Advances in the study of antisense long‑stranded non‑coding RNAs in tumors (Review)
- Authors:
- Yifan Shao
- Yuwei Dong
- Jing Zhou
- Zhihua Lu
- Chen Chen
- Xiaomin Yuan
- Linhai He
- Wenwen Tang
- Zepeng Chen
- Yuji Wang
- Qiurong Li
- Shuhui Zhan
- Zhengxi Qiu
- Kuiling Wang
- Jiaze Ma
- Yugen Chen
- Yang Li
-
Affiliations: The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China, Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China - Published online on: January 9, 2024 https://doi.org/10.3892/ijo.2024.5610
- Article Number: 22
This article is mentioned in:
Abstract
GBD 2019 Diseases and Injuries Collaborators, . Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet. 396:1204–1222. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xia C, Dong X, Li H, Cao M, Sun D, He S, Yang F, Yan X, Zhang S, Li N and Chen W: Cancer statistics in China and United States, 2022: Profiles, trends, and determinants. Chin Med J (Engl). 135:584–590. 2022. View Article : Google Scholar : PubMed/NCBI | |
Qiu H, Cao S and Xu R: Cancer incidence, mortality, and burden in China: A time-trend analysis and comparison with the United States and United Kingdom based on the global epidemiological data released in 2020. Cancer Commun (Lond). 41:1037–1048. 2021. View Article : Google Scholar : PubMed/NCBI | |
Siegel RL, Miller KD, Fuchs HE and Jemal A: Cancer statistics, 2022. CA Cancer J Clin. 72:7–33. 2022. View Article : Google Scholar : PubMed/NCBI | |
Miller KD, Nogueira L, Devasia T, Mariotto AB, Yabroff KR, Jemal A, Kramer J and Siegel RL: Cancer treatment and survivorship statistics, 2022. CA Cancer J Clin. 72:409–436. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ponting CP, Oliver PL and Reik W: Evolution and functions of long noncoding RNAs. Cell. 136:629–641. 2009. View Article : Google Scholar : PubMed/NCBI | |
Agirre E and Eyras E: Databases and resources for human small non-coding RNAs. Hum Genomics. 5:192–199. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lee JT: Epigenetic regulation by long noncoding RNAs. Science. 338:1435–1439. 2012. View Article : Google Scholar : PubMed/NCBI | |
Takahashi A, Tsutsumi R, Kikuchi I, Obuse C, Saito Y, Seidi A, Karisch R, Fernandez M, Cho T, Ohnishi N, et al: SHP2 tyrosine phosphatase converts parafibromin/Cdc73 from a tumor suppressor to an oncogenic driver. Mol Cell. 43:45–56. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bhan A, Soleimani M and Mandal SS: Long noncoding RNA and cancer: A new paradigm. Cancer Res. 77:3965–3981. 2017. View Article : Google Scholar : PubMed/NCBI | |
Statello L, Guo CJ, Chen LL and Huarte M: Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Bio. 22:96–118. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hua Q, Mi B, Xu F, Wen J, Zhao L, Liu J and Huang G: Hypoxia-induced lncRNA-AC020978 promotes proliferation and glycolytic metabolism of non-small cell lung cancer by regulating PKM2/HIF-1α axis. Theranostics. 10:4762–4778. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Yu Y, Li H, Hu Q, Chen X, He Y, Xue C, Ren F, Ren Z, Li J, et al: Long non-coding RNA PVT1 promotes tumor progression by regulating the miR-143/HK2 axis in gallbladder cancer. Mol Cancer. 18:332019. View Article : Google Scholar : PubMed/NCBI | |
Devaux Y, Zangrando J, Schroen B, Creemers EE, Pedrazzini T, Chang CP, Dorn GN, Thum T II and Heymans S; Cardiolinc network, : Long noncoding RNAs in cardiac development and ageing. Nat Rev Cardiol. 12:415–425. 2015. View Article : Google Scholar : PubMed/NCBI | |
Magistri M, Faghihi MA, St Laurent G III and Wahlestedt C: Regulation of chromatin structure by long noncoding RNAs: Focus on natural antisense transcripts. Trends Genet. 28:389–396. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cui XY, Zhan JK and Liu YS: Roles and functions of antisense lncRNA in vascular aging. Ageing Res Rev. 72:1014802021. View Article : Google Scholar : PubMed/NCBI | |
