1
|
Sun Q, Mehl S, Renko K, Seemann P, Görlich
CL, Hackler J, Minich WB, Kahaly GJ and Schomburg L: Natural
Autoimmunity to Selenoprotein P impairs selenium transport in
Hashimoto's thyroiditis. Int J Mol Sci. 22:130882021.
|
2
|
Chang C, Worley BL, Phaëton R and Hempel
N: Extracellular glutathione peroxidase GPx3 and its role in
cancer. Cancers. 12:21972020.
|
3
|
Agnani D, Camacho-Vanegas O, Camacho C,
Lele S, Odunsi K, Cohen S, Dottino P and Martignetti JA: Decreased
levels of serum glutathione peroxidase 3 are associated with
papillary serous ovarian cancer and disease progression. J Ovarian
Res. 4:182011.
|
4
|
Worley BL, Kim YS, Mardini J, Zaman R,
Leon KE, Vallur PG, Nduwumwami A, Warrick JI, Timmins PF, Kesterson
JP, et al: GPx3 supports ovarian cancer progression by manipulating
the extracellular redox environment. Redox Biol. 25:1010512019.
|
5
|
Cai M, Sikong Y, Wang Q, Zhu S, Pang F and
Cui X: Gpx3 prevents migration and invasion in gastric cancer by
targeting NFкB/Wnt5a/JNK signaling. Int J Clin Exp Pathol.
12:1194–1203. 2019.
|
6
|
He Q, Chen N, Wang X, Li P, Liu L, Rong Z,
Liu W, Jiang K and Zhao J: Prognostic value and immunological roles
of GPX3 in gastric cancer. Int J Med Sci. 20:1399–1416. 2023.
|
7
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2020. CA Cancer J Clin. 70:7–30. 2020.
|
8
|
Armstrong DK, Alvarez RD, Backes FJ,
Bakkum-Gamez JN, Barroilhet L, Behbakht K, Berchuck A, Chen LM,
Chitiyo VC, Cristea M, et al: NCCN Guidelines® Insights:
Ovarian cancer, version 3.2022. J Natl Compr Cancer Netw.
20:972–980. 2022.
|
9
|
Demircan K, Sun Q, Bengtsson Y, Seemann P,
Vallon-Christersson J, Malmberg M, Saal LH, Rydén L, Minich WB,
Borg Å, et al: Autoimmunity to selenoprotein P predicts breast
cancer recurrence. Redox Biol. 53:1023462022.
|
10
|
Cueto-Ureña C, Ramírez-Expósito MJ, Mayas
MD, Carrera-González MP, Godoy-Hurtado A and Martínez-Martos JM:
Glutathione Peroxidase gpx1 to gpx8 Genes expression in
experimental brain tumors reveals gender-dependent patterns. Genes
(Basel). 14:16742023.
|
11
|
Zhou Y, Lan H, Dong Z, Li W, Qian B, Zeng
Z, He W and Song JL: Rhamnocitrin attenuates ovarian fibrosis in
rats with letrozole-induced experimental polycystic ovary syndrome.
Oxid Med Cell Longev. 2022:1–18. 2022.
|
12
|
Lee HJ, Do JH, Bae S, Yang S, Zhang X, Lee
A, Choi YJ, Park DC and Ahn WS: Immunohistochemical evidence for
the over-expression of Glutathione peroxidase 3 in clear cell type
ovarian adenocarcinoma. Med Oncol. 28:522–527. 2011.
|
13
|
Pei J, Pan X, Wei G and Hua Y: Research
progress of glutathione peroxidase family (GPX) in redoxidation.
Front Pharmacol. 14:11474142023.
|
14
|
Xu S, Li X, Zhang S, Qi C, Zhang Z, Ma R,
Xiang L, Chen L, Zhu Y, Tang C, et al: Oxidative stress gene
expression, DNA methylation, and gut microbiota interaction trigger
Crohn's disease: A multi-omics Mendelian randomization study. BMC
Med. 21:1792023.
|
15
|
Jia Y, Dai J and Zeng Z: Potential
relationship between the selenoproteome and cancer. Mol Clin Oncol.
