Advancements in colorectal cancer research: Unveiling the cellular and molecular mechanisms of neddylation (Review)
- Authors:
- Tianyu Wang
- Xiaobing Li
- Ruijie Ma
- Jian Sun
- Shuhong Huang
- Zhigang Sun
- Meng Wang
-
Affiliations: School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan, Shandong 250117, P.R. China, Department of Thoracic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China, Department of General Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China - Published online on: February 21, 2024 https://doi.org/10.3892/ijo.2024.5627
- Article Number: 39
-
Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Brenner H, Kloor M and Pox CP: Colorectal cancer. Lancet. 383:1490–1502. 2014. View Article : Google Scholar | |
Miller KD, Siegel RL, Lin CC, Mariotto AB, Kramer JL, Rowland JH, Stein KD, Alteri R and Jemal A: Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin. 66:271–289. 2016. View Article : Google Scholar : PubMed/NCBI | |
Roque-Castellano C, Fariña-Castro R, Nogués-Ramia EM, Artiles-Armas M and Marchena-Gómez J: Colorectal cancer surgery in selected nonagenarians is relatively safe and it is associated with a good long-term survival: An observational study. World J Surg Oncol. 18:1202020. View Article : Google Scholar : PubMed/NCBI | |
Salibasic M, Pusina S, Bicakcic E, Pasic A, Gavric I, Kulovic E, Rovcanin A and Beslija S: Colorectal cancer surgical treatment, our experience. Med Arch. 73:412–414. 2019. View Article : Google Scholar | |
Luo W, Wu M and Chen Y: Laparoscopic versus open surgery for elderly patients with colorectal cancer: A systematic review and meta-analysis of matched studies. ANZ J Surg. 92:2003–2017. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ustuner MA, Deniz A and Simsek A: Laparoscopic <em>versus</em> open surgery in colorectal cancer: Is laparoscopy safe enough? J Coll Physicians Surg Pak. 32:1170–1174. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu G, Zhang S, Zhang Y, Fu X and Liu X: Robotic surgery in rectal cancer: Potential, challenges, and opportunities. Curr Treat Options Oncol. 23:961–979. 2022. View Article : Google Scholar : PubMed/NCBI | |
Riesco-Martinez MC, Modrego A, Espinosa-Olarte P, La Salvia A and Garcia-Carbonero R: Perioperative chemotherapy for liver metastasis of colorectal cancer: Lessons learned and future perspectives. Curr Treat Options Oncol. 23:1320–1337. 2022. View Article : Google Scholar : PubMed/NCBI | |
Habr-Gama A, Perez RO, São Julião GP, Proscurshim I and Gama-Rodrigues J: Nonoperative approaches to rectal cancer: A critical evaluation. Semin Radiat Oncol. 21:234–239. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hsu YJ, Chern YJ, Lai IL, Chiang SF, Liao CK, Tsai WS, Hung HY, Hsieh PS, Yeh CY, Chiang JM, et al: Usefulness of close surveillance for rectal cancer patients after neoadjuvant chemoradiotherapy. Open Med (Wars). 17:1438–1448. 2022. View Article : Google Scholar : PubMed/NCBI | |
McWhirter D, Kitteringham N, Jones RP, Malik H, Park K and Palmer D: Chemotherapy induced hepatotoxicity in metastatic colorectal cancer: A review of mechanisms and outcomes. Crit Rev Oncol Hematol. 88:404–415. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kim JH: Chemotherapy for colorectal cancer in the elderly. World J Gastroenterol. 21:5158–5166. 2015. View Article : Google Scholar : PubMed/NCBI | |
Piawah S and Venook AP: Targeted therapy for colorectal cancer metastases: A review of current methods of molecularly targeted therapy and the use of tumor biomarkers in the treatment of metastatic colorectal cancer. Cancer. 125:4139–4147. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kumar S, Tomooka Y and Noda M: Identification of a set of genes with developmentally down-regulated expression in the mouse brain. Biochem Biophys Res Commun. 185:1155–1161. 1992. View Article : Google Scholar : PubMed/NCBI | |
Kumar S, Yoshida Y and Noda M: Cloning of a cDNA which encodes a novel ubiquitin-like protein. Biochem Biophys Res Commun. 195:393–399. 1993. View Article : Google Scholar : PubMed/NCBI | |
Kamitani T, Kito K, Nguyen HP and Yeh ET: Characterization of NEDD8, a developmentally down-regulated ubiquitin-like protein. J Biol Chem. 272:28557–28562. 1997. View Article : Google Scholar : PubMed/NCBI | |
Wada H, Kito K, Caskey LS, Yeh ET and Kamitani T: Cleavage of the C-terminus of NEDD8 by UCH-L3. Biochem Biophys Res Commun. 251:688–692. 1998. View Article : Google Scholar : PubMed/NCBI | |
Mendoza HM, Shen LN, Botting C, Lewis A, Chen J, Ink B and Hay RT: NEDP1, a highly conserved cysteine protease that deNEDDylates Cullins. J Biol Chem. 278:25637–25643. 2003. View Article : Google Scholar : PubMed/NCBI | |