Bian Z, Zhang J, Li M, Feng Y, Wang X, Zhang J, Yao S, Jin G, Du J, Han W, et al: LncRNA-FEZF1-AS1 promotes tumor proliferation and metastasis in colorectal cancer by regulating PKM2 Signaling. Clin Cancer Res. 24:4808–4819. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yang MH, Zhao L, Wang L, Ou-Yang W, Hu SS, Li WL, Ai ML, Wang YQ, Han Y, Li TT, et al: Nuclear lncRNA HOXD-AS1 suppresses colorectal carcinoma growth and metastasis via inhibiting HOXD3-induced integrin β3 transcriptional activating and MAPK/AKT signalling. Mol Cancer. 18:312019. View Article : Google Scholar : PubMed/NCBI | |
Braga EA, Fridman MV, Moscovtsev AA, Filippova EA, Dmitriev AA and Kushlinskii NE: LncRNAs in ovarian cancer progression, metastasis, and main pathways: ceRNA and alternative mechanisms. Int J Mol Sci. 21:88552020. View Article : Google Scholar : PubMed/NCBI | |
Pan H, Ding Y, Jiang Y, Wang X, Rao J, Zhang X, Yu H, Hou Q and Li T: LncRNA LIFR-AS1 promotes proliferation and invasion of gastric cancer cell via miR-29a-3p/COL1A2 axis. Cancer Cell Int. 21:72021. View Article : Google Scholar : PubMed/NCBI | |
Si Z, Yu L, Jing H, Wu L and Wang X: Oncogenic lncRNA ZNF561-AS1 is essential for colorectal cancer proliferation and survival through regulation of miR-26a-3p/miR-128-5p-SRSF6 axis. J Exp Clin Canc Res. 40:782021. View Article : Google Scholar | |
Shuai Y, Ma Z, Liu W, Yu T, Yan C, Jiang H, Tian S, Xu T and Shu Y: TEAD4 modulated LncRNA MNX1-AS1 contributes to gastric cancer progression partly through suppressing BTG2 and activating BCL2. Mol Cancer. 19:62020. View Article : Google Scholar : PubMed/NCBI | |
Yao W, Du X, Zhang J, Wang Y, Wang M, Pan Z and Li Q: SMAD4-induced knockdown of the antisense long noncoding RNA BRE-AS contributes to granulosa cell apoptosis. Mol Ther Nucleic Acids. 25:251–263. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jiang B, Yuan Y, Yi T and Dang W: The roles of antisense long noncoding RNAs in tumorigenesis and development through Cis-Regulation of neighbouring genes. Biomolecules. 13:6842023. View Article : Google Scholar : PubMed/NCBI | |
Liu B, Xiang W and Liu J, Tang J, Wang J, Liu B, Long Z, Wang L, Yin G and Liu J: The regulatory role of antisense lncRNAs in cancer. Cancer Cell Int. 21:4592021. View Article : Google Scholar : PubMed/NCBI | |
Li D, Shen L, Zhang X, Chen Z, Huang P, Huang C and Qin S: LncRNA ELF3-AS1 inhibits gastric cancer by forming a negative feedback loop with SNAI2 and regulates ELF3 mRNA stability via interacting with ILF2/ILF3 complex. J Exp Clin Cancer Res. 41:3322022. View Article : Google Scholar : PubMed/NCBI | |
Bartl J, Zanini M, Bernardi F, Forget A, Blumel L, Talbot J, Picard D, Qin N, Cancila G, Gao Q, et al: The HHIP-AS1 lncRNA promotes tumorigenicity through stabilization of dynein complex 1 in human SHH-driven tumors. Nat Commun. 13:40612022. View Article : Google Scholar : PubMed/NCBI | |
Jadaliha M, Gholamalamdari O, Tang W, Zhang Y, Petracovici A, Hao Q, Tariq A, Kim TG, Holton SE, Singh DK, et al: A natural antisense lncRNA controls breast cancer progression by promoting tumor suppressor gene mRNA stability. PLoS Genet. 14:e10078022018. View Article : Google Scholar : PubMed/NCBI | |
Pan K and Xie Y: LncRNA FOXC2-AS1 enhances FOXC2 mRNA stability to promote colorectal cancer progression via activation of Ca(2+)-FAK signal pathway. Cell Death Dis. 11:4342020. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Liu Y, Lin L, Huang Q, He W, Zhang S, Dong S, Wen Z, Rao J, Liao W and Shi M: The lncRNA MACC1-AS1 promotes gastric cancer cell metabolic plasticity via AMPK/Lin28 mediated mRNA stability of MACC1. Mol Cancer. 17:692018. View Article : Google Scholar : PubMed/NCBI | |
Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, Shi Y, Segal E and Chang HY: Long noncoding RNA as modular scaffold of histone modification complexes. Science. 329:689–693. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhu L, Zhu Y, Han S, Chen M, Song P, Dai D, Xu W, Jiang T, Feng L, Shin VY, et al: Impaired autophagic degradation of lncRNA ARHGAP5-AS1 promotes chemoresistance in gastric cancer. Cell Death Dis. 10:3832019. View Article : Google Scholar : PubMed/NCBI | |