13:132020.
|
16
|
Cohen S, Mehrabi S, Yao X, Milingen S and
Aikhionbare FO: Reactive oxygen species and serous epithelial
ovarian adenocarcinoma. Cancer Res J (N Y N Y). 4:1062016.
|
17
|
Lou W, Ding B, Wang S and Fu P:
Overexpression of GPX3, a potential biomarker for diagnosis and
prognosis of breast cancer, inhibits progression of breast cancer
cells in vitro. Cancer Cell Int. 20:3782020.
|
18
|
Nirgude S and Choudhary B: Insights into
the role of GPX3, a highly efficient plasma antioxidant, in cancer.
Biochem Pharmacol. 184:1143652021.
|
19
|
Copeland PR and Howard MT: Ribosome fate
during decoding of UGA-sec codons. Int J Mol Sci. 22:132042021.
|
20
|
Hauffe R, Stein V, Chudoba C, Flore T,
Rath M, Ritter K, Schell M, Wardelmann K, Deubel S, Kopp JF, et al:
GPx3 dysregulation impacts adipose tissue insulin receptor
expression and sensitivity. JCI Insight. 5:e1362832020.
|
21
|
Chen B, Rao X, House MG, Nephew KP, Cullen
KJ and Guo Z: GPx3 promoter hypermethylation is a frequent event in
human cancer and is associated with tumorigenesis and chemotherapy
response. Cancer Lett. 309:37–45. 2011.
|
22
|
Fan Z, Yan Q, Song J and Wei J: Reactive
human plasma glutathione peroxidase mutant with diselenide bond
succeeds in tetramer formation. Antioxidants. 11:10832022.
|
23
|
Gusti AMT, Qusti SY, Alshammari EM, Toraih
EA and Fawzy MS: Antioxidants-related superoxide dismutase (SOD),
catalase (CAT), glutathione peroxidase (GPX),
Glutathione-S-Transferase (GST), and nitric oxide synthase (NOS)
gene variants analysis in an obese population: A preliminary
Case-control study. Antioxidants (Basel). 10:5952021.
|
24
|
Reddy AT, Lakshmi SP, Banno A and Reddy
RC: Role of GPx3 in PPARγ-induced protection against
COPD-associated oxidative stress. Free Radic Biol Med. 126:350–357.
2018.
|
25
|
Chen Y, Zhou Z and Min W: Mitochondria,
oxidative stress and innate immunity. Front Physiol.
9:14872018.
|
26
|
Xie J, Fu L and Zhang J: Analysis of
influencing factors on the occurrence and development of gastric
cancer in high-incidence areas of digestive tract tumors based on
high methylation of GPX3 gene. J Oncol. 2022:30948812022.
|
27
|
Wang Z, Zhu J, Liu Y, Wang Z, Cao X and Gu
Y: Tumor-polarized GPX3+ AT2 lung epithelial cells promote
premetastatic niche formation. Proc Natl Acad Sci.
119:e22018991192022.
|
28
|
Saelee P, Pongtheerat T and
Sophonnithiprasert T: Reduced expression of GPX3 in breast cancer
patients in correlation with clinical significance. Glob Med Genet.
7:87–91. 2020.
|
29
|
Falck E, Karlsson S, Carlsson J, Helenius
G, Karlsson M and Klinga-Levan K: Loss of glutathione peroxidase 3
expression is correlated with epigenetic mechanisms in endometrial
adenocarcinoma. Cancer Cell Int. 10:462010.
|
30
|
Zhang X, Zheng Z, Shen Y, Kim H, Jin R, Li
R, Lee DY, Roh MR and Yang S: Downregulation of glutathione
peroxidase 3 is associated with lymph node metastasis and prognosis
in cervical cancer. Oncol Rep. 31:2587–2592. 2014.
|
31
|
Rizzo A, Santoni M, Mollica V, Fiorentino
M, Brandi G and Massari F: Microbiota and prostate cancer. Semin
Cancer Biol. 86:1058–1065. 2022.
|
32
|
Szyfter K: Genetics and molecular biology
of head and neck cancer. Biomolecules. 11:12932021.
|
33
|
Uroshlev LA, Abdullaev ET, Umarova IR,
Il'icheva IA, Panchenko LA, Polozov RV, Kondrashov FA, Nechipurenko
YD and Grokhovsky SL: A method for identification of the
methylation level of CpG islands from NGS Data. Sci Rep.
10:86352020.
|
34
|
Dai X, Ren T, Zhang Y and Nan N:
Methylation multiplicity and its clinical values in cancer. Expert
Rev Mol Med. 23:e22021.
|
35
|
Wang H, Luo K, Tan LZ, Ren BG, Gu LQ,
Michalopoulos G, Luo JH and Yu YP: P53-induced gene 3 mediates cell
death induced by glutathione peroxidase 3. J Biol Chem.