Gong L and Yeh ET: Identification of the activating and conjugating enzymes of the NEDD8 conjugation pathway. J Biol Chem. 274:12036–12042. 1999. View Article : Google Scholar : PubMed/NCBI | |
Huang DT, Zhuang M, Ayrault O and Schulman BA: Identification of conjugation specificity determinants unmasks vestigial preference for ubiquitin within the NEDD8 E2. Nat Struct Mol Biol. 15:280–287. 2008. View Article : Google Scholar : PubMed/NCBI | |
Huang DT, Ayrault O, Hunt HW, Taherbhoy AM, Duda DM, Scott DC, Borg LA, Neale G, Murray PJ, Roussel MF and Schulman BA: E2-RING expansion of the NEDD8 cascade confers specificity to cullin modification. Mol Cell. 33:483–495. 2009. View Article : Google Scholar : PubMed/NCBI | |
Baek K, Scott DC and Schulman BA: NEDD8 and ubiquitin ligation by cullin-RING E3 ligases. Curr Opin Struct Biol. 67:101–109. 2021. View Article : Google Scholar : | |
Lydeard JR, Schulman BA and Harper JW: Building and remodelling Cullin-RING E3 ubiquitin ligases. EMBO Rep. 14:1050–1061. 2013. View Article : Google Scholar : PubMed/NCBI | |
Xirodimas DP, Saville MK, Bourdon JC, Hay RT and Lane DP: Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity. Cell. 118:83–97. 2004. View Article : Google Scholar : PubMed/NCBI | |
Stickle NH, Chung J, Klco JM, Hill RP, Kaelin WG Jr and Ohh M: pVHL modification by NEDD8 is required for fibronectin matrix assembly and suppression of tumor development. Mol Cell Biol. 24:3251–3261. 2004. View Article : Google Scholar : PubMed/NCBI | |
Guan J, Yu S and Zheng X: NEDDylation antagonizes ubiquitination of proliferating cell nuclear antigen and regulates the recruitment of polymerase η in response to oxidative DNA damage. Protein Cell. 9:365–379. 2018. | |
Ryu JH, Li SH, Park HS, Park JW, Lee B and Chun YS: Hypoxia-inducible factor α subunit stabilization by NEDD8 conjugation is reactive oxygen species-dependent. J Biol Chem. 286:6963–6970. 2011. View Article : Google Scholar : PubMed/NCBI | |
Brown JS and Jackson SP: Ubiquitylation, neddylation and the DNA damage response. Open Biol. 5:1500182015. View Article : Google Scholar : PubMed/NCBI | |
Liu J and Nussinov R: Flexible cullins in cullin-RING E3 ligases allosterically regulate ubiquitination. J Biol Chem. 286:40934–40942. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sarikas A, Hartmann T and Pan ZQ: The cullin protein family. Genome Biol. 12:2202011. View Article : Google Scholar : PubMed/NCBI | |
Osaka F, Kawasaki H, Aida N, Saeki M, Chiba T, Kawashima S, Tanaka K and Kato S: A new NEDD8-ligating system for cullin-4A. Genes Dev. 12:2263–2268. 1998. View Article : Google Scholar : PubMed/NCBI | |
Petroski MD and Deshaies RJ: Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol. 6:9–20. 2005. View Article : Google Scholar : PubMed/NCBI | |
Nam SY, Ko YS, Jung J, Yoon J, Kim YH, Choi YJ, Park JW, Chang MS, Kim WH and Lee BL: A hypoxia-dependent upregulation of hypoxia-inducible factor-1 by nuclear factor-κB promotes gastric tumour growth and angiogenesis. Br J Cancer. 104:166–174. 2011. View Article : Google Scholar | |
Semenza GL: HIF-1 and mechanisms of hypoxia sensing. Curr Opin Cell Biol. 13:167–171. 2001. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kittai AS, Danilova OV, Lam V, Liu T, Bruss N, Best S, Fan G and Danilov AV: NEDD8-activating enzyme inhibition induces cell cycle arrest and anaphase catastrophe in malignant T-cells. Oncotarget. 12:2068–2074. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lan H, Tang Z, Jin H and Sun Y: Neddylation inhibitor MLN4924 suppresses growth and migration of human gastric cancer cells. Sci Rep. 6:242182016. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Bei Q and Luo X: MLN4924 inhibits cell proliferation by targeting the activated neddylation pathway in endometrial carcinoma. J Int Med Res. 49:30006052110185922021.PubMed/NCBI | |
Picco G, Petti C, Sassi F, Grillone K, Migliardi G, Rossi T, Isella C, Di Nicolantonio F, Sarotto I, Sapino A, et al: Efficacy of NEDD8 pathway inhibition in preclinical models of poorly differentiated, clinically aggressive colorectal cancer. J Natl Cancer Inst. 109:djw2092017. View Article : Google Scholar | |