Visvanathan A, Patil V, Arora A, Hegde AS, Arivazhagan A, Santosh V and Somasundaram K: Essential role of METTL3-mediated m(6)A modification in glioma stem-like cells maintenance and radioresistance. Oncogene. 37:522–533. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tran NT, Su H, Khodadadi Jamayran A, Lin S, Zhang L, Zhou D, Pawlik KM, Townes TM, Chen Y, Mulloy JC and Zhao X: The AS-RBM15 lncRNA enhances RBM15 protein translation during megakaryocyte differentiation. EMBO Rep. 17:887–900. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang J and Manley JL: Misregulation of pre-mRNA alternative splicing in cancer. Cancer Discov. 3:1228–1237. 2013. View Article : Google Scholar : PubMed/NCBI | |
Oltean S and Bates DO: Hallmarks of alternative splicing in cancer. Oncogene. 33:5311–5318. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yuan JH, Liu XN, Wang TT, Pan W, Tao QF, Zhou WP, Wang F and Sun SH: The MBNL3 splicing factor promotes hepatocellular carcinoma by increasing PXN expression through the alternative splicing of lncRNA-PXN-AS1. Nat Cell Biol. 19:820–832. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhou M, Guo X, Wang M and Qin R: The patterns of antisense long non-coding RNAs regulating corresponding sense genes in human cancers. J Cancer. 12:1499–1506. 2021. View Article : Google Scholar : PubMed/NCBI | |
Luo N, Zhang K, Li X and Hu Y: ZEB1 induced-upregulation of long noncoding RNA ZEB1-AS1 facilitates the progression of triple negative breast cancer by binding with ELAVL1 to maintain the stability of ZEB1 mRNA. J Cell Biochem. 121:4176–4187. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang A, Bao Y, Wu Z, Zhao T, Wang D, Shi J, Liu B, Sun S, Yang F, Wang L and Qu L: Long noncoding RNA EGFR-AS1 promotes cell growth and metastasis via affecting HuR mediated mRNA stability of EGFR in renal cancer. Cell Death Dis. 10:1542019. View Article : Google Scholar : PubMed/NCBI | |
Gong YQ, Lu TL, Hou FT and Chen CW: Antisense long non-coding RNAs in gastric cancer. Clin Chim Acta. 534:128–137. 2022. View Article : Google Scholar : PubMed/NCBI | |
Su J, Chen D, Ruan Y, Tian Y, Lv K, Zhou X, Ying D and Lu Y: LncRNA MBNL1-AS1 represses gastric cancer progression via the TGF-β pathway by modulating miR-424-5p/Smad7 axis. Bioengineered. 13:6978–6995. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhuang L, Ding W, Ding W, Zhang Q, Xu X and Xi D: lncRNA ZNF667-AS1 (NR_036521.1) inhibits the progression of colorectal cancer via regulating ANK2/JAK2 expression. J Cell Physiol. 236:2178–2193. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sun M, Nie F, Wang Y, Zhang Z, Hou J, He D, Xie M, Xu L, De W, Wang Z and Wang J: LncRNA HOXA11-AS promotes proliferation and invasion of gastric cancer by scaffolding the chromatin modification factors PRC2, LSD1, and DNMT1. Cancer Res. 76:6299–6310. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lin X, Zhuang S, Chen X, Du J, Zhong L, Ding J, Wang L, Yi J, Hu G, Tang G, et al: lncRNA ITGB8-AS1 functions as a ceRNA to promote colorectal cancer growth and migration through integrin-mediated focal adhesion signaling. Mol Ther. 30:688–702. 2022. View Article : Google Scholar : PubMed/NCBI | |
Bedoui S, Herold MJ and Strasser A: Emerging connectivity of programmed cell death pathways and its physiological implications. Nat Rev Mol Cell Bio. 21:678–695. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Hong M, Li Y, Chen D, Wu Y and Hu Y: Programmed cell death tunes tumor immunity. Front Immunol. 13:8473452022. View Article : Google Scholar : PubMed/NCBI | |
Zheng C, Chu M, Chen Q, Chen C, Wang ZW and Chen X: The role of lncRNA OIP5-AS1 in cancer development and progression. Apoptosis. 27:311–321. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang Z and Jin J: LncRNA SLCO4A1-AS1 promotes colorectal cancer cell proliferation by enhancing autophagy via miR-508-3p/PARD3 axis. Aging (Albany NY). 11:4876–4889. 2019. View Article : Google Scholar : PubMed/NCBI | |
Xia X, Wang X, Cheng Z, Qin W, Lei L, Jiang J and Hu J: The role of pyroptosis in cancer: Pro-cancer or pro-‘host’? Cell Death Dis. 10:6502019. View Article : Google Scholar : PubMed/NCBI | |
Huang G, Xiang Z, Wu H, He Q, Dou R, Lin Z, Yang C, Huang S, Song J, Di Z, et al: The lncRNA BDNF-AS/WDR5/FBXW7 axis mediates ferroptosis in gastric cancer peritoneal metastasis by regulating VDAC3 ubiquitination. Int J Biol Sci. 18:1415–1433. 2022. View Article : Google Scholar : PubMed/NCBI | |