287:16890–16902. 2012.
|
36
|
Zhao H, Li J, Li X, Han C, Zhang Y, Zheng
L and Guo M: Silencing GPX3 expression promotes tumor metastasis in
human thyroid cancer. Curr Protein Pept Sci. 16:316–321. 2015.
|
37
|
Zhang D, Deng JJ, Xu Q, Zeng Y and Jiang
J: MiR-146b-5p regulates the scavenging effect of GPx-3 on peroxide
in papillary thyroid cancer cells. Heliyon. 9:e184892023.
|
38
|
Xia Y, Pan W, Xiao X, Zhou X, Gu W, Liu Y,
Zhao Y, Li L, Zheng C, Liu J and Li M: MicroRNA-483-5p accentuates
cisplatin-induced acute kidney injury by targeting GPX3. Lab
Invest. 102:589–601. 2022.
|
39
|
Oh IJ, Kim HE, Song SY, Na KJ, Kim KS, Kim
YC and Lee SW: Diagnostic value of serum glutathione peroxidase 3
levels in patients with lung cancer. Thorac Cancer. 5:425–430.
2014.
|
40
|
Mosca L, Ilari A, Fazi F, Assaraf YG and
Colotti G: Taxanes in cancer treatment: Activity, chemoresistance
and its overcoming. Drug Resist Updat. 54:1007422021.
|
41
|
Liu Q, Bai W, Huang F, Tang J and Lin X:
Downregulation of microRNA-196a inhibits stem cell self-renewal
ability and stemness in non-small-cell lung cancer through
upregulating GPX3 expression. Int J Biochem Cell Biol.
115:1055712019.
|
42
|
Hu Q, Chen J, Yang W, Xu M, Zhou J, Tan J
and Huang T: GPX3 expression was down-regulated but positively
correlated with poor outcome in human cancers. Front Oncol.
13:9905512023.
|
43
|
Zhang H, Zhao W, Gu D, Du M, Gong W, Tan
Y, Wang M, Wen J, Zhai Y and Xu Z: Association of antioxidative
enzymes polymorphisms with efficacy of platin and
fluorouracil-based adjuvant therapy in gastric cancer. Cell Physiol
Biochem. 48:2247–2257. 2018.
|
44
|
Noci S, Dugo M, Bertola F, Melotti F,
Vannelli A, Dragani TA and Galvan A: A subset of genetic
susceptibility variants for colorectal cancer also has prognostic
value. Pharmacogenomics J. 16:173–179. 2016.
|
45
|
Wu S, Cheng Z, Peng Y, Cao Y and He Z:
GPx3 knockdown inhibits the proliferation and DNA synthesis and
enhances the early apoptosis of human spermatogonial stem cells via
mediating CXCL10 and cyclin B1. Front Cell Dev Biol.
11:12136842023.
|
46
|
Dongre A and Weinberg RA: New insights
into the mechanisms of epithelial-mesenchymal transition and
implications for cancer. Nat Rev Mol Cell Biol. 20:69–84. 2019.
|
47
|
Yao S, Wei W, Cao R, Lu L, Liang S, Xiong
M, Zhang C, Liang X and Ma Y: Resveratrol alleviates zea-induced
decidualization disturbance in human endometrial stromal cells.
Ecotoxicol Environ Saf. 207:1115112021.
|
48
|
Li Y, Zhou Y, Liu D, Wang Z, Qiu J, Zhang
J, Chen P, Zeng G, Guo Y, Wang X, et al: Glutathione Peroxidase 3
induced mitochondria-mediated apoptosis via AMPK/ERK1/2 pathway and
resisted autophagy-related ferroptosis via AMPK/mTOR pathway in
hyperplastic prostate. J Transl Med. 21:5752023.
|
49
|
Mao X, Xu J, Wang W, Liang C, Hua J, Liu
J, Zhang B, Meng Q, Yu X and Shi S: Crosstalk between
cancer-associated fibroblasts and immune cells in the tumor
microenvironment: New findings and future perspectives. Mol Cancer.