Xie P, Zhang M, He S, Lu K, Chen Y, Xing G, Lu Y, Liu P, Li Y, Wang S, et al: The covalent modifier Nedd8 is critical for the activation of Smurf1 ubiquitin ligase in tumorigenesis. Nat Commun. 5:37332014. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Liang Y, Li L, Zhou L, Cheng W, Yang X, Yang X, Qi H, Yu J, Jeong LS, et al: Targeting neddylation inhibits intravascular survival and extravasation of cancer cells to prevent lung-cancer metastasis. Cell Biol Toxicol. 35:233–245. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mickova A, Kharaishvili G, Kurfurstova D, Gachechiladze M, Kral M, Vacek O, Pokryvkova B, Mistrik M, Soucek K and Bouchal J: Skp2 and slug are coexpressed in aggressive prostate cancer and inhibited by neddylation blockade. Int J Mol Sci. 22:28442021. View Article : Google Scholar : PubMed/NCBI | |
Tan KL and Pezzella F: Inhibition of NEDD8 and FAT10 ligase activities through the degrading enzyme NEDD8 ultimate buster 1: A potential anticancer approach. Oncol Lett. 12:4287–4296. 2016. View Article : Google Scholar | |
Watson IR, Blanch A, Lin DC, Ohh M and Irwin MS: Mdm2-mediated NEDD8 modification of TAp73 regulates its transactivation function. J Biol Chem. 281:34096–34103. 2006. View Article : Google Scholar : PubMed/NCBI | |
Aoki I, Higuchi M and Gotoh Y: NEDDylation controls the target specificity of E2F1 and apoptosis induction. Oncogene. 32:3954–3964. 2013. View Article : Google Scholar | |
Halazonetis TD, Gorgoulis VG and Bartek J: An oncogene-induced DNA damage model for cancer development. Science. 319:1352–1355. 2008. View Article : Google Scholar : PubMed/NCBI | |
Garvin AJ: Beyond reversal: ubiquitin and ubiquitin-like proteases and the orchestration of the DNA double strand break repair response. Biochem Soc Trans. 47:1881–1893. 2019. View Article : Google Scholar : PubMed/NCBI | |
Meir M, Galanty Y, Kashani L, Blank M, Khosravi R, Fernández-Ávila MJ, Cruz-García A, Star A, Shochot L, Thomas Y, et al: The COP9 signalosome is vital for timely repair of DNA double-strand breaks. Nucleic Acids Res. 43:4517–4530. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gâtel P, Piechaczyk M and Bossis G: Ubiquitin, SUMO, and Nedd8 as therapeutic targets in cancer. Adv Exp Med Biol. 1233:29–54. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li YJ, Lei YH, Yao N, Wang CR, Hu N, Ye WC, Zhang DM and Chen ZS: Autophagy and multidrug resistance in cancer. Chin J Cancer. 36:522017. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Baechler SA, Zhang X, Kumar S, Factor VM, Arakawa Y, Chau CH, Okamoto K, Parikh A, Walker B, et al: Targeting neddylation sensitizes colorectal cancer to topoisomerase I inhibitors by inactivating the DCAF13-CRL4 ubiquitin ligase complex. Nat Commun. 14:37622023. View Article : Google Scholar : PubMed/NCBI | |
Wan J, Zhu J, Li G and Zhang Z: Radiosensitization of human colorectal cancer cells by MLN4924: An Inhibitor of NEDD8-Activating Enzyme. Technol Cancer Res Treat. 15:527–534. 2016. View Article : Google Scholar | |
Shao Y, Liu Z, Song X, Sun R, Zhou Y, Zhang D, Sun H, Huang J, Wu C, Gu W, et al: ALKBH5/YTHDF2-mediated m6A modification of circAFF2 enhances radiosensitivity of colorectal cancer by inhibiting Cullin neddylation. Clin Transl Med. 13:e13182023. View Article : Google Scholar : PubMed/NCBI | |
Whiteside TL: The tumor microenvironment and its role in promoting tumor growth. Oncogene. 27:5904–5912. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhou L, Jiang Y, Luo Q, Li L and Jia L: Neddylation: A novel modulator of the tumor microenvironment. Mol Cancer. 18:772019. View Article : Google Scholar : PubMed/NCBI | |
Chang FM, Reyna SM, Granados JC, Wei SJ, Innis-Whitehouse W, Maffi SK, Rodriguez E, Slaga TJ and Short JD: Inhibition of neddylation represses lipopolysaccharide-induced proinflammatory cytokine production in macrophage cells. J Biol Chem. 287:35756–35767. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li L, Liu B, Dong T, Lee HW, Yu J, Zheng Y, Gao H, Zhang Y, Chu Y, Liu G, et al: Neddylation pathway regulates the proliferation and survival of macrophages. Biochem Biophys Res Commun. 432:494–498. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhou L, Jiang Y, Liu X, Li L, Yang X, Dong C, Liu X, Lin Y, Li Y, Yu J, et al: Promotion of tumor-associated macrophages infiltration by elevated neddylation pathway via NF-κB-CCL2 signaling in lung cancer. Oncogene. 38:5792–5804. 2019. View Article : Google Scholar : PubMed/NCBI | |
Joyce JA and Fearon DT: T cell exclusion, immune privilege, and the tumor microenvironment. Science. 348:74–80. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jin HS, Liao L, Park Y and Liu YC: Neddylation pathway regulates T-cell function by targeting an adaptor protein Shc and a protein kinase Erk signaling. Proc Natl Acad Sci USA. 110:624–629. 2013. View Article : Google Scholar : | |
Jiang Y, Li L, Li Y, Liu G, Hoffman RM and Jia L: Neddylation regulates macrophages and implications for cancer therapy. Front Cell Dev Biol. 9:6811862021. View Article : Google Scholar : PubMed/NCBI | |