Bai Y and Li S: Long noncoding RNA OIP5-AS1 aggravates cell proliferation, migration in gastric cancer by epigenetically silencing NLRP6 expression via binding EZH2. J Cell Biochem. 121:353–362. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang LW, Li XB, Liu Z, Zhao LH, Wang Y and Yue L: Long non-coding RNA OIP5-AS1 promotes proliferation of gastric cancer cells by targeting miR-641. Eur Rev Med Pharmacol Sci. 23:10776–10784. 2019.PubMed/NCBI | |
Tao Y, Wan X, Fan Q, Wang Y, Sun H, Ma L, Sun C and Wu Y: Long non-coding RNA OIP5-AS1 promotes the growth of gastric cancer through the miR-367-3p/HMGA2 axis. Dig Liver Dis. 52:773–779. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liao Y, Zhang B, Zhang T, Zhang Y and Wang F: LncRNA GATA6-AS promotes cancer cell proliferation and inhibits apoptosis in glioma by downregulating lncRNA TUG1. Cancer Biother Radiopharm. 34:660–665. 2019.PubMed/NCBI | |
Russell RC and Guan KL: The multifaceted role of autophagy in cancer. EMBO J. 41:e1100312022. View Article : Google Scholar : PubMed/NCBI | |
Li X, He S and Ma B: Autophagy and autophagy-related proteins in cancer. Mol cancer. 19:122020. View Article : Google Scholar : PubMed/NCBI | |
Li J, Zhan H, Ren Y, Feng M, Wang Q, Jiao Q, Wang Y, Liu X, Zhang S, Du L, et al: Sirtuin 4 activates autophagy and inhibits tumorigenesis by upregulating the p53 signaling pathway. Cell Death Differ. 30:313–326. 2023. View Article : Google Scholar : PubMed/NCBI | |
Feng X, Zhang H, Meng L, Song H, Zhou Q, Qu C, Zhao P, Li Q, Zou C, Liu X and Zhang Z: Hypoxia-induced acetylation of PAK1 enhances autophagy and promotes brain tumorigenesis via phosphorylating ATG5. Autophagy. 17:723–742. 2021. View Article : Google Scholar : PubMed/NCBI | |
Elias EE, Lyons B and Muruve DA: Gasdermins and pyroptosis in the kidney. Nat Rev Nephrol. 19:337–350. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wei X, Xie F, Zhou X, Wu Y, Yan H, Liu T, Huang J, Wang F, Zhou F and Zhang L: Role of pyroptosis in inflammation and cancer. Cell Mol Immunol. 19:971–992. 2022. View Article : Google Scholar : PubMed/NCBI | |
Tang R, Xu J, Zhang B, Liu J, Liang C, Hua J, Meng Q, Yu X and Shi S: Ferroptosis, necroptosis, and pyroptosis in anticancer immunity. J Hematol Oncol. 13:1102020. View Article : Google Scholar : PubMed/NCBI | |
Yang P, Yang W, Wei Z, Li Y, Yang Y and Wang J: Novel targets for gastric cancer: The tumor microenvironment (TME), N6-methyladenosine (m6A), pyroptosis, autophagy, ferroptosis and cuproptosis. Biomed Pharmacother. 163:1148832023. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Cao L, Zhou S, Lyu J, Gao Y and Yang R: Construction and validation of a novel pyroptosis-related Four-lncRNA prognostic signature related to gastric cancer and immune infiltration. Front Immunol. 13:8547852022. View Article : Google Scholar : PubMed/NCBI | |
Ren N, Jiang T, Wang C, Xie S, Xing Y, Piao D, Zhang T and Zhu Y: LncRNA ADAMTS9-AS2 inhibits gastric cancer (GC) development and sensitizes chemoresistant GC cells to cisplatin by regulating miR-223-3p/NLRP3 axis. Aging (Albany NY). 12:11025–11041. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tang D, Chen X, Kang R and Kroemer G: Ferroptosis: Molecular mechanisms and health implications. Cell Res. 31:107–125. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Zhang S, Gong X, Tam S, Xiao D, Liu S and Tao Y: The epigenetic regulators and metabolic changes in ferroptosis-associated cancer progression. Mol Cancer. 19:392020. View Article : Google Scholar : PubMed/NCBI | |
Katada S, Imhof A and Sassone-Corsi P: Connecting threads: Epigenetics and metabolism. Cell. 148:24–28. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ganapathy-Kanniappan S and Geschwind JF: Tumor glycolysis as a target for cancer therapy: Progress and prospects. Mol Cancer. 12:1522013. View Article : Google Scholar : PubMed/NCBI | |
Vaupel P, Schmidberger H and Mayer A: The Warburg effect: Essential part of metabolic reprogramming and central contributor to cancer progression. Int J Radiat Biol. 95:912–919. 2019. View Article : Google Scholar : PubMed/NCBI | |