20:1312021.
|
50
|
Yi Z, Jiang L, Zhao L, Zhou M, Ni Y, Yang
Y, Yang H, Yang L, Zhang Q, Kuang Y, et al: Glutathione peroxidase
3 (GPX3) suppresses the growth of melanoma cells through reactive
oxygen species (ROS)-dependent stabilization of hypoxia-inducible
factor 1-α and 2-α. J Cell Biochem. 120:19124–19136. 2019.
|
51
|
Lee SH, Golinska M and Griffiths JR:
HIF-1-independent mechanisms regulating metabolic adaptation in
hypoxic cancer cells. Cells. 10:23712021.
|
52
|
Perets R, Wyant GA, Muto KW, Bijron JG,
Poole BB, Chin KT, Chen JYH, Ohman AWO, Stepule CD, Kwak S, et al:
Transformation of the fallopian tube secretory epithelium leads to
high-grade serous ovarian cancer in Brca;Tp53;Pten models. Cancer
Cell. 24:751–765. 2013.
|
53
|
Eckert MA, Pan S, Hernandez KM, Loth RM,
Andrade J, Volchenboum SL, Faber P, Montag A, Lastra R, Peter ME,
et al: Genomics of ovarian cancer progression reveals diverse
metastatic trajectories including intraepithelial metastasis to the
fallopian tube. Cancer Discov. 6:1342–1351. 2016.
|
54
|
Wang Y, Huang P, Wang BG, Murdock T, Cope
L, Hsu FC, Wang TL and Shih IM: Spatial Transcriptomic analysis of
ovarian cancer precursors reveals reactivation of IGFBP2 during
pathogenesis. Cancer Res. 82:4528–4541. 2022.
|
55
|
Yousefi B, Sadoughi F, Asemi Z, Mansournia
MA and Hallajzadeh J: Novel perspectives for the diagnosis and
treatment of gynecological cancers using Dysregulation of PIWI
Protein and PiRNAs as biomarkers. Curr Med Chem. 31:453–463.
2024.
|
56
|
Launonen IM, Lyytikäinen N, Casado J,
Anttila EA, Szabó A, Haltia UM, Jacobson CA, Lin JR, Maliga Z,
Howitt BE, et al: Single-cell tumor-immune microenvironment of
BRCA1/2 mutated high-grade serous ovarian cancer. Nat Commun.
13:8352022.
|
57
|
Eulenburg V and Hülsmann S: Synergistic
control of transmitter turnover at glycinergic synapses by GlyT1,
GlyT2, and ASC-1. Int J Mol Sci. 23:25612022.
|
58
|
Teodoridis JM, Hall J, Marsh S, Kannall
HD, Smyth C, Curto J, Siddiqui N, Gabra H, McLeod HL, Strathdee G
and Brown R: CpG island methylation of DNA damage response genes in
advanced ovarian cancer. Cancer Res. 65:8961–8967. 2005.
|
59
|
Xie Y, Ma S and Tong M: Metabolic
plasticity of cancer stem cells in response to Microenvironmental
cues. Cancers. 14:53452022.
|
60
|
Makino S: The role of tumor stem-cells in
regrowth of the tumor following drastic applications. Acta Unio Int
Contra Cancrum. 15:196–198. 1959.
|
61
|
Bapat SA, Mali AM, Koppikar CB and Kurrey
NK: Stem and progenitor-like cells contribute to the aggressive
behavior of human epithelial ovarian cancer. Cancer Res.
65:3025–3029. 2005.
|
62
|
Prager BC, Xie Q, Bao S and Rich JN:
Cancer Stem cells: The architects of the tumor ecosystem. Cell Stem
Cell. 24:41–53. 2019.
|
63
|
Li Y, Hu X, Lin R, Zhou G, Zhao L, Zhao D,
Zhang Y, Li W, Zhang Y, Ma P, et al: Single-cell landscape reveals
active cell subtypes and their interaction in the tumor
microenvironment of gastric cancer. Theranostics. 12:3818–3833.
2022.
|
64
|
Pei J, Tian X, Yu C, Luo J, Zhang J, Hua Y
and Wei G: GPX3 and GSTT1 as biomarkers related to oxidative stress
during renal ischemia reperfusion injuries and their relationship
with immune infiltration. Front Immunol. 14:11361462023.
|
65
|
Liou GY: CD133 as a regulator of cancer
metastasis through the cancer stem cells. Int J Biochem Cell Biol.