Best S, Lam V, Liu T, Bruss N, Kittai A, Danilova OV, Murray S, Berger A, Pennock ND, Lind EF and Danilov AV: Immunomodulatory effects of pevonedistat, a NEDD8-activating enzyme inhibitor, in chronic lymphocytic leukemia-derived T cells. Leukemia. 35:156–168. 2021. View Article : Google Scholar : | |
Maishi N and Hida K: Tumor endothelial cells accelerate tumor metastasis. Cancer Sci. 108:1921–1926. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tang N, Wang L, Esko J, Giordano FJ, Huang Y, Gerber HP, Ferrara N and Johnson RS: Loss of HIF-1alpha in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis. Cancer Cell. 6:485–495. 2004. View Article : Google Scholar : PubMed/NCBI | |
Shi CS, Kuo KL, Lin WC, Chen MS, Liu SH, Liao SM, Hsu CH, Chang YW, Chang HC and Huang KH: Neddylation inhibitor, MLN4924 suppresses angiogenesis in huvecs and solid cancers: in vitro and in vivo study. Am J Cancer Res. 10:953–964. 2020.PubMed/NCBI | |
Yao WT, Wu JF, Yu GY, Wang R, Wang K, Li LH, Chen P, Jiang YN, Cheng H, Lee HW, et al: Suppression of tumor angiogenesis by targeting the protein neddylation pathway. Cell Death Dis. 5:e10592014. View Article : Google Scholar : PubMed/NCBI | |
Tauriello DVF, Palomo-Ponce S, Stork D, Berenguer-Llergo A, Badia-Ramentol J, Iglesias M, Sevillano M, Ibiza S, Cañellas A, Hernando-Momblona X, et al: TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature. 554:538–543. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kerscher O, Felberbaum R and Hochstrasser M: Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol. 22:159–180. 2006. View Article : Google Scholar : PubMed/NCBI | |
He S, Cao Y, Xie P, Dong G and Zhang L: The Nedd8 Non-covalent Binding Region in the Smurf HECT Domain is Critical to its Ubiquitn Ligase Function. Sci Rep. 7:413642017. View Article : Google Scholar : PubMed/NCBI | |
Zheng J, Shi Z, Yang P, Zhao Y, Tang W, Ye S, Xuan Z, Chen C, Shao C, Wu Q and Sun H: ERK-Smurf1-RhoA signaling is critical for TGFβ-drived EMT and tumor metastasis. Life Sci Alliance. 5:e2021013302022. View Article : Google Scholar | |
Xie L, Law BK, Chytil AM, Brown KA, Aakre ME and Moses HL: Activation of the Erk pathway is required for TGF-beta1-induced EMT in vitro. Neoplasia. 6:603–610. 2004. View Article : Google Scholar : PubMed/NCBI | |
Fang JY and Richardson BC: The MAPK signalling pathways and colorectal cancer. Lancet Oncol. 6:322–327. 2005. View Article : Google Scholar : PubMed/NCBI | |
Cardoso AP, Pinto ML, Pinto AT, Oliveira MI, Pinto MT, Gonçalves R, Relvas JB, Figueiredo C, Seruca R, Mantovani A, et al: Macrophages stimulate gastric and colorectal cancer invasion through EGFR Y(1086), c-Src, Erk1/2 and Akt phosphorylation and smallGTPase activity. Oncogene. 33:2123–2133. 2014. View Article : Google Scholar | |
Price JT, Wilson HM and Haites NE: Epidermal growth factor (EGF) increases the in vitro invasion, motility and adhesion interactions of the primary renal carcinoma cell line, A704. Eur J Cancer. 32A:1977–1982. 1996. View Article : Google Scholar : PubMed/NCBI | |
Li S, Wu X, Xu Y, Wu S, Li Z, Chen R, Huang N, Zhu Z and Xu X: miR-145 suppresses colorectal cancer cell migration and invasion by targeting an ETS-related gene. Oncol Rep. 36:1917–1926. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kwon A, Lee HL, Woo KM, Ryoo HM and Baek JH: SMURF1 plays a role in EGF-induced breast cancer cell migration and invasion. Mol Cells. 36:548–555. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT and Horwitz AR: Cell migration: Integrating signals from front to back. Science. 302:1704–1709. 2003. View Article : Google Scholar : PubMed/NCBI | |
Du MG, Liu F, Chang Y, Tong S, Liu W, Chen YJ and Xie P: Neddylation modification of the U3 snoRNA-binding protein RRP9 by Smurf1 promotes tumorigenesis. J Biol Chem. 297:1013072021. View Article : Google Scholar : PubMed/NCBI | |
Barrios-Rodiles M, Brown KR, Ozdamar B, Bose R, Liu Z, Donovan RS, Shinjo F, Liu Y, Dembowy J, Taylor IW, et al: High-throughput mapping of a dynamic signaling network in mammalian cells. Science. 307:1621–1625. 2005. View Article : Google Scholar : PubMed/NCBI | |
Clerget G, Bourguignon-Igel V, Marmier-Gourrier N, Rolland N, Wacheul L, Manival X, Charron C, Kufel J, Méreau A, Senty-Ségault V, et al: Synergistic defects in pre-rRNA processing from mutations in the U3-specific protein Rrp9 and U3 snoRNA. Nucleic Acids Res. 48:3848–3868. 2020. View Article : Google Scholar : PubMed/NCBI | |
Pecoraro A, Pagano M, Russo G and Russo A: Ribosome Biogenesis and Cancer: Overview on Ribosomal Proteins. Int J Mol Sci. 22:54962021. View Article : Google Scholar : PubMed/NCBI | |