Koppenol WH, Bounds PL and Dang CV: Otto Warburg's contributions to current concepts of cancer metabolism. Nat Rev Cancer. 11:325–337. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liberti MV and Locasale JW: The warburg effect: How does it benefit cancer cells? Trends Biochem Sci. 41:211–218. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li C, Wang P, Du J, Chen J, Liu W and Ye K: LncRNA RAD51-AS1/miR-29b/c-3p/NDRG2 crosstalk repressed proliferation, invasion and glycolysis of colorectal cancer. IUBMB life. 73:286–298. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cheng X, Li J and Guo D: SCAP/SREBPs are central players in lipid metabolism and novel metabolic targets in cancer therapy. Curr Top Med Chem. 18:484–493. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li C, Zhang L, Qiu Z, Deng W and Wang W: Key molecules of fatty acid metabolism in gastric cancer. Biomolecules. 12:7062022. View Article : Google Scholar : PubMed/NCBI | |
Gong J, Lin Y, Zhang H, Liu C, Cheng Z, Yang X, Zhang J, Xiao Y, Sang N, Qian X, et al: Reprogramming of lipid metabolism in cancer-associated fibroblasts potentiates migration of colorectal cancer cells. Cell Death Dis. 11:2672020. View Article : Google Scholar : PubMed/NCBI | |
Guo D, Reinitz F, Youssef M, Hong C, Nathanson D, Akhavan D, Kuga D, Amzajerdi AN, Soto H, Zhu S, et al: An LXR agonist promotes glioblastoma cell death through inhibition of an EGFR/AKT/SREBP-1/LDLR-dependent pathway. Cancer Discov. 1:442–456. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Song F, Zhao X, Jiang H, Wu X, Wang B, Zhou M, Tian M, Shi B, Wang H, et al: EGFR modulates monounsaturated fatty acid synthesis through phosphorylation of SCD1 in lung cancer. Mol Cancer. 16:1272017. View Article : Google Scholar : PubMed/NCBI | |
Tang Y, Tang R, Tang M, Huang P, Liao Z, Zhou J, Zhou L, Su M, Chen P, Jiang J, et al: LncRNA DNAJC3-AS1 Regulates fatty acid synthase via the EGFR pathway to promote the progression of colorectal cancer. Front Oncol. 10:6045342020. View Article : Google Scholar : PubMed/NCBI | |
Currie E, Schulze A, Zechner R, Walther TC and Farese RJ: Cellular fatty acid metabolism and cancer. Cell Metab. 18:153–161. 2013. View Article : Google Scholar : PubMed/NCBI | |
Carracedo A, Cantley LC and Pandolfi PP: Cancer metabolism: Fatty acid oxidation in the limelight. Nat Rev Cancer. 13:227–232. 2013. View Article : Google Scholar : PubMed/NCBI | |
He W, Liang B, Wang C, Li S, Zhao Y, Huang Q, Liu Z, Yao Z, Wu Q, Liao W, et al: MSC-regulated lncRNA MACC1-AS1 promotes stemness and chemoresistance through fatty acid oxidation in gastric cancer. Oncogene. 38:4637–4654. 2019. View Article : Google Scholar : PubMed/NCBI | |
Greten FR and Grivennikov SI: Inflammation and cancer: Triggers, mechanisms, and consequences. Immunity. 51:27–41. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
Nie C, Zhai J, Wang Q, Zhu X, Xiang G, Liu C, Liu T, Wang W, Wang Y, Zhao Y, et al: Comprehensive analysis of an individualized Immune-Related lncRNA pair signature in gastric cancer. Front Cell Dev Biol. 10:8056232022. View Article : Google Scholar : PubMed/NCBI | |
Cui X, Morales RT, Qian W, Wang H, Gagner JP, Dolgalev I, Placantonakis D, Zagzag D, Cimmino L, Snuderl M, et al: Hacking macrophage-associated immunosuppression for regulating glioblastoma angiogenesis. Biomaterials. 161:164–178. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Tian T and Zhang J: Tumor-Associated Macrophages (TAMs) in Colorectal Cancer (CRC): From mechanism to therapy and prognosis. Int J Mol Sci. 22:84702021. View Article : Google Scholar : PubMed/NCBI | |
Lazăr DC, Avram MF, Romoșan I, Cornianu M, Tăban S and Goldiș A: Prognostic significance of tumor immune microenvironment and immunotherapy: Novel insights and future perspectives in gastric cancer. World J Gastroenterol. 24:3583–3616. 2018. View Article : Google Scholar : PubMed/NCBI | |
Denaro N, Merlano MC and Lo Nigro C: Long noncoding RNAs as regulators of cancer immunity. Mol Oncol. 13:61–73. 2019. View Article : Google Scholar : PubMed/NCBI | |
Xu M, Xu X, Pan B, Chen X, Lin K, Zeng K, Liu X, Xu T, Sun L, Qin J, et al: LncRNA SATB2-AS1 inhibits tumor metastasis and affects the tumor immune cell microenvironment in colorectal cancer by regulating SATB2. Mol Cancer. 18:1352019. View Article : Google Scholar : PubMed/NCBI | |
