Butyrate as a promising therapeutic target in cancer: From pathogenesis to clinic (Review)
- Authors:
- Jinzhe Sun
- Shiqian Chen
- Dan Zang
- Hetian Sun
- Yan Sun
- Jun Chen
-
Affiliations: Department of Oncology, Division of Thoracic Neoplasms, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China, Department of Ophthalmology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China - Published online on: February 29, 2024 https://doi.org/10.3892/ijo.2024.5632
- Article Number: 44
-
Copyright: © Sun et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Danneskiold-Samsøe NB, Dias de Freitas Queiroz Barros H, Santos R, Bicas JL, Cazarin CBB, Madsen L, Kristiansen K, Pastore GM, Brix S and Maróstica Júnior MR: Interplay between food and gut microbiota in health and disease. Food Res Int. 115:23–31. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kayama H and Takeda K: Functions of innate immune cells and commensal bacteria in gut homeostasis. J Biochem. 159:141–149. 2016. View Article : Google Scholar : | |
Kim KN, Yao Y and Ju SY: Short chain fatty acids and fecal microbiota abundance in humans with obesity: A systematic review and meta-analysis. Nutrients. 11:25122019. View Article : Google Scholar : PubMed/NCBI | |
Miyamoto J, Kasubuchi M, Nakajima A, Irie J, Itoh H and Kimura I: The role of short-chain fatty acid on blood pressure regulation. Curr Opin Nephrol Hypertens. 25:379–383. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gonçalves P, Araújo JR and Di Santo JP: A Cross-Talk between microbiota-derived short-chain fatty acids and the host mucosal immune system regulates intestinal homeostasis and inflammatory bowel disease. Inflamm Bowel Dis. 24:558–572. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ohara T and Mori T: Antiproliferative effects of short-chain fatty acids on human colorectal cancer cells via gene expression inhibition. Anticancer Res. 39:4659–4666. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gui Q, Li H, Wang A, Zhao X, Tan Z, Chen L, Xu K and Xiao C: The association between gut butyrate-producing bacteria and non-small-cell lung cancer. J Clin Lab Anal. 34:e233182020. View Article : Google Scholar : PubMed/NCBI | |
Shuwen H, Miao D, Quan Q, Zhongshan Z, Chun Z and Xi Y: Protective effect of the 'food-microorganism-SCFAs' axis on colorectal cancer: From basic research to practical application. J Cancer Res Clin Oncol. 145:2169–2197. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chambers ES, Preston T, Frost G and Morrison DJ: Role of gut microbiota-generated short-chain fatty acids in metabolic and cardiovascular health. Curr Nutr Rep. 7:198–206. 2018. View Article : Google Scholar : PubMed/NCBI | |
Vital M, Howe AC and Tiedje JM: Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data. mBio. 5:e008892014. View Article : Google Scholar : PubMed/NCBI | |
Hu J, Lin S, Zheng B and Cheung PCK: Short-chain fatty acids in control of energy metabolism. Crit Rev Food Sci Nutr. 58:1243–1249. 2018. View Article : Google Scholar | |
Ríos-Covián D, Ruas-Madiedo P, Margolles A, Gueimonde M, de Los Reyes-Gavilán CG and Salazar N: Intestinal short chain fatty acids and their link with diet and human health. Front Microbiol. 7:1852016. View Article : Google Scholar : PubMed/NCBI | |
Keshteli AH, Madsen KL and Dieleman LA: Diet in the pathogenesis and management of ulcerative colitis; A review of randomized controlled dietary interventions. Nutrients. 11:14982019. View Article : Google Scholar : PubMed/NCBI | |
Mueller NT, Zhang M, Juraschek SP, Miller ER and Appel LJ: Effects of high-fiber diets enriched with carbohydrate, protein, or unsaturated fat on circulating short chain fatty acids: Results from the OmniHeart randomized trial. Am J Clin Nutr. 111:545–554. 2020. View Article : Google Scholar : PubMed/NCBI | |
David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, et al: Diet rapidly and reproducibly alters the human gut microbiome. Nature. 505:559–563. 2014. View Article : Google Scholar : | |