Pelletier J, Thomas G and Volarević S: Ribosome biogenesis in cancer: New players and therapeutic avenues. Nat Rev Cancer. 18:51–63. 2018. View Article : Google Scholar | |
Guo J, Xu G, Mao C and Wei R: Low Expression of Smurf1 Enhances the Chemosensitivity of Human Colorectal Cancer to Gemcitabine and Cisplatin in Patient-Derived Xenograft Models. Transl Oncol. 13:1008042020. View Article : Google Scholar : PubMed/NCBI | |
Song MS, Salmena L and Pandolfi PP: The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol. 13:283–296. 2012. View Article : Google Scholar : PubMed/NCBI | |
Salmena L, Carracedo A and Pandolfi PP: Tenets of PTEN tumor suppression. Cell. 133:403–414. 2008. View Article : Google Scholar : PubMed/NCBI | |
Xie P, Peng Z, Chen Y, Li H, Du M, Tan Y, Zhang X, Lu Z, Cui CP, Liu CH, et al: Neddylation of PTEN regulates its nuclear import and promotes tumor development. Cell Res. 31:291–311. 2021. View Article : Google Scholar : | |
Finicle BT, Jayashankar V and Edinger AL: Nutrient scavenging in cancer. Nat Rev Cancer. 18:619–633. 2018. View Article : Google Scholar : PubMed/NCBI | |
Murphy N, Song M, Papadimitriou N, Carreras-Torres R, Langenberg C, Martin RM, Tsilidis KK, Barroso I, Chen J, Frayling TM, et al: Associations Between Glycemic Traits and Colorectal Cancer: A Mendelian Randomization Analysis. J Natl Cancer Inst. 114:740–752. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Lu Y and Li X, Zhang J, Lin W, Zhang W, Zheng L and Li X: IPO5 promotes the proliferation and tumourigenicity of colorectal cancer cells by mediating RASAL2 nuclear transportation. J Exp Clin Cancer Res. 38:2962019. View Article : Google Scholar : PubMed/NCBI | |
Menendez JA and Lupu R: Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer. 7:763–777. 2007. View Article : Google Scholar : PubMed/NCBI | |
Xia Q, Zhang H, Zhang P, Li Y, Xu M, Li X, Li X and Dong L: Oncogenic Smurf1 promotes PTEN wild-type glioblastoma growth by mediating PTEN ubiquitylation. Oncogene. 39:5902–5915. 2020. View Article : Google Scholar : PubMed/NCBI | |
Du MG, Peng ZQ, Gai WB, Liu F, Liu W, Chen YJ, Li HC, Zhang X, Liu CH, Zhang LQ, et al: The Absence of PTEN in Breast Cancer Is a Driver of MLN4924 Resistance. Front Cell Dev Biol. 9:6674352021. View Article : Google Scholar : PubMed/NCBI | |
Phelps RA, Chidester S, Dehghanizadeh S, Phelps J, Sandoval IT, Rai K, Broadbent T, Sarkar S, Burt RW and Jones DA: A two-step model for colon adenoma initiation and progression caused by APC loss. Cell. 137:623–634. 2009. View Article : Google Scholar : PubMed/NCBI | |
Schütz AK, Hennes T, Jumpertz S, Fuchs S and Bernhagen J: Role of CSN5/JAB1 in Wnt/β-catenin activation in colorectal cancer cells. FEBS Lett. 586:1645–1651. 2012. View Article : Google Scholar | |
Cope GA and Deshaies RJ: COP9 signalosome: A multifunctional regulator of SCF and other cullin-based ubiquitin ligases. Cell. 114:663–671. 2003. View Article : Google Scholar : PubMed/NCBI | |
Jumpertz S, Hennes T, Asare Y, Vervoorts J, Bernhagen J and Schütz AK: The β-catenin E3 ubiquitin ligase SIAH-1 is regulated by CSN5/JAB1 in CRC cells. Cell Signal. 26:2051–2059. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sninsky JA, Shore BM, Lupu GV and Crockett SD: Risk Factors for Colorectal Polyps and Cancer. Gastrointest Endosc Clin N Am. 32:195–213. 2022. View Article : Google Scholar : PubMed/NCBI | |
Aiello NM, Maddipati R, Norgard RJ, Balli D, Li J, Yuan S, Yamazoe T, Black T, Sahmoud A, Furth EE, et al: EMT Subtype Influences Epithelial Plasticity and Mode of Cell Migration. Dev Cell. 45:681–695.e84. 2018. View Article : Google Scholar : PubMed/NCBI | |
Asmamaw MD, Liu Y, Zheng YC, Shi XJ and Liu HM: Skp2 in the ubiquitin-proteasome system: A comprehensive review. Med Res Rev. 40:1920–1949. 2020. View Article : Google Scholar : PubMed/NCBI | |
Serrano-Gomez SJ, Maziveyi M and Alahari SK: Regulation of epithelial-mesenchymal transition through epigenetic and post-translational modifications. Mol Cancer. 15:182016. View Article : Google Scholar : PubMed/NCBI | |
Yu X, Zhou L, Liu W, Liu L, Gao F, Li W and Liu H: Skp2 stabilizes Mcl-1 and confers radioresistance in colorectal cancer. Cell Death Dis. 13:2492022. View Article : Google Scholar : PubMed/NCBI | |
Chen P, Li X, Zhang R, Liu S, Xiang Y, Zhang M, Chen X, Pan T, Yan L, Feng J, et al: Combinative treatment of β-elemene and cetuximab is sensitive to KRAS mutant colorectal cancer cells by inducing ferroptosis and inhibiting epithelial-mesenchymal transformation. Theranostics. 10:5107–5119. 2020. View Article : Google Scholar : | |