Sanchez-Tillo E, Liu Y, de Barrios O, Siles L, Fanlo L, Cuatrecasas M, Darling DS, Dean DC, Castells A and Postigo A: EMT-activating transcription factors in cancer: Beyond EMT and tumor invasiveness. Cell Mol Life Sci. 69:3429–3456. 2012. View Article : Google Scholar : PubMed/NCBI | |
Nieto MA, Huang RY, Jackson RA and Thiery JP: EMT: 2016. Cell. 166:21–45. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dongre A and Weinberg RA: New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Bio. 20:69–84. 2019. View Article : Google Scholar : PubMed/NCBI | |
Song Y, Lin M, Liu Y, Wang ZW and Zhu X: Emerging role of F-box proteins in the regulation of epithelial-mesenchymal transition and stem cells in human cancers. Stem Cell Res Ther. 10:1242019. View Article : Google Scholar : PubMed/NCBI | |
Brabletz S, Schuhwerk H, Brabletz T and Stemmler MP: Dynamic EMT: A multi-tool for tumor progression. EMBO J. 40:e1086472021. View Article : Google Scholar : PubMed/NCBI | |
Lin J, Shi Z, Yu Z and He Z: LncRNA HIF1A-AS2 positively affects the progression and EMT formation of colorectal cancer through regulating miR-129-5p and DNMT3A. Biomed Pharmacother. 98:433–439. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yu J, Han Z, Sun Z, Wang Y, Zheng M and Song C: LncRNA SLCO4A1-AS1 facilitates growth and metastasis of colorectal cancer through β-catenin-dependent Wnt pathway. J Exp Clin Canc Res. 37:2222018. View Article : Google Scholar | |
Zhou L, Jiang J, Huang Z, Jin P, Peng L, Luo M, Zhang Z, Chen Y, Xie N, Gao W, et al: Hypoxia-induced lncRNA STEAP3-AS1 activates Wnt/β-catenin signaling to promote colorectal cancer progression by preventing m(6)A-mediated degradation of STEAP3 mRNA. Mol Cancer. 21:1682022. View Article : Google Scholar : PubMed/NCBI | |
Ali MM, Akhade VS, Kosalai ST, Subhash S, Statello L, Meryet-Figuiere M, Abrahamsson J, Mondal T and Kanduri C: PAN-cancer analysis of S-phase enriched lncRNAs identifies oncogenic drivers and biomarkers. Nat Commun. 9:8832018. View Article : Google Scholar : PubMed/NCBI | |
Mo S, Zhang L, Dai W, Han L, Wang R, Xiang W, Wang Z, Li Q, Yu J, Yuan J, et al: Antisense lncRNA LDLRAD4-AS1 promotes metastasis by decreasing the expression of LDLRAD4 and predicts a poor prognosis in colorectal cancer. Cell Death Dis. 11:1552020. View Article : Google Scholar : PubMed/NCBI | |
Gonzalez DM and Medici D: Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal. 7:re82014. View Article : Google Scholar : PubMed/NCBI | |
Slattery ML, Herrick J, Curtin K, Samowitz W, Wolff RK, Caan BJ, Duggan D, Potter JD and Peters U: Increased risk of colon cancer associated with a genetic polymorphism of SMAD7. Cancer Res. 70:1479–1485. 2010. View Article : Google Scholar : PubMed/NCBI | |
Rakic JM, Maillard C, Jost M, Bajou K, Masson V, Devy L, Lambert V, Foidart JM and Noel A: Role of plasminogen activator-plasmin system in tumor angiogenesis. Cell Mol Life Sci. 60:463–473. 2003. View Article : Google Scholar : PubMed/NCBI | |
Bajou K, Maillard C, Jost M, Lijnen RH, Gils A, Declerck P, Carmeliet P, Foidart JM and Noel A: Host-derived plasminogen activator inhibitor-1 (PAI-1) concentration is critical for in vivo tumoral angiogenesis and growth. Oncogene. 23:6986–6990. 2004. View Article : Google Scholar : PubMed/NCBI | |
Teng F, Zhang JX, Chen Y, Shen XD, Su C, Guo YJ, Wang PH, Shi CC, Lei M, Cao YO and Liu SQ: LncRNA NKX2-1-AS1 promotes tumor progression and angiogenesis via upregulation of SERPINE1 expression and activation of the VEGFR-2 signaling pathway in gastric cancer. Mol Oncol. 15:1234–1255. 2021. View Article : Google Scholar : PubMed/NCBI | |
Duan S, Huang W, Liu X, Liu X, Chen N, Xu Q, Hu Y, Song W and Zhou J: IMPDH2 promotes colorectal cancer progression through activation of the PI3K/AKT/mTOR and PI3K/AKT/FOXO1 signaling pathways. J Exp Clin Canc Res. 37:3042018. View Article : Google Scholar | |
Peng Y, Wang Y, Zhou C, Mei W and Zeng C: PI3K/Akt/mTOR pathway and its role in cancer therapeutics: Are we making headway? Front Oncol. 12:8191282022. View Article : Google Scholar : PubMed/NCBI | |