Havenaar R: Intestinal health functions of colonic microbial metabolites: A review. Benef Microbes. 2:103–114. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Zhang J, Guo Z, Kwok L, Ma C, Zhang W, Lv Q, Huang W and Zhang H: Effect of oral consumption of probiotic Lactobacillus planatarum P-8 on fecal microbiota, SIgA, SCFAs, and TBAs of adults of different ages. Nutrition. 30:776–783.e1. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kobayashi D and Sakata T: Influence of temperature on short-chain fatty acid production by pig cecal bacteria in vitro. J Nutr Sci Vitaminol (Tokyo). 52:66–69. 2006. View Article : Google Scholar : PubMed/NCBI | |
Boets E, Deroover L, Houben E, Vermeulen K, Gomand SV, Delcour JA and Verbeke K: Quantification of in vivo colonic short chain fatty acid production from inulin. Nutrients. 7:8916–8929. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Wang J, He T, Becker S, Zhang G, Li D and Ma X: Butyrate: A double-edged sword for health? Adv Nutr. 9:21–29. 2018. View Article : Google Scholar : PubMed/NCBI | |
Titus E and Ahearn GA: Short-chain fatty acid transport in the intestine of a herbivorous teleost. J Exp Biol. 135:77–94. 1988. View Article : Google Scholar : PubMed/NCBI | |
Moschen I, Bröer A, Galić S, Lang F and Bröer S: Significance of short chain fatty acid transport by members of the monocarboxylate transporter family (MCT). Neurochem Res. 37:2562–2568. 2012. View Article : Google Scholar : PubMed/NCBI | |
Donohoe DR, Garge N, Zhang X, Sun W, O'Connell TM, Bunger MK and Bultman SJ: The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 13:517–526. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kurata N, Tokashiki N, Fukushima K, Misao T, Hasuoka N, Kitagawa K, Mashimo M, Regan JW, Murayama T and Fujino H: Short chain fatty acid butyrate uptake reduces expressions of prostanoid EP4 receptors and their mediation of cyclooxygenase-2 induction in HCA-7 human colon cancer cells. Eur J Pharmacol. 853:308–315. 2019. View Article : Google Scholar : PubMed/NCBI | |
van der Beek CM, Canfora EE, Kip AM, Gorissen SHM, Olde Damink SWM, van Eijk HM, Holst JJ, Blaak EE, Dejong CHC and Lenaerts K: The prebiotic inulin improves substrate metabolism and promotes short-chain fatty acid production in overweight to obese men. Metabolism. 87:25–35. 2018. View Article : Google Scholar : PubMed/NCBI | |
McNabney SM and Henagan TM: Short chain fatty acids in the colon and peripheral tissues: A focus on butyrate, colon cancer, obesity and insulin resistance. Nutrients. 9:13482017. View Article : Google Scholar : PubMed/NCBI | |
Borthakur A, Gill RK, Hodges K, Ramaswamy K, Hecht G and Dudeja PK: Enteropathogenic Escherichia coli inhibits butyrate uptake in Caco-2 cells by altering the apical membrane MCT1 level. Am J Physiol Gastrointest Liver Physiol. 290:G30–G35. 2006. View Article : Google Scholar | |
Hoving LR, Heijink M, van Harmelen V, van Dijk KW and Giera M: GC-MS analysis of short-chain fatty acids in feces, cecum content, and blood samples. Methods Mol Biol. 1730:247–256. 2018. View Article : Google Scholar : PubMed/NCBI | |
Stoeva MK, Garcia-So J, Justice N, Myers J, Tyagi S, Nemchek M, McMurdie PJ, Kolterman O and Eid J: Butyrate-producing human gut symbiont, Clostridium butyricum, and its role in health and diesease. Gut Microbes. 13:1–28. 2021. View Article : Google Scholar : PubMed/NCBI | |
Schulthess J, Pandey S, Capitani M, Rue-Albrecht KC, Arnold I, Franchini F, Chomka A, Ilott NE, Johnston DGW, Pires E, et al: The short chain fatty acid butyrate imprints an antimicrobial program in macrophages. Immunity. 50:432–445.e7. 2019. View Article : Google Scholar : PubMed/NCBI | |
Huang C, Du W, Ni Y, Lan G and Shi G: The effect of short-chain fatty acids on M2 macrophages polarization in vitro and in vivo. Clin Exp Immunol. 207:53–64. 2022. View Article : Google Scholar : PubMed/NCBI | |
Bishehsari F, Engen PA, Preite NZ, Tuncil YE, Naqib A, Shaikh M, Rossi M, Wilber S, Green SJ, Hamaker BR, et al: Dietary fiber treatment corrects the composition of gut microbiota, promotes SCFA production, and suppresses colon carcinogenesis. Genes (Basel). 9:1022018. View Article : Google Scholar : PubMed/NCBI | |
Tian P, Yang W, Guo X, Wang T, Tan S, Sun R, Xiao R, Wang Y, Jiao D, Xu Y, et al: Early life gut microbiota sustains liver-resident natural killer cells maturation via the butyrate-IL-18 axis. Nat Commun. 14:17102023. View Article : Google Scholar : PubMed/NCBI | |
Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T, et al: Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 504:446–450. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Zhou Q, Dorfman RG, Huang X, Fan T, Zhang H, Zhang J and Yu C: Butyrate inhibits interleukin-17 and generates Tregs to ameliorate colorectal colitis in rats. BMC Gastroenterol. 16:842016. View Article : Google Scholar : PubMed/NCBI | |
Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-Y M, Glickman JN and Garrett WS: The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 341:569–573. 2013. View Article : Google Scholar : PubMed/NCBI | |
Malczewski AB, Navarro S, Coward JI and Ketheesan N: Microbiome-derived metabolome as a potential predictor of response to cancer immunotherapy. J Immunother Cancer. 8:e0013832020. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Zhou X, Wang Y, Wang D, Ke Y and Zeng X: Propionate and butyrate produced by gut microbiota after probiotic supplementation attenuate lung metastasis of melanoma cells in mice. Mol Nutr Food Res. 65:e21000962021. View Article : Google Scholar : PubMed/NCBI | |
Kim M, Qie Y, Park J and Kim CH: Gut microbial metabolites fuel host antibody responses. Cell Host Microbe. 20:202–214. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kim M and Kim CH: Regulation of humoral immunity by gut microbial products. Gut Microbes. 8:392–399. 2017. View Article : Google Scholar : PubMed/NCBI | |
Siegel RL, Miller KD, Fuchs HE and Jemal A: Cancer statistics, 2022. CA Cancer J Clin. 72:7–33. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Weinberg RA: The hallmarks of cancer. Cell. 100:57–70. 2000. View Article : Google Scholar : PubMed/NCBI | |
Medzhitov R: Origin and physiological roles of inflammation. Nature. 454:428–435. 2008. View Article : Google Scholar : PubMed/NCBI | |
Murata M: Inflammation and cancer. Environ Health Prev Med. 23:502018. View Article : Google Scholar : PubMed/NCBI | |
Kim K, Kwon O, Ryu TY, Jung CR, Kim J, Min JK, Kim DS, Son MY and Cho HS: Propionate of a microbiota metabolite induces cell apoptosis and cell cycle arrest in lung cancer. Mol Med Rep. 20:1569–1574. 2019.PubMed/NCBI | |
Cassetta L and Pollard JW: Targeting macrophages: Therapeutic approaches in cancer. Nat Rev Drug Discov. 17:887–904. 2018. View Article : Google Scholar : PubMed/NCBI | |
Macia L, Tan J, Vieira AT, Leach K, Stanley D, Luong S, Maruya M, Ian McKenzie C, Hijikata A, Wong C, et al: Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat Commun. 6:67342015. View Article : Google Scholar : PubMed/NCBI | |
Bindels LB, Dewulf EM and Delzenne NM: GPR43/FFA2: Physiopathological relevance and therapeutic prospects. Trends Pharmacol Sci. 34:226–232. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tian Y, Xu Q, Sun L, Ye Y and Ji G: Short-chain fatty acids administration is protective in colitis-associated colorectal cancer development. J Nutr Biochem. 57:103–109. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li M, van Esch BCAM, Henricks PAJ, Folkerts G and Garssen J: The anti-inflammatory effects of short chain fatty acids on lipopolysaccharide- or tumor necrosis factor α-stimulated endothelial cells via activation of GPR41/43 and inhibition of HDACs. Front Pharmacol. 9:5332018. View Article : Google Scholar | |
Rooks MG and Garrett WS: Gut microbiota, metabolites and host immunity. Nat Rev Immunol. 16:341–352. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hayashi A, Sato T, Kamada N, Mikami Y, Matsuoka K, Hisamatsu T, Hibi T, Roers A, Yagita H, Ohteki T, et al: A single strain of Clostridium butyricum induces intestinal IL-10-producing macrophages to suppress acute experimental colitis in mice. Cell Host Microbe. 13:711–722. 2013. View Article : Google Scholar : PubMed/NCBI | |
Russo E, Giudici F, Fiorindi C, Ficari F, Scaringi S and Amedei A: Immunomodulating activity and therapeutic effects of short chain fatty acids and tryptophan post-biotics in inflammatory bowel disease. Front Immunol. 10:27542019. View Article : Google Scholar : PubMed/NCBI | |
Melo AD, Silveira H, Bortoluzzi C, Lara LJ, Garbossa CA, Preis G, Costa LB and Rostagno MH: Intestinal alkaline phosphatase and sodium butyrate may be beneficial in attenuating LPS-induced intestinal inflammation. Genet Mol Res. 15:2016. View Article : Google Scholar | |