Wang L, Li S, Luo H, Lu Q and Yu S: PCSK9 promotes the progression and metastasis of colon cancer cells through regulation of EMT and PI3K/AKT signaling in tumor cells and phenotypic polarization of macrophages. J Exp Clin Cancer Res. 41:3032022. View Article : Google Scholar : PubMed/NCBI | |
Kunkel TA and Erie DA: DNA mismatch repair. Annu Rev Biochem. 74:681–710. 2005. View Article : Google Scholar : PubMed/NCBI | |
Guastadisegni C, Colafranceschi M, Ottini L and Dogliotti E: Microsatellite instability as a marker of prognosis and response to therapy: A meta-analysis of colorectal cancer survival data. Eur J Cancer. 46:2788–2798. 2010. View Article : Google Scholar : PubMed/NCBI | |
de la Chapelle A and Hampel H: Clinical relevance of microsatellite instability in colorectal cancer. J Clin Oncol. 28:3380–3387. 2010. View Article : Google Scholar : PubMed/NCBI | |
McGrail DJ, Garnett J, Yin J, Dai H, Shih DJH, Lam TNA, Li Y, Sun C, Li Y, Schmandt R, et al: Proteome Instability Is a Therapeutic Vulnerability in Mismatch Repair-Deficient Cancer. Cancer Cell. 37:371–386.e12. 2020. View Article : Google Scholar : PubMed/NCBI | |
Johnstone RW, Ruefli AA and Lowe SW: Apoptosis: A link between cancer genetics and chemotherapy. Cell. 108:153–164. 2002. View Article : Google Scholar : PubMed/NCBI | |
Kim H, Rafiuddin-Shah M, Tu HC, Jeffers JR, Zambetti GP, Hsieh JJ and Cheng EH: Hierarchical regulation of mitochondrion-dependent apoptosis by BCL-2 subfamilies. Nat Cell Biol. 8:1348–1358. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wong WW and Puthalakath H: Bcl-2 family proteins: The sentinels of the mitochondrial apoptosis pathway. IUBMB Life. 60:390–397. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ploner C, Kofler R and Villunger A: Noxa: At the tip of the balance between life and death. Oncogene. 27(Suppl 1): S84–S92. 2008. View Article : Google Scholar | |
Xu S, Ma Y, Tong Q, Yang J, Liu J, Wang Y, Li G, Zeng J, Fang S, Li F, et al: Cullin-5 neddylation-mediated NOXA degradation is enhanced by PRDX1 oligomers in colorectal cancer. Cell Death Dis. 12:2652021. View Article : Google Scholar : PubMed/NCBI | |
Brennan CM and Steitz JA: HuR and mRNA stability. Cell Mol Life Sci. 58:266–277. 2001. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Caldwell MC, Lin S, Furneaux H and Gorospe M: HuR regulates cyclin A and cyclin B1 mRNA stability during cell proliferation. EMBO J. 19:2340–2350. 2000. View Article : Google Scholar : PubMed/NCBI | |
Abdelmohsen K and Gorospe M: Posttranscriptional regulation of cancer traits by HuR. Wiley Interdiscip Rev RNA. 1:214–229. 2010. View Article : Google Scholar | |
McLarnon A: Cancer: Mdm2-regulated stabilization of HuR by neddylation in HCC and colon cancer-a possible target for therapy. Nat Rev Gastroenterol Hepatol. 9:42011. | |
Embade N, Fernández-Ramos D, Varela-Rey M, Beraza N, Sini M, Gutiérrez de Juan V, Woodhoo A, Martínez-López N, Rodríguez-Iruretagoyena B, Bustamante FJ, et al: Murine double minute 2 regulates Hu antigen R stability in human liver and colon cancer through NEDDylation. Hepatology. 55:1237–1248. 2012. View Article : Google Scholar | |
Greenlee JD, Lopez-Cavestany M, Ortiz-Otero N, Liu K, Subramanian T, Cagir B and King MR: Oxaliplatin resistance in colorectal cancer enhances TRAIL sensitivity via death receptor 4 upregulation and lipid raft localization. Elife. 10:e677502021. View Article : Google Scholar : PubMed/NCBI | |
Lee SJ, Lee DE, Choi SY and Kwon OS: OSMI-1 Enhances TRAIL-Induced Apoptosis through ER Stress and NF-κB Signaling in Colon Cancer Cells. Int J Mol Sci. 22:110732021. View Article : Google Scholar | |
Paiva C, Godbersen JC, Rowland T, Danilova OV, Danes C, Berger A and Danilov AV: Pevonedistat, a Nedd8-activating enzyme inhibitor, sensitizes neoplastic B-cells to death receptor-mediated apoptosis. Oncotarget. 8:21128–21139. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sakamoto K, Maeda S, Hikiba Y, Nakagawa H, Hayakawa Y, Shibata W, Yanai A, Ogura K and Omata M: Constitutive NF-kappaB activation in colorectal carcinoma plays a key role in angiogenesis, promoting tumor growth. Clin Cancer Res. 15:2248–2258. 2009. View Article : Google Scholar : PubMed/NCBI | |
Linares J, Sallent-Aragay A, Badia-Ramentol J, Recort-Bascuas A, Méndez A, Manero-Rupérez N, Re DL, Rivas EI, Guiu M, Zwick M, et al: Long-term platinum-based drug accumulation in cancer-associated fibroblasts promotes colorectal cancer progression and resistance to therapy. Nat Commun. 14:7462023. View Article : Google Scholar : PubMed/NCBI | |
