S, Lin Y, Yao J, Shi J, Kang T, et al: Loss of FBP1 by
Snail-Mediated repression provides metabolic advantages in
Basal-like breast cancer. Cancer Cell. 23:316–331. 2013.
|
102
|
Gupta J, del Barco Barrantes I, Igea A,
Sakellariou S, Pateras IS, Gorgoulis VG and Nebreda AR: Dual
function of p38α MAPK in colon cancer: Suppression of
colitis-associated tumor initiation but requirement for cancer cell
survival. Cancer Cell. 25:484–500. 2014.
|
103
|
Luo JL, Maeda S, Hsu LC, Yagita H and
Karin M: Inhibition of NF-kappa B in cancer cells converts
inflammation-induced tumor growth mediated by TNF alpha to
TRAIL-mediated tumor regression. Cancer Cell. 6:297–305. 2004.
|
104
|
Clemo NK, Collard TJ, Southern SL, Edwards
KD, Moorghen M, Packham G, Hague A, Paraskeva C and Williams AC:
BAG-1 is up-regulated in colorectal tumour progression and promotes
colorectal tumour cell survival through increased NF-kappa B
activity. Carcinogenesis. 29:849–857. 2008.
|
105
|
Hodgson A, Wier EM, Fu K, Sun X, Yu H,
Zheng W, Sham HP, Johnson K, Bailey S, Vallance BA and Wan F:
Metalloprotease NleC suppresses host NF-κB/inflammatory responses
by cleaving p65 and interfering with the p65/RPS3 interaction. PLoS
Pathog. 11:e10047052015.
|
106
|
Kim TS, Jang CY, Kim HD, Lee JY, Ahn BY
and Kim J: Interaction of Hsp90 with ribosomal proteins protects
from ubiquitination and proteasome-dependent degradation. Mol Biol
Cell. 17:824–833. 2006.
|
107
|
Ferlay J, Soerjomataram I, Dikshit R, Eser
S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F: Cancer
incidence and mortality worldwide: Sources, methods and major
patterns in GLOBOCAN 2012. Int J Cancer. 136:E359–E386. 2015.
|
108
|
Wang T, Liu Z, She Y, Deng J, Zhong Y,
Zhao M, Li S, Xie D, Sun X, Hu X and Chen C: A novel protein
encoded by circASK1 ameliorates gefitinib resistance in lung
adenocarcinoma by competitively activating ASK1-dependent
apoptosis. Cancer Lett. 520:321–331. 2021.
|
109
|
Ichijo H, Nishida E, Irie K, ten Dijke P,
Saitoh M, Moriguchi T, Takagi M, Matsumoto K, Miyazono K and Gotoh
Y: Induction of apoptosis by ASK1, a mammalian MAPKKK that
activates SAPK/JNK and p38 signaling pathways. Science. 275:90–94.
1997.
|
110
|
Duan JL, Chen W, Xie JJ, Zhang ML, Nie RC,
Liang H, Mei J, Han K, Xiang ZC, Wang FW, et al: A novel peptide
encoded by N6-methyladenosine modified circMAP3K4 prevents
apoptosis in hepatocellular carcinoma. Mol Cancer. 21:932022.
|
111
|
Liang WC, Wong CW, Liang PP, Shi M, Cao Y,
Rao ST, Tsui SK, Waye MM, Zhang Q, Fu WM and Zhang JF: Translation
of the circular RNA circ-catenin promotes liver cancer cell growth
through activation of the Wnt pathway. Genome Biol. 20:842019.
|
112
|
Lee TY, Martinez-Outschoorn UE, Schilder
RJ, Kim CH, Richard SD, Rosenblum NG and Johnson JM: Metformin as a
therapeutic target in endometrial cancers. Front Oncol.
8:3412018.
|
113
|
Kewley RJ, Whitelaw ML and Chapman-Smith
A: The mammalian basic helix-loop-helix/PAS family of
transcriptional regulators. Int J Biochem Cell Biol. 36:189–204.