Simeoli R, Mattace Raso G, Pirozzi C, Lama A, Santoro A, Russo R, Montero-Melendez T, Berni Canani R, Calignano A, Perretti M and Meli R: An orally administered butyrate-releasing derivative reduces neutrophil recruitment and inflammation in dextran sulphate sodium-induced murine colitis. Br J Pharmacol. 174:1484–1496. 2017. View Article : Google Scholar | |
Li G, Lin J, Zhang C, Gao H, Lu H, Gao X, Zhu R, Li Z, Li M and Liu Z: Microbiota metabolite butyrate constrains neutrophil functions and ameliorates mucosal inflammation in inflammatory bowel disease. Gut Microbes. 13:19682572021. View Article : Google Scholar : PubMed/NCBI | |
Couto MR, Gonçalves P, Magro F and Martel F: Microbiota-derived butyrate regulates intestinal inflammation: Focus on inflammatory bowel disease. Pharmacol Res. 159:1049472020. View Article : Google Scholar : PubMed/NCBI | |
Lee C, Kim BG, Kim JH, Chun J, Im JP and Kim JS: Sodium butyrate inhibits the NF-kappa B signaling pathway and histone deacetylation, and attenuates experimental colitis in an IL-10 independent manner. Int Immunopharmacol. 51:47–56. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen G, Ran X, Li B, Li Y, He D, Huang B, Fu S, Liu J and Wang W: Sodium butyrate inhibits inflammation and maintains epithelium barrier integrity in a TNBS-induced inflammatory bowel disease mice model. EBioMedicine. 30:317–325. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jahns F, Wilhelm A, Jablonowski N, Mothes H, Radeva M, Wölfert A, Greulich KO and Glei M: Butyrate suppresses mRNA increase of osteopontin and cyclooxygenase-2 in human colon tumor tissue. Carcinogenesis. 32:913–920. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ma H, Yu Y, Wang M, Li Z, Xu H, Tian C, Zhang J, Ye X and Li X: Correlation between microbes and colorectal cancer: Tumor apoptosis is induced by sitosterols through promoting gut microbiota to produce short-chain fatty acids. Apoptosis. 24:168–183. 2019. View Article : Google Scholar | |
Shao X, Sun S, Zhou Y, Wang H, Yu Y, Hu T, Yao Y and Zhou C: Bacteroides fragilis restricts colitis-associated cancer via negative regulation of the NLRP3 axis. Cancer Lett. 523:170–181. 2021. View Article : Google Scholar : PubMed/NCBI | |
Vinolo MA, Rodrigues HG, Hatanaka E, Hebeda CB, Farsky SH and Curi R: Short-chain fatty acids stimulate the migration of neutrophils to inflammatory sites. Clin Sci (Lond). 117:331–338. 2009. View Article : Google Scholar : PubMed/NCBI | |
Donohoe DR, Collins LB, Wali A, Bigler R, Sun W and Bultman SJ: The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol Cell. 48:612–626. 2012. View Article : Google Scholar : PubMed/NCBI | |
Nandi D, Parida S and Sharma D: The gut microbiota in breast cancer development and treatment: The good the bad and the useful! Gut Microbes. 15:22214522023. View Article : Google Scholar | |
Xi Y, Jing Z, Wei W, Chun Z, Quan Q, Qing Z, Jiamin X and Shuwen H: Inhibitory effect of sodium butyrate on colorectal cancer cells and construction of the related molecular network. BMC Cancer. 21:1272021. View Article : Google Scholar : PubMed/NCBI | |
Zeng H, Taussig DP, Cheng WH, Johnson LK and Hakkak R: Butyrate inhibits cancerous HCT116 colon cell proliferation but to a lesser extent in noncancerous NCM460 colon cells. Nutrients. 9:252017. View Article : Google Scholar : PubMed/NCBI | |
Chen D, Jin D, Huang S, Wu J, Xu M, Liu T, Dong W, Liu X, Wang S, Zhong W, et al: Clostridium butyricum, a butyrate-producing probiotic, inhibits intestinal tumor development through modulating Wnt signaling and gut microbiota. Cancer Lett. 469:456–467. 2020. View Article : Google Scholar | |
Darvin P, Toor SM, Sasidharan Nair V and Elkord E: Immune checkpoint inhibitors: Recent progress and potential biomarkers. Exp Mol Med. 50:1–11. 2018. View Article : Google Scholar : PubMed/NCBI | |
Matson V, Fessler J, Bao R, Chongsuwat T, Zha Y, Alegre ML, Luke JJ and Gajewski TF: The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science. 359:104–108. 2018. View Article : Google Scholar : PubMed/NCBI | |