Soucy TA, Smith PG, Milhollen MA, Berger AJ, Gavin JM, Adhikari S, Brownell JE, Burke KE, Cardin DP, Critchley S, et al: An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature. 458:732–736. 2009. View Article : Google Scholar : PubMed/NCBI | |
Brownell JE, Sintchak MD, Gavin JM, Liao H, Bruzzese FJ, Bump NJ, Soucy TA, Milhollen MA, Yang X, Burkhardt AL, et al: Substrate-assisted inhibition of ubiquitin-like protein-activating enzymes: The NEDD8 E1 inhibitor MLN4924 forms a NEDD8-AMP mimetic in situ. Mol Cell. 37:102–111. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wu KJ, Zhong HJ, Li G, Liu C, Wang HD, Ma DL and Leung CH: Structure-based identification of a NEDD8-activating enzyme inhibitor via drug repurposing. Eur J Med Chem. 143:1021–1027. 2018. View Article : Google Scholar | |
Ferris J, Espona-Fiedler M, Hamilton C, Holohan C, Crawford N, McIntyre AJ, Roberts JZ, Wappett M, McDade SS, Longley DB and Coyle V: Pevonedistat (MLN4924): Mechanism of cell death induction and therapeutic potential in colorectal cancer. Cell Death Discov. 6:612020. View Article : Google Scholar : PubMed/NCBI | |
Li H, Zhu H, Xu CJ and Yuan J: Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell. 94:491–501. 1998. View Article : Google Scholar : PubMed/NCBI | |
Sekeres MA, Watts J, Radinoff A, Sangerman MA, Cerrano M, Lopez PF, Zeidner JF, Campelo MD, Graux C, Liesveld J, et al: Randomized phase 2 trial of pevonedistat plus azacitidine versus azacitidine for higher-risk MDS/CMML or low-blast AML. Leukemia. 35:2119–2124. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Sedarati F, Faller DV, Zhao D, Faessel HM, Chowdhury S, Bolleddula J, Li Y, Venkatakrishnan K and Papai Z: Phase I study assessing the mass balance, pharmacokinetics, and excretion of [14C]-pevonedistat, a NEDD8-activating enzyme inhibitor in patients with advanced solid tumors. Invest New Drugs. 39:488–498. 2021. View Article : Google Scholar | |
Zheng W, Luo Z, Zhang J, Min P, Li W, Xu D, Zhang Z, Xiong P, Liang H and Liu J: Neural precursor cell expressed, developmentally downregulated 8-activating enzyme inhibitor MLN4924 sensitizes colorectal cancer cells to oxaliplatin by inducing DNA damage, G2 cell cycle arrest and apoptosis. Mol Med Rep. 15:2795–2801. 2017. View Article : Google Scholar : PubMed/NCBI | |
Toth JI, Yang L, Dahl R and Petroski MD: A gatekeeper residue for NEDD8-activating enzyme inhibition by MLN4924. Cell Rep. 1:309–316. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, You X, Xu T, Chen Q, Li H, Dou L and Sun Y, Xiong X, Meredith MA and Sun Y: PD-L1 induction via the MEK-JNK-AP1 axis by a neddylation inhibitor promotes cancer-associated immunosuppression. Cell Death Dis. 13:8442022. View Article : Google Scholar : PubMed/NCBI | |
Zhou S, Zhao X, Yang Z, Yang R, Chen C, Zhao K, Wang W, Ma Y, Zhang Q and Wang X: Neddylation inhibition upregulates PD-L1 expression and enhances the efficacy of immune checkpoint blockade in glioblastoma. Int J Cancer. 145:763–774. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gong J, Chehrazi-Raffle A, Reddi S and Salgia R: Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: A comprehensive review of registration trials and future considerations. J Immunother Cancer. 6:82018. View Article : Google Scholar : PubMed/NCBI | |
Issa NT, Stathias V, Schürer S and Dakshanamurthy S: Machine and deep learning approaches for cancer drug repurposing. Semin Cancer Biol. 68:132–142. 2021. View Article : Google Scholar | |
Gin A, Dilay L, Karlowsky JA, Walkty A, Rubinstein E and Zhanel GG: Piperacillin-tazobactam: A beta-lactam/beta-lactamase inhibitor combination. Expert Rev Anti Infect Ther. 5:365–383. 2007. View Article : Google Scholar : PubMed/NCBI | |
Maarbjerg SF, Thorsted A, Friberg LE, Nielsen EI, Wang M, Schrøder H and Albertsen BK: Continuous infusion of piperacillin-tazobactam significantly improves target attainment in children with cancer and fever. Cancer Rep (Hoboken). 5:e15852022. View Article : Google Scholar | |
Rosanova MT, Cuellar-Pompa L and Lede R: Efficacy and safety of empirical treatment with piperacillin/tazobactan as monotherapy in episodes of neutropenia and fever in children with cancer: Systematic review and meta-analysis. Rev Chilena Infectol. 38:488–494. 2021.In Spanish. View Article : Google Scholar : PubMed/NCBI | |
Zhong HJ, Liu LJ, Chan DS, Wang HM, Chan PW, Ma DL and Leung CH: Structure-based repurposing of FDA-approved drugs as inhibitors of NEDD8-activating enzyme. Biochimie. 102:211–215. 2014. View Article : Google Scholar : PubMed/NCBI | |