106:1–7. 2019.
|
66
|
Liu Q, Jin J, Ying J, Sun M, Cui Y, Zhang
L, Xu B, Fan Y and Zhang Q: Frequent epigenetic suppression of
tumor suppressor gene glutathione peroxidase 3 by promoter
hypermethylation and its clinical implication in clear cell renal
cell carcinoma. Int J Mol Sci. 16:10636–10649. 2015.
|
67
|
Wang YC, Bai MY, Yeh YT, Tang SL and Yu
MH: CD133 targeted PVP/PMMA Microparticle incorporating levamisole
for the treatment of ovarian cancer. Polymers (Basel).
12:4792020.
|
68
|
Abdellateif MS, Bayoumi AK and Mohammed
MA: c-Kit receptors as a therapeutic target in cancer: Current
insights. Oncot Targets Ther. 16:785–799. 2023.
|
69
|
Jiang YX, Siu MK, Wang JJ, Mo XT, Leung
TH, Chan DW, Cheung AN, Ngan HY and Chan KK: Ascites-derived
ALDH+CD44+ tumour cell subsets endow stemness, metastasis and
metabolic switch via PDK4-mediated STAT3/AKT/NF-κB/IL-8 signalling
in ovarian cancer. Br J Cancer. 123:275–287. 2020.
|
70
|
Robinson M, Gilbert SF, Waters JA,
Lujano-Olazaba O, Lara J, Alexander LJ, Green SE, Burkeen GA,
Patrus O, Sarwar Z, et al: Characterization of SOX2, OCT4 and NANOG
in ovarian cancer tumor-initiating cells. Cancers (Basel).
13:2622021.
|
71
|
Fan J, To KKW, Chen ZS and Fu L: ABC
transporters affects tumor immune microenvironment to regulate
cancer immunotherapy and multidrug resistance. Drug Resist Updat.
66:1009052023.
|
72
|
Kaipio K, Chen P, Roering P, Huhtinen K,
Mikkonen P, Östling P, Lehtinen L, Mansuri N, Korpela T, Potdar S,
et al: ALDH1A1-related stemness in high-grade serous ovarian cancer
is a negative prognostic indicator but potentially targetable by
EGFR/mTOR-PI3K/aurora kinase inhibitors. J Pathol. 250:159–169.
2020.
|
73
|
Saga Y, Ohwada M, Suzuki M, Konno R,
Kigawa J, Ueno S and Mano H: Glutathione peroxidase 3 is a
candidate mechanism of anticancer drug resistance of ovarian clear
cell adenocarcinoma. Oncol Rep. 20:1299–1303. 2008.
|
74
|
Xia J, Zhang J, Wu X, Du W, Zhu Y, Liu X,
Liu Z, Meng B, Guo J, Yang Q, et al: Blocking glycine utilization
inhibits multiple myeloma progression by disrupting glutathione
balance. Nat Commun. 13:40072022.
|
75
|
Chen B, Jiang K, Wang H, Miao L, Lin X,
Chen Q, Jing L and Lu X: NOTCH pathway genes in ovarian cancer:
Clinical significance and associations with immune cell
infiltration. Front Biosci. 28:2202023.
|
76
|
Rezaei F, Farhat D, Gursu G, Samnani S and
Lee JY: Snapshots of ABCG1 and ABCG5/G8: A Sterol's Journey to
cross the cellular membranes. Int J Mol Sci. 24:4842022.
|
77
|
Wang H, Zhou Y, Zhang S, Qi Y and Wang M:
PRPF6 promotes metastasis and paclitaxel resistance of ovarian
cancer via SNHG16/CEBPB/GATA3 axis. Oncol Res. 29:275–289.
2021.
|
78
|
Liu J, Wang H, Xiao S, Zhang S, Qi Y and
Wang M: Circ-0000231 promotes paclitaxel resistance in ovarian
cancer by regulating miR-140/RAP1B. Am J Cancer Res. 13:872–885.
2023.
|
79
|
Motohara T, Masuda K, Morotti M, Zheng Y,
El-Sahhar S, Chong KY, Wietek N, Alsaadi A, Carrami EM, Hu Z, et
al: Correction to: An evolving story of the metastatic voyage of
ovarian cancer cells: cellular and molecular orchestration of the
adipose-rich metastatic microenvironment. Oncogene. 41:3584.
2022.
|
80
|
Shishido A, Mori S, Yokoyama Y, Hamada Y,
Minami K, Qian Y, Wang J, Hirose H, Wu X, Kawaguchi N, et al:
Mesothelial cells facilitate cancer stem-like properties in
spheroids of ovarian cancer cells. Oncol Rep. 40:2105–2114.