Santoni M, Piva F, Conti A, Santoni A, Cimadamore A, Scarpelli M, Battelli N and Montironi R: Re: Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Eur Urol. 74:521–522. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tanoue T, Morita S, Plichta DR, Skelly AN, Suda W, Sugiura Y, Narushima S, Vlamakis H, Motoo I, Sugita K, et al: A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature. 565:600–605. 2019. View Article : Google Scholar : PubMed/NCBI | |
Vétizou M, Pitt JM, Daillère R, Lepage P, Waldschmitt N, Flament C, Rusakiewicz S, Routy B, Roberti MP, Duong CP, et al: Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 350:1079–1084. 2015. View Article : Google Scholar : PubMed/NCBI | |
Spencer CN, McQuade JL, Gopalakrishnan V, McCulloch JA, Vetizou M, Cogdill AP, Khan MAW, Zhang X, White MG, Peterson CB, et al: Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. Science. 374:1632–1640. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, Prieto PA, Vicente D, Hoffman K, Wei SC, et al: Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 359:97–103. 2018. View Article : Google Scholar | |
Nomura M, Nagatomo R, Doi K, Shimizu J, Baba K, Saito T, Matsumoto S, Inoue K and Muto M: Association of short-chain fatty acids in the gut microbiome with clinical response to treatment with nivolumab or pembrolizumab in patients with solid cancer tumors. JAMA Netw Open. 3:e2028952020. View Article : Google Scholar : PubMed/NCBI | |
Botticelli A, Vernocchi P, Marini F, Quagliariello A, Cerbelli B, Reddel S, Del Chierico F, Di Pietro F, Giusti R, Tomassini A, et al: Gut metabolomics profiling of non-small cell lung cancer (NSCLC) patients under immunotherapy treatment. J Transl Med. 18:492020. View Article : Google Scholar : PubMed/NCBI | |
Chuanbing Z, Zhengle Z, Ruili D, Kongfan Z and Jing T: Genes Modulating butyrate metabolism for assessing clinical prognosis and responses to systematic therapies in hepatocellular carcinoma. Biomolecules. 13:522022. View Article : Google Scholar | |
Coutzac C, Jouniaux JM, Paci A, Schmidt J, Mallardo D, Seck A, Asvatourian V, Cassard L, Saulnier P, Lacroix L, et al: Systemic short chain fatty acids limit antitumor effect of CTLA-4 blockade in hosts with cancer. Nat Commun. 11:21682020. View Article : Google Scholar : PubMed/NCBI | |
van der Beek CM, Dejong CHC, Troost FJ, Masclee AAM and Lenaerts K: Role of short-chain fatty acids in colonic inflammation, carcinogenesis, and mucosal protection and healing. Nutr Rev. 75:286–305. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hudcovic T, Kolinska J, Klepetar J, Stepankova R, Rezanka T, Srutkova D, Schwarzer M, Erban V, Du Z, Wells JM, et al: Protective effect of Clostridium tyrobutyricum in acute dextran sodium sulphate-induced colitis: Differential regulation of tumour necrosis factor-α and interleukin-18 in BALB/c and severe combined immunodeficiency mice. Clin Exp Immunol. 167:356–365. 2012. View Article : Google Scholar : PubMed/NCBI | |
Levy M, Blacher E and Elinav E: Microbiome, metabolites and host immunity. Curr Opin Microbiol. 35:8–15. 2017. View Article : Google Scholar | |
Burger-van Paassen N, Vincent A, Puiman PJ, van der Sluis M, Bouma J, Boehm G, van Goudoever JB, van Seuningen I and Renes IB: The regulation of intestinal mucin MUC2 expression by short-chain fatty acids: implications for epithelial protection. Biochem J. 420:211–219. 2009. View Article : Google Scholar : PubMed/NCBI | |
Koh A, De Vadder F, Kovatcheva-Datchary P and Bäckhed F: From dietary fiber to host physiology: Short-Chain fatty acids as key bacterial metabolites. Cell. 165:1332–1345. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Yu K, Chen H, Su Y and Zhu W: Caecal infusion of the short-chain fatty acid propionate affects the microbiota and expression of inflammatory cytokines in the colon in a fistula pig model. Microb Biotechnol. 11:859–868. 2018. View Article : Google Scholar : PubMed/NCBI | |
Iraporda C, Errea A, Romanin DE, Cayet D, Pereyra E, Pignataro O, Sirard JC, Garrote GL, Abraham AG and Rumbo M: Lactate and short chain fatty acids produced by microbial fermentation downregulate proinflammatory responses in intestinal epithelial cells and myeloid cells. Immunobiology. 220:1161–1169. 2015. View Article : Google Scholar : PubMed/NCBI | |