Evison BJ, Sleebs BE, Watson KG, Phillips DR and Cutts SM: Mitoxantrone, more than just another topoisomerase II poison. Med Res Rev. 36:248–299. 2016. View Article : Google Scholar | |
Faulds D, Balfour JA, Chrisp P and Langtry HD: Mitoxantrone. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in the chemotherapy of cancer. Drugs. 41:400–449. 1991. View Article : Google Scholar : PubMed/NCBI | |
Taieb F, Nougayrède JP and Oswald E: Cycle inhibiting factors (cifs): Cyclomodulins that usurp the ubiquitin-dependent degradation pathway of host cells. Toxins (Basel). 3:356–368. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Ni J, Zhang J and He X: Construction and characterization of regulated cycle inhibiting factors induced upon Tet-On system in human colon cancer cell lines. Anticancer Drugs. 29:854–860. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Zhang J, Gu M, Li G, Ni J and Fan M: Antitumor effect of cycle inhibiting factor expression in colon cancer via salmonella VNP20009. Anticancer Agents Med Chem. 20:1722–1727. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wheate NJ, Walker S, Craig GE and Oun R: The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans. 39:8113–8127. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tchounwou PB, Dasari S, Noubissi FK, Ray P and Kumar S: Advances in our understanding of the molecular mechanisms of action of cisplatin in cancer therapy. J Exp Pharmacol. 13:303–328. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li W, Sun Y, Chen J, Jiang Z and Yang J: PEGylated cisplatin nanoparticles for treating colorectal cancer in a pH-Responsive manner. J Immunol Res. 2022:80239152022. View Article : Google Scholar : PubMed/NCBI | |
Jones TM, Espitia CM, Ooi A, Bauman JE, Carew JS and Nawrocki ST: Targeted CUL4A inhibition synergizes with cisplatin to yield long-term survival in models of head and neck squamous cell carcinoma through a DDB2-mediated mechanism. Cell Death Dis. 13:3502022. View Article : Google Scholar : PubMed/NCBI | |
Misra S, Zhang X, Wani NA, Sizemore S and Ray A: Both BRCA1-wild type and -mutant triple-negative breast cancers show sensitivity to the NAE inhibitor MLN4924 which is enhanced upon MLN4924 and cisplatin combination treatment. Oncotarget. 11:784–800. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zeng Y, Iv YS, Pan QH, Zhou YG and Li H: An overactive neddylation pathway serves as a therapeutic target and MLN4924 enhances the anticancer activity of cisplatin in pancreatic cancer. Oncol Lett. 18:2724–2732. 2019.PubMed/NCBI | |
Lin WC, Kuo KL, Shi CS, Wu JT, Hsieh JT, Chang HC, Liao SM, Chou CT, Chiang CK, Chiu WS, et al: MLN4924, a Novel NEDD8-activating enzyme inhibitor, exhibits antitumor activity and enhances cisplatin-induced cytotoxicity in human cervical carcinoma: In vitro and in vivo study. Am J Cancer Res. 5:3350–3362. 2015. | |
Ho GY, Woodward N and Coward JI: Cisplatin versus carboplatin: Comparative review of therapeutic management in solid malignancies. Crit Rev Oncol Hematol. 102:37–46. 2016. View Article : Google Scholar : PubMed/NCBI | |
Arango D, Wilson AJ, Shi Q, Corner GA, Arañes MJ, Nicholas C, Lesser M, Mariadason JM and Augenlicht LH: Molecular mechanisms of action and prediction of response to oxaliplatin in colorectal cancer cells. Br J Cancer. 91:1931–1946. 2004. View Article : Google Scholar : PubMed/NCBI | |
Shoji H, Takahari D, Hara H, Nagashima K, Adachi J and Boku N: A phase I study of pevonedistat plus capecitabine plus oxaliplatin in patients with advanced gastric cancer refractory to platinum (NCCH-1811). Future Sci OA. 7:FSO7212021. View Article : Google Scholar : PubMed/NCBI | |
Liu T, Zhang X, Du L, Wang Y, Liu X, Tian H, Wang L, Li P, Zhao Y, Duan W, et al: Exosome-transmitted miR-128-3p increase chemosensitivity of oxaliplatin-resistant colorectal cancer. Mol Cancer. 18:432019. View Article : Google Scholar : PubMed/NCBI | |
Buyana B, Naki T, Alven S and Aderibigbe BA: Nanoparticles loaded with platinum drugs for colorectal cancer therapy. Int J Mol Sci. 23:112612022. View Article : Google Scholar : PubMed/NCBI | |
Hicks LD, Hyatt JL, Stoddard S, Tsurkan L, Edwards CC, Wadkins RM and Potter PM: Improved, selective, human intestinal carboxylesterase inhibitors designed to modulate 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin (Irinotecan; CPT-11) toxicity. J Med Chem. 52:3742–3752. 2009. View Article : Google Scholar : PubMed/NCBI | |
Meisenberg C, Ashour ME, El-Shafie L, Liao C, Hodgson A, Pilborough A, Khurram SA, Downs JA, Ward SE and El-Khamisy SF: Epigenetic changes in histone acetylation underpin resistance to the topoisomerase I inhibitor irinotecan. Nucleic Acids Res. 45:1159–1176. 2017.PubMed/NCBI |