2018.
|
81
|
Schoutrop E, Moyano-Galceran L, Lheureux
S, Mattsson J, Lehti K, Dahlstrand H and Magalhaes I: Molecular,
cellular and systemic aspects of epithelial ovarian cancer and its
tumor microenvironment. Semin Cancer Biol. 86:207–223. 2022.
|
82
|
Liu T, Sun L, Zhang Y, Wang Y and Zheng J:
Imbalanced GSH/ROS and sequential cell death. J Biochem Mol
Toxicol. 36:e229422022.
|
83
|
Zhou J, Jiang YY, Chen H, Wu YC and Zhang
L: Tanshinone I attenuates the malignant biological properties of
ovarian cancer by inducing apoptosis and autophagy via the
inactivation of PI3K/AKT/mTOR pathway. Cell Prolif.
53:e127392020.
|
84
|
Moulder R, Välikangas T, Hirvonen MK,
Suomi T, Brorsson CA, Lietzén N, Bruggraber SFA, Overbergh L,
Dunger DB, Peakman M, et al: Targeted serum proteomics of
longitudinal samples from newly diagnosed youth with type 1
diabetes distinguishes markers of disease and C-peptide trajectory.
Diabetologia. 66:1983–1996. 2023.
|
85
|
Schreckenberger ZJ, Wenceslau CF, Joe B
and McCarthy CG: Mitophagy in Hypertension-associated premature
vascular aging. Am J Hypertens. 33:804–812. 2022.
|
86
|
Xu H, Zhao F, Wu D, Zhang Y, Bao X, Shi F,
Cai Y and Dou J: Eliciting effective tumor immunity against ovarian
cancer by cancer stem cell vaccination. Biomed Pharmacother.
161:1145472023.
|
87
|
Qian J, LeSavage BL, Hubka KM, Ma C,
Natarajan S, Eggold JT, Xiao Y, Katherine CF, Krishnan V, Enejder
A, et al: Cancer-associated mesothelial cells promote ovarian
cancer chemoresistance through paracrine osteopontin signaling. J
Clin Invest. 131:e1461862021.
|
88
|
Byrne P, Demasi M, Jones M, Smith SM,
O'Brien KK and DuBroff R: Evaluating the association between
low-density lipoprotein cholesterol reduction and relative and
absolute effects of statin treatment: A systematic review and
Meta-analysis. JAMA Intern Med. 182:4742022.
|
89
|
Tesfay L, Paul BT, Konstorum A, Deng Z,
Cox AO, Lee J, Furdui CM, Hegde P, Torti FM and Torti SV:
Stearoyl-CoA Desaturase 1 protects ovarian cancer cells from
ferroptotic cell death. Cancer Res. 79:5355–5366. 2019.
|
90
|
Mukherjee A, Chiang CY, Daifotis HA,
Nieman KM, Fahrmann JF, Lastra RR, Romero IL, Fiehn O and Lengyel
E: Adipocyte-induced FABP4 expression in ovarian cancer cells
promotes metastasis and mediates carboplatin resistance. Cancer
Res. 80:1748–1761. 2020.
|
91
|
Luis G, Godfroid A, Nishiumi S, Cimino J,
Blacher S, Maquoi E, Wery C, Collignon A, Longuespée R,
Montero-Ruiz L, et al: Tumor resistance to ferroptosis driven by
Stearoyl-CoA Desaturase-1 (SCD1) in cancer cells and fatty acid
biding protein-4 (FABP4) in tumor microenvironment promote tumor
recurrence. Redox Biol. 43:1020062021.
|
92
|
Bhardwaj M, Lee JJ, Versace AM, Harper SL,
Goldman AR, Crissey MAS, Jain V, Singh MP, Vernon M, Aplin AE, et
al: Lysosomal lipid peroxidation regulates tumor immunity. J Clin
Invest. 133:e1645962023.
|
93
|
Szczuko M, Zapalowska-Chwyć M and Drozd R:
A low glycemic index decreases inflammation by increasing the
concentration of uric acid and the activity of glutathione
peroxidase (GPx3) in patients with polycystic ovary syndrome
(PCOS). Molecules. 24:15082019.
|
94
|
Kim WY: Therapeutic targeting of lipid
synthesis metabolism for selective elimination of cancer stem
cells. Arch Pharmacal Res. 42:25–39. 2019.