2004.
|
114
|
Pawlyn C and Morgan GJ: Evolutionary
biology of high-risk multiple myeloma. Nat Rev Cancer. 17:543–556.
2017.
|
115
|
de Boussac H, Bruyer A, Jourdan M, Maes A,
Robert N, Gourzones C, Vincent L, Seckinger A, Cartron G, Hose D,
et al: Kinome expression profiling to target new therapeutic
avenues in multiple myeloma. Haematologica. 105:784–795. 2020.
|
116
|
Pei XY, Dai Y, Youssefian LE, Chen S,
Bodie WW, Takabatake Y, Felthousen J, Almenara JA, Kramer LB, Dent
P and Grant S: Cytokinetically quiescent (G0/G1) human multiple
myeloma cells are susceptible to simultaneous inhibition of Chk1
and MEK1/2. Blood. 118:5189–5200. 2011.
|
117
|
Michl P, Ramjaun AR, Pardo OE, Warne PH,
Wagner M, Poulsom R, D'Arrigo C, Ryder K, Menke A, Gress T and
Downward J: CUTL1 is a target of TGF(beta) signaling that enhances
cancer cell motility and invasiveness. Cancer Cell. 7:521–532.
2005.
|
118
|
Yang F, Hu A, Guo Y, Wang J, Li D, Wang X,
Jin S, Yuan B, Cai S, Zhou Y, et al: p113 isoform encoded by CUX1
circular RNA drives tumor progression via facilitating ZRF1/BRD4
transactivation. Mol Cancer. 20:1232021.
|
119
|
Miller KD, Nogueira L, Mariotto AB,
Rowland JH, Yabroff KR, Alfano CM, Jemal A, Kramer JL and Siegel
RL: Cancer treatment and survivorship statistics, 2019. CA Cancer J
Clin. 69:363–385. 2019.
|
120
|
Hu X, Wu D, He X, Zhao H, He Z, Lin J,
Wang K, Wang W, Pan Z, Lin H and Wang M: circGSK3β promotes
metastasis in esophageal squamous cell carcinoma by augmenting
β-catenin signaling. Mol Cancer. 18:1602019.
|
121
|
Li CJ, Li DG, Liu EJ and Jiang GZ:
Circ8199 encodes a protein that inhibits the activity of OGT by
JAK2-STAT3 pathway in esophageal squamous cell carcinoma. Am J
Cancer Res. 13:1107–1117. 2023.
|
122
|
Lyu YC, Tan BH, Li L, Liang R, Lei K, Wang
K, Wu D, Lin H and Wang M: A novel protein encoded by circUBE4B
promotes progression of esophageal squamous cell carcinoma by
augmenting MAPK/ERK signaling. Cell Death Dis. 14:3462023.
|
123
|
De Luca A, Maiello MR, D'Alessio A,
Pergameno M and Normanno N: The RAS/RAF/MEK/ERK and the PI3K/AKT
signalling pathways: Role in cancer pathogenesis and implications
for therapeutic approaches. Expert Opin Ther Tar. 16(Suppl 2):
S17–S27. 2012.
|
124
|
Liu Y, Li XG, Zhou XH, Wang JX and Ao X:
FADD as a key molecular player in cancer progression. Mol Med.
28:1322022.
|
125
|
Liu Y, Wang Y, Li X, Jia Y, Wang J and Ao
X: FOXO3a in cancer drug resistance. Cancer Lett.
540:2157242022.
|
126
|
Litke JL and Jaffrey SR: Highly efficient
expression of circular RNA aptamers in cells using autocatalytic
transcripts. Nat Biotechnol. 37:667–675. 2019.
|
127
|
Qu L, Yi ZY, Shen Y, Lin L, Chen F, Xu Y,
Wu Z, Tang H, Zhang X, Tian F, et al: Circular RNA vaccines against
SARS-CoV-2 and emerging variants. Cell. 185:1728–1744. 2022.
|