Liu HT, Ma RR, Lv BB, Zhang H, Shi DB, Guo XY, Zhang GH and Gao P: LncRNA-HNF1A-AS1 functions as a competing endogenous RNA to activate PI3K/AKT signalling pathway by sponging miR-30b-3p in gastric cancer. Br J Cancer. 122:1825–1836. 2020. View Article : Google Scholar : PubMed/NCBI | |
Guo C, Zhou S, Yi W, Yang P, Li O, Liu J and Peng C: Long non-coding RNA muskelin 1 antisense RNA (MKLN1-AS) is a potential diagnostic and prognostic biomarker and therapeutic target for hepatocellular carcinoma. Exp Mol Pathol. 120:1046382021. View Article : Google Scholar : PubMed/NCBI | |
El-Ashmawy NE, Al-Ashmawy GM and Hamouda SM: Long non-coding RNA FAM83H-AS1 as an emerging marker for diagnosis, prognosis and therapeutic targeting of cancer. Cell Biochem Funct. 39:350–356. 2021. View Article : Google Scholar : PubMed/NCBI | |
Da J, Liu P, Wang R and Bu L: Upregulation of the long non-coding RNA FAM83H-AS1 in gastric cancer and its clinical significance. Pathol Res Pract. 215:1526162019. View Article : Google Scholar : PubMed/NCBI | |
Chen Q, Zhou L, Ma D, Hou J, Lin Y, Wu J and Tao M: LncRNA GAS6-AS1 facilitates tumorigenesis and metastasis of colorectal cancer by regulating TRIM14 through miR-370-3p/miR-1296-5p and FUS. J Transl Med. 20:3562022. View Article : Google Scholar : PubMed/NCBI | |
Lu GH, Zhao HM, Liu ZY, Cao Q, Shao RD and Sun G: LncRNA SAMD12-AS1 promotes the progression of gastric cancer via DNMT1/p53 Axis. Arch Med Res. 52:683–691. 2021. View Article : Google Scholar : PubMed/NCBI | |
Macleod K: Tumor suppressor genes. Curr Opin Genet Dev. 10:81–93. 2000. View Article : Google Scholar : PubMed/NCBI | |
Sherr CJ: Principles of tumor suppression. Cell. 116:235–246. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sun W and Yang J: Functional mechanisms for human tumor suppressors. J Cancer. 1:136–140. 2010. View Article : Google Scholar : PubMed/NCBI | |
Liu HT, Liu S, Liu L, Ma RR and Gao P: EGR1-Mediated Transcription of lncRNA-HNF1A-AS1 promotes cell-cycle progression in gastric cancer. Cancer Res. 78:5877–5890. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Cui K, Huang L, Yang F, Sun S, Bian Z, Wang X, Li C, Yin Y, Huang S, et al: SLCO4A1-AS1 promotes colorectal tumourigenesis by regulating Cdk2/c-Myc signalling. J Biomed Sci. 29:42022. View Article : Google Scholar : PubMed/NCBI | |
Ni X, Ding Y, Yuan H, Shao J, Yan Y, Guo R, Luan W and Xu M: Long non-coding RNA ZEB1-AS1 promotes colon adenocarcinoma malignant progression via miR-455-3p/PAK2 axis. Cell Prolif. 53:e127232020. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Cui F, Chen Y, Zhu Y and Liu F: Long Non-Coding RNA LOXL1-AS1 enhances colorectal cancer proliferation, migration and invasion through miR-708-5p/CD44-EGFR Axis. Onco Targets Ther. 13:7615–7627. 2020. View Article : Google Scholar : PubMed/NCBI | |
Flecken T, Schmidt N, Hild S, Gostick E, Drognitz O, Zeiser R, Schemmer P, Bruns H, Eiermann T, Price DA, et al: Immunodominance and functional alterations of tumor-associated antigen-specific CD8+ T-cell responses in hepatocellular carcinoma. Hepatology. 59:1415–1426. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chow A, Perica K, Klebanoff CA and Wolchok JD: Clinical implications of T cell exhaustion for cancer immunotherapy. Nat Rev Clin Oncol. 19:775–790. 2022. View Article : Google Scholar : PubMed/NCBI | |
Pardoll DM: The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 12:252–264. 2012. View Article : Google Scholar : PubMed/NCBI | |
He X and Xu C: Immune checkpoint signaling and cancer immunotherapy. Cell Res. 30:660–669. 2020. View Article : Google Scholar : PubMed/NCBI | |
Pu Y and Ji Q: Tumor-Associated macrophages regulate PD-1/PD-L1 immunosuppression. Front Immunol. 13:8745892022. View Article : Google Scholar : PubMed/NCBI | |
Topalian SL, Drake CG and Pardoll DM: Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr opin immunol. 24:207–212. 2012. View Article : Google Scholar : PubMed/NCBI | |
Fan F, Chen K, Lu X, Li A, Liu C and Wu B: Dual targeting of PD-L1 and PD-L2 by PCED1B-AS1 via sponging hsa-miR-194-5p induces immunosuppression in hepatocellular carcinoma. Hepatol Int. 15:444–458. 2021. View Article : Google Scholar : PubMed/NCBI | |
Han Y, Liu D and Li L: PD-1/PD-L1 pathway: Current researches in cancer. Am J Cancer Res. 10:727–742. 2020.PubMed/NCBI | |