|
95
|
Bhat AA, Nisar S, Singh M, Ashraf B,
Masoodi T, Prasad CP, Sharma A, Maacha S, Karedath T, Hashem S, et
al: Cytokine- and chemokine-induced inflammatory colorectal tumor
microenvironment: Emerging avenue for targeted therapy. Cancer
Commun. 42:689–715. 2022.
|
96
|
Cervellati C, Trentini A, Rosta V, Zuliani
G, Vieceli Dalla Sega F, Fortini F, Rizzo P, Cimaglia P and Campo
G: A Nutraceutical compound containing a low dose of Monacolin K,
Polymethoxyflavones, phenolic acids, flavonoids, and hydroxytyrosol
improves HDL functionality. Curr Vasc Pharmacol. 21:433–442.
2023.
|
97
|
Disis ML, Taylor MH, Kelly K, Beck JT,
Gordon M, Moore KM, Patel MR, Chaves J, Park H, Mita AC, et al:
Efficacy and Safety of Avelumab for patients with recurrent or
refractory ovarian cancer: Phase 1b results from the JAVELIN Solid
tumor trial. JAMA Oncol. 5:393–401. 2019.
|
98
|
Binnewies M, Pollack JL, Rudolph J, Dash
S, Abushawish M, Lee T, Jahchan NS, Canaday P, Lu E, Norng M, et
al: Targeting TREM2 on tumor-associated macrophages enhances
immunotherapy. Cell Rep. 37:1098442021.
|
99
|
El-Arabey AA, Alkhalil SS, Al-Shouli ST,
Awadalla ME, Alhamdi HW, Almanaa TN, Mohamed SSEM and Abdalla M:
Revisiting macrophages in ovarian cancer microenvironment:
Development, function and interaction. Med Oncol. 40:1422023.
|
100
|
Soerens AG, Künzli M, Quarnstrom CF, Scott
MC, Swanson L, Locquiao JJ, Ghoneim HE, Zehn D, Youngblood B, Vezys
V and Masopust D: Functional T cells are capable of supernumerary
cell division and longevity. Nature. 614:762–766. 2023.
|
101
|
Zeng XY, Xie H, Yuan J, Jiang XY, Yong JH,
Zeng D, Dou YY and Xiao SS: M2-like tumor-associated
macrophages-secreted EGF promotes epithelial ovarian cancer
metastasis via activating EGFR-ERK signaling and suppressing lncRNA
LIMT expression. Cancer Biol Ther. 20:956–966. 2019.
|
102
|
Efimova I, Catanzaro E, Van Der Meeren L,
Turubanova VD, Hammad H, Mishchenko TA, Vedunova MV, Fimognari C,
Bachert C, Coppieters F, et al: Vaccination with early ferroptotic
cancer cells induces efficient antitumor immunity. J Immuno Ther
Cancer. 8:e0013692020.
|
103
|
Cannarile MA, Weisser M, Jacob W, Jegg AM,
Ries CH and Rüttinger D: Colony-stimulating factor 1 receptor
(CSF1R) inhibitors in cancer therapy. J Immunother Cancer.
5:532017.
|
104
|
Hartwell BL, Melo MB, Xiao P, Lemnios AA,
Li N, Chang JYH, Yu J, Gebre MS, Chang A, Maiorino L, et al:
Intranasal vaccination with lipid-conjugated immunogens promotes
antigen transmucosal uptake to drive mucosal and systemic immunity.
Sci Transl Med. 14:eabn14132022.
|
105
|
Subhankar B, Priyanka S, Bilash C and Amit
KS: Chemokines driven ovarian cancer progression, metastasis and
chemoresistance: Potential pharmacological targets for cancer
therapy. Semin Cancer Biol. 86:568–579. 2022.
|
106
|
Muñoz-Galván S and Carnero A: Targeting
cancer stem cells to overcome therapy resistance in ovarian cancer.
Cells. 9:14022020.
|
107
|
Schweer D, McAtee A, Neupane K, Richards
C, Ueland F and Kolesar J: Tumor-associated macrophages and ovarian
cancer: Implications for therapy. Cancers. 14:22202022.
|
108
|
Kim D, Choi B, Ryoo I and Kwak MK: High
NRF2 level mediates cancer stem cell-like properties of
aldehydemdehydrogenase (ALDH)-high ovarian cancer cells: Inhibitory
role of all-trans retinoic acid in ALDH/NRF2 signaling. Cell Death
Dis. 9:8962018.
|
109
|
Wang J, Hu K, Cai X, Yang B, He Q, Wang J
and Weng Q: Targeting PI3K/AKT signaling for treatment of
idiopathic pulmonary fibrosis. Acta Pharm Sin B. 12:18–32.