Nastasi C, Fredholm S, Willerslev-Olsen A, Hansen M, Bonefeld CM, Geisler C, Andersen MH, Ødum N and Woetmann A: Butyrate and propionate inhibit antigen-specific CD8(+) T cell activation by suppressing IL-12 production by antigen-presenting cells. Sci Rep. 7:145162017. View Article : Google Scholar : PubMed/NCBI | |
Dalile B, Van Oudenhove L, Vervliet B and Verbeke K: The role of short-chain fatty acids in microbiota-gut-brain communication. Nat Rev Gastroenterol Hepatol. 16:461–478. 2019. View Article : Google Scholar : PubMed/NCBI | |
Park JH, Kotani T, Konno T, Setiawan J, Kitamura Y, Imada S, Usui Y, Hatano N, Shinohara M, Saito Y, et al: Promotion of intestinal epithelial cell turnover by commensal bacteria: Role of short-chain fatty acids. PLoS One. 11:e01563342016. View Article : Google Scholar : PubMed/NCBI | |
Meisel M, Mayassi T, Fehlner-Peach H, Koval JC, O'Brien SL, Hinterleitner R, Lesko K, Kim S, Bouziat R, Chen L, et al: Interleukin-15 promotes intestinal dysbiosis with butyrate deficiency associated with increased susceptibility to colitis. ISME J. 11:15–30. 2017. View Article : Google Scholar : | |
Ganapathy V, Thangaraju M, Prasad PD, Martin PM and Singh N: Transporters and receptors for short-chain fatty acids as the molecular link between colonic bacteria and the host. Curr Opin Pharmacol. 13:869–874. 2013. View Article : Google Scholar : PubMed/NCBI | |
Halnes I, Baines KJ, Berthon BS, MacDonald-Wicks LK, Gibson PG and Wood LG: Soluble fibre meal challenge reduces airway inflammation and expression of GPR43 and GPR41 in asthma. Nutrients. 9:572017. View Article : Google Scholar : PubMed/NCBI | |
Kelly CJ, Zheng L, Campbell EL, Saeedi B, Scholz CC, Bayless AJ, Wilson KE, Glover LE, Kominsky DJ, Magnuson A, et al: Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe. 17:662–671. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kim M, Friesen L, Park J, Kim HM and Kim CH: Microbial metabolites, short-chain fatty acids, restrain tissue bacterial load, chronic inflammation, and associated cancer in the colon of mice. Eur J Immunol. 48:1235–1247. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ahmed K, Tunaru S and Offermanns S: GPR109A, GPR109B and GPR81, a family of hydroxy-carboxylic acid receptors. Trends Pharmacol Sci. 30:557–562. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kim CH: Immune regulation by microbiome metabolites. Immunology. 154:220–229. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kim MH, Kang SG, Park JH, Yanagisawa M and Kim CH: Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology. 145:396-406.e1–10. 2013. View Article : Google Scholar | |
Ohira H, Fujioka Y, Katagiri C, Mamoto R, Aoyama-Ishikawa M, Amako K, Izumi Y, Nishiumi S, Yoshida M, Usami M and Ikeda M: Butyrate attenuates inflammation and lipolysis generated by the interaction of adipocytes and macrophages. J Atheroscler Thromb. 20:425–442. 2013. View Article : Google Scholar : PubMed/NCBI | |
Vinolo MA, Ferguson GJ, Kulkarni S, Damoulakis G, Anderson K, Bohlooly-Y M, Stephens L, Hawkins PT and Curi R: SCFAs induce mouse neutrophil chemotaxis through the GPR43 receptor. PLoS One. 6:e212052011. View Article : Google Scholar : PubMed/NCBI | |
Sun M, Wu W, Chen L, Yang W, Huang X, Ma C, Chen F, Xiao Y, Zhao Y, Ma C, et al: Microbiota-derived short-chain fatty acids promote Th1 cell IL-10 production to maintain intestinal homeostasis. Nat Commun. 9:35552018. View Article : Google Scholar : PubMed/NCBI | |
Singh N, Gurav A, Sivaprakasam S, Brady E, Padia R, Shi H, Thangaraju M, Prasad PD, Manicassamy S, Munn DH, et al: Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity. 40:128–139. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fachi JL, Felipe JS, Pral LP, da Silva BK, Corrêa RO, de Andrade MCP, da Fonseca DM, Basso PJ, Câmara NOS, de Sales E Souza ÉL, et al: Butyrate protects mice from clostridium difficile-induced colitis through an HIF-1-Dependent mechanism. Cell Rep. 27:750–761.e7. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Li RW, Yang H, Tan Z and Liu F: Recent advances in developing butyrogenic functional foods to promote gut health. Crit Rev Food Sci Nutr. 1–22. 2022.Epub ahead of print. | |
Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, Schilter HC, Rolph MS, Mackay F, Artis D, et al: Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature. 461:1282–1286. 2009. View Article : Google Scholar : PubMed/NCBI | |