Zhou Z, Liu Q, Zhang G, Mohammed D, Amadou S, Tan G and Zhang X: HOXA11-AS1 Promotes PD-L1-Mediated immune escape and metastasis of hypopharyngeal carcinoma by facilitating PTBP1 and FOSL1 Association. Cancers (Basel). 14:36942022. View Article : Google Scholar : PubMed/NCBI | |
Chen YG, Satpathy AT and Chang HY: Gene regulation in the immune system by long noncoding RNAs. Nat immunol. 18:962–972. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Song Y, Wang R and Wang T: Molecular mechanisms of tumor resistance to radiotherapy. Mol Cancer. 22:962023. View Article : Google Scholar : PubMed/NCBI | |
Hou J, Zhang G, Wang X, Wang Y and Wang K: Functions and mechanisms of lncRNA MALAT1 in cancer chemotherapy resistance. Biomark Res. 11:232023. View Article : Google Scholar : PubMed/NCBI | |
Chen QN, Wei CC, Wang ZX and Sun M: Long non-coding RNAs in anti-cancer drug resistance. Oncotarget. 8:1925–1936. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ni J, Bucci J, Malouf D, Knox M, Graham P and Li Y: Exosomes in cancer radioresistance. Front Oncol. 9:8692019. View Article : Google Scholar : PubMed/NCBI | |
Zhou M, Dong J, Huang J, Ye W, Zheng Z, Huang K, Pan Y, Cen J, Liang Y, Shu G, et al: Chitosan-Gelatin-EGCG Nanoparticle-Meditated LncRNA TMEM44-AS1 Silencing to Activate the P53 signaling pathway for the synergistic reversal of 5-FU resistance in gastric cancer. Adv Sci (Weinh). 9:e21050772022. View Article : Google Scholar : PubMed/NCBI | |
Qu L, Chen Y, Zhang F and He L: The lncRNA DLGAP1-AS1/miR-149-5p/TGFB2 axis contributes to colorectal cancer progression and 5-FU resistance by regulating smad2 pathway. Mol Ther Oncolytics. 20:607–624. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gui Z, Zhao Z, Sun Q, Shao G, Huang J, Zhao W and Kuang Y: LncRNA FEZF1-AS1 promotes multi-drug resistance of gastric cancer cells via upregulating ATG5. Front Cell Dev Biol. 9:7491292021. View Article : Google Scholar : PubMed/NCBI | |
Zou Y, Yao S, Chen X, Liu D, Wang J, Yuan X, Rao J, Xiong H, Yu S, Yuan X, et al: LncRNA OIP5-AS1 regulates radioresistance by targeting DYRK1A through miR-369-3p in colorectal cancer cells. Eur J Cell Biol. 97:369–378. 2018. View Article : Google Scholar : PubMed/NCBI | |
Song L, Zhou Z, Gan Y, Li P, Xu Y, Zhang Z, Luo F, Xu J, Zhou Q and Dai F: Long noncoding RNA OIP5-AS1 causes cisplatin resistance in osteosarcoma through inducing the LPAATβ/PI3K/AKT/mTOR signaling pathway by sponging the miR-340-5p. J Cell Biochem. 120:9656–9666. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wu Q, Ma J, Wei J, Meng W, Wang Y and Shi M: FOXD1-AS1 regulates FOXD1 translation and promotes gastric cancer progression and chemoresistance by activating the PI3K/AKT/mTOR pathway. Mol Oncol. 15:299–316. 2021. View Article : Google Scholar : PubMed/NCBI | |
Qi FF, Yang Y, Zhang H and Chen H: Long non-coding RNAs: Key regulators in oxaliplatin resistance of colorectal cancer. Biomed Pharmacother. 128:1103292020. View Article : Google Scholar : PubMed/NCBI | |
Shi CJ, Xue ZH, Zeng WQ, Deng LQ, Pang FX, Zhang FW, Fu WM and Zhang JF: LncRNA-NEF suppressed oxaliplatin resistance and epithelial-mesenchymal transition in colorectal cancer through epigenetically inactivating MEK/ERK signaling. Cancer Gene Ther. 30:855–865. 2023. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Gan Y, Liu J, Li J, Zhou Z, Tian R, Sun R, Liu J, Xiao Q, Li Y, et al: Downregulation of MEIS1 mediated by ELFN1-AS1/EZH2/DNMT3a axis promotes tumorigenesis and oxaliplatin resistance in colorectal cancer. Signal Transduct Target. 7:872022. View Article : Google Scholar : PubMed/NCBI | |
Liang J, Tian XF and Yang W: Effects of long non-coding RNA Opa-interacting protein 5 antisense RNA 1 on colon cancer cell resistance to oxaliplatin and its regulation of microRNA-137. World J Gastroenterol. 26:1474–1489. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hui B, Lu C, Wang J, Xu Y, Yang Y, Ji H, Li X, Xu L, Wang J, Tang W, et al: Engineered exosomes for co-delivery of PGM5-AS1 and oxaliplatin to reverse drug resistance in colon cancer. J Cell Physiol. 237:911–933. 2022. View Article : Google Scholar : PubMed/NCBI |