2022.
|
110
|
Alwosaibai K, Aalmri S, Mashhour M,
Ghandorah S, Alshangiti A, Azam F, Selwi W, Gharaibeh L, Alatawi Y,
Alruwaii Z and Alsaab HO: PD-L1 is highly expressed in ovarian
cancer and associated with cancer stem cells populations expressing
CD44 and other stem cell markers. BMC Cancer. 23:132023.
|
111
|
Laumont CM, Wouters MCA, Smazynski J,
Gierc NS, Chavez EA, Chong LC, Thornton S, Milne K, Webb JR, Steidl
C and Nelson BH: Single-cell profiles and prognostic impact of
tumor-infiltrating lymphocytes Coexpressing CD39, CD103, and PD-1
in ovarian cancer. Clin Cancer Res. 27:4089–4100. 2021.
|
112
|
Zhou Y, Wang M, Shuang T, Liu Y, Zhang Y
and Shi C: MiR-1307 influences the chemotherapeutic sensitivity in
ovarian cancer cells through the regulation of the CIC
transcriptional repressor. Pathol Res Pract. 215:1526062019.
|
113
|
Zhao G, Tan Y, Cardenas H, Vayngart D,
Wang Y, Huang H, Keathley R, Wei JJ, Ferreira CR, Orsulic S, et al:
Ovarian cancer cell fate regulation by the dynamics between
saturated and unsaturated fatty acids. Proc Natl Acad Sci.
119:e22034801192022.
|
114
|
Nunes SC and Serpa J: Glutathione in
ovarian cancer: A double-edged Sword. Int J Mol Sci.
19:18822018.
|
115
|
O'Shea AS: Clinical staging of ovarian
cancer. Methods Mol Bio. 2424:3–10. 2022.
|
116
|
Ozols RF, Bundy BN, Greer BE, Fowler JM,
Clarke-Pearson D, Burger RA, Mannel RS, DeGeest K, Hartenbach EM
and Baergen R; Gynecologic Oncology Group: Phase III trial of
carboplatin and paclitaxel compared with cisplatin and paclitaxel
in patients with optimally resected stage III ovarian cancer: A
Gynecologic Oncology Group study. J Clin Oncol. 21:3194–3200.
2003.
|
117
|
Wang K, Guan C, Shang X, Ying X, Mei S,
Zhu H, Xia L and Chai Z: A bioinformatic analysis: the
overexpression and clinical significance of FCGBP in ovarian
cancer. Aging (Albany NY). 13:7416–7429. 2021.
|
118
|
Shan T, Chen S, Chen X, Wu T, Yang Y, Li
S, Ma J, Zhao J, Lin W, Li W, et al: M2-TAM subsets altered by
lactic acid promote T-cell apoptosis through the PD-L1/PD-1
pathway. Oncol Rep. 44:1885–1894. 2020.
|
119
|
Chen L, Luo J, Zhang J, Wang S, Sun Y, Liu
Q and Cheng C: Dual targeted nanoparticles for the codelivery of
doxorubicin and siRNA cocktails to overcome ovarian cancer stem
cells. Int J Mol Sci. 24:115752023.
|
120
|
Koeberle SC, Kipp AP, Stuppner H and
Koeberle A: Ferroptosis-modulating small molecules for targeting
drug-resistant cancer: Challenges and opportunities in manipulating
redox signaling. Med Res Rev. 43:614–682. 2023.
|
121
|
Kho BG, Park HY, Cho HJ, Park CK, Kim YC,
Yun JS, Song SY, Na KJ, Choi YD, Lee SW and Oh IJ: Glutathione
peroxidase 3 as a biomarker of recurrence after lung cancer
surgery. J Clin Med. 9:38012020.
|
122
|
Ngoi NY, Syn NL, Goh RM, Goh BC, Huang
RYJ, Soon YY, James E, Cook A, Clamp A and Tan DS: Weekly versus
tri-weekly paclitaxel with carboplatin for first-line treatment in
women with epithelial ovarian cancer. Cochrane Db Syst Rev.
2022:CD0120072022.
|