Samuel BS, Shaito A, Motoike T, Rey FE, Backhed F, Manchester JK, Hammer RE, Williams SC, Crowley J, Yanagisawa M and Gordon JI: Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci USA. 105:16767–16772. 2008. View Article : Google Scholar : PubMed/NCBI | |
Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E, Cameron J, Grosse J, Reimann F and Gribble FM: Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes. 61:364–371. 2012. View Article : Google Scholar : | |
Huang W, Zhou L, Guo H and Xu Y and Xu Y: The role of short-chain fatty acids in kidney injury induced by gut-derived inflammatory response. Metabolism. 68:20–30. 2017. View Article : Google Scholar : PubMed/NCBI | |
Licciardi PV, Ververis K and Karagiannis TC: Histone deacetylase inhibition and dietary short-chain Fatty acids. ISRN Allergy. 2011:8696472011. View Article : Google Scholar : PubMed/NCBI | |
Kasubuchi M, Hasegawa S, Hiramatsu T, Ichimura A and Kimura I: Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients. 7:2839–2849. 2015. View Article : Google Scholar : PubMed/NCBI | |
Park J, Kim M, Kang SG, Jannasch AH, Cooper B, Patterson J and Kim CH: Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal Immunol. 8:80–93. 2015. View Article : Google Scholar | |
Luu M, Riester Z, Baldrich A, Reichardt N, Yuille S, Busetti A, Klein M, Wempe A, Leister H, Raifer H, et al: Microbial short-chain fatty acids modulate CD8(+) T cell responses and improve adoptive immunotherapy for cancer. Nat Commun. 12:40772021. View Article : Google Scholar : PubMed/NCBI | |
Thorburn AN, McKenzie CI, Shen S, Stanley D, Macia L, Mason LJ, Roberts LK, Wong CH, Shim R, Robert R, et al: Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat Commun. 6:73202015. View Article : Google Scholar : PubMed/NCBI | |
Stempelj M, Kedinger M, Augenlicht L and Klampfer L: Essential role of the JAK/STAT1 signaling pathway in the expression of inducible nitric-oxide synthase in intestinal epithelial cells and its regulation by butyrate. J Biol Chem. 282:9797–9804. 2007. View Article : Google Scholar : PubMed/NCBI | |
Pan X, Fang X, Wang F, Li H, Niu W, Liang W, Wu C, Li J, Tu X, Pan LL and Sun J: Butyrate ameliorates caerulein-induced acute pancreatitis and associated intestinal injury by tissue-specific mechanisms. Br J Pharmacol. 176:4446–4461. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ogrodnik M, Salmonowicz H, Jurk D and Passos JF: Expansion and cell-cycle arrest: Common denominators of cellular senescence. Trends Biochem Sci. 44:996–1008. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fung KY, Cosgrove L, Lockett T, Head R and Topping DL: A review of the potential mechanisms for the lowering of colorectal oncogenesis by butyrate. Br J Nutr. 108:820–831. 2012. View Article : Google Scholar : PubMed/NCBI | |
Rephaeli A, Blank-Porat D, Tarasenko N, Entin-Meer M, Levovich I, Cutts SM, Phillips DR, Malik Z and Nudelman A: In vivo and in vitro antitumor activity of butyroyloxymethyl-diethyl phosphate (AN-7), a histone deacetylase inhibitor, in human prostate cancer. Int J Cancer. 116:226–235. 2005. View Article : Google Scholar : PubMed/NCBI | |
Pellizzaro C, Coradini D, Daniotti A, Abolafio G and Daidone MG: Modulation of cell cycle-related protein expression by sodium butyrate in human non-small cell lung cancer cell lines. Int J Cancer. 91:654–657. 2001. View Article : Google Scholar : PubMed/NCBI | |
Edmond V, Brambilla C, Brambilla E, Gazzeri S and Eymin B: SRSF2 is required for sodium butyrate-mediated p21(WAF1) induction and premature senescence in human lung carcinoma cell lines. Cell Cycle. 10:1968–1977. 2011. View Article : Google Scholar : PubMed/NCBI | |
Li F, Wu Y, Yan Y, Wu S, Zhu J, Zhang G, Zhang P, Yuan L, Zeng Y and Liu Z: Transcriptomic landscape of sodium butyrate-induced growth inhibition of human colorectal cancer organoids. Mol Omics. 18:754–764. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Hu PC, Ma YB, Fan R, Gao FF, Zhang JW and Wei L: Sodium butyrate-induced apoptosis and ultrastructural changes in MCF-7 breast cancer cells. Ultrastruct Pathol. 40:200–204. 2016. View Article : Google Scholar : PubMed/NCBI | |
Qin X, Xu Y, Peng S, Qian S, Zhang X, Shen S, Yang J and Ye J: Sodium butyrate opens mitochondrial permeability transition pore (MPTP) to induce a proton leak in induction of cell apoptosis. Biochem Biophys Res Commun. 527:611–617. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang K, Ji X, Song Z, Wu F, Qu Y, Jin X, Xue X, Wang F and Huang Y: Butyrate inhibits gastric cancer cells by inducing mitochondriamediated apoptosis. Comb Chem High Throughput Screen. 26:630–638. 2023. View Article : Google Scholar | |
Zhang K, Ji X, Song Z, Song W, Huang Q, Yu T, Shi D, Wang F, Xue X and Guo J: Butyrate inhibits the mitochondrial complex Ι to mediate mitochondria-dependent apoptosis of cervical cancer cells. BMC Complement Med Ther. 23:2122023. View Article : Google Scholar | |
Pajak B, Gajkowska B and Orzechowski A: Sodium butyrate sensitizes human colon adenocarcinoma COLO 205 cells to both intrinsic and TNF-alpha-dependent extrinsic apoptosis. Apoptosis. 14:203–217. 2009. View Article : Google Scholar : PubMed/NCBI | |
Salimi V, Shahsavari Z, Safizadeh B, Hosseini A, Khademian N and Tavakoli-Yaraki M: Sodium butyrate promotes apoptosis in breast cancer cells through reactive oxygen species (ROS) formation and mitochondrial impairment. Lipids Health Dis. 16:2082017. View Article : Google Scholar : PubMed/NCBI | |
Li X, Fang F, Gao Y, Tang G, Xu W, Wang Y, Kong R, Tuyihong A and Wang Z: ROS Induced by KillerRed targeting mitochondria (mtKR) enhances apoptosis caused by radiation via Cyt c/Caspase-3 Pathway. Oxid Med Cell Longev. 2019:45286162019.PubMed/NCBI | |
Ferreira AC, Robaina MC, Rezende LM, Severino P and Klumb CE: Histone deacetylase inhibitor prevents cell growth in Burkitt's lymphoma by regulating PI3K/Akt pathways and leads to upregulation of miR-143, miR-145, and miR-101. Ann Hematol. 93:983–993. 2014.PubMed/NCBI | |
Han R, Sun Q, Wu J, Zheng P and Zhao G: Sodium Butyrate Upregulates miR-203 expression to exert anti-proliferation effect on colorectal cancer cells. Cell Physiol Biochem. 39:1919–1929. 2016. View Article : Google Scholar : PubMed/NCBI | |
Humphreys KJ, Cobiac L, Le Leu RK, Van der Hoek MB and Michael MZ: Histone deacetylase inhibition in colorectal cancer cells reveals competing roles for members of the oncogenic miR-17-92 cluster. Mol Carcinog. 52:459–474. 2013. View Article : Google Scholar | |
Cho JH, Dimri M and Dimri GP: MicroRNA-31 is a transcriptional target of histone deacetylase inhibitors and a regulator of cellular senescence. J Biol Chem. 290:10555–10567. 2015. View Article : Google Scholar : PubMed/NCBI | |
Pant K, Yadav AK, Gupta P, Islam R, Saraya A and Venugopal SK: Butyrate induces ROS-mediated apoptosis by modulating miR-22/SIRT-1 pathway in hepatic cancer cells. Redox Biol. 12:340–349. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xu Z, Tao J, Chen P, Chen L, Sharma S, Wang G and Dong Q: Sodium butyrate inhibits colorectal cancer cell migration by downregulating Bmi-1 Through Enhanced miR-200c expression. Mol Nutr Food Res. 62:e17008442018. View Article : Google Scholar : PubMed/NCBI | |
Wang F, Wu H, Fan M, Yu R, Zhang Y, Liu J, Zhou X, Cai Y, Huang S, Hu Z and Jin X: Sodium butyrate inhibits migration and induces AMPK-mTOR pathway-dependent autophagy and ROS-mediated apoptosis via the miR-139-5p/Bmi-1 axis in human bladder cancer cells. FASEB J. 34:4266–4282. 2020. View Article : Google Scholar : PubMed/NCBI | |
Amoêdo ND, Rodrigues MF, Pezzuto P, Galina A, da Costa RM, de Almeida FC, El-Bacha T and Rumjanek FD: Energy metabolism in H460 lung cancer cells: Effects of histone deacetylase inhibitors. PLoS One. 6:e222642011. View Article : Google Scholar : PubMed/NCBI | |
Xu S, Liu CX, Xu W, Huang L, Zhao JY and Zhao SM: Butyrate induces apoptosis by activating PDC and inhibiting complex I through SIRT3 inactivation. Signal Transduct Target Ther. 2:160352017. View Article : Google Scholar : PubMed/NCBI | |
Kaczmarek JL, Musaad SM and Holscher HD: Time of day and eating behaviors are associated with the composition and function of the human gastrointestinal microbiota. Am J Clin Nutr. 106:1220–1231. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ritchie LE, Sturino JM, Carroll RJ, Rooney LW, Azcarate-Peril MA and Turner ND: Polyphenol-rich sorghum brans alter colon microbiota and impact species diversity and species richness after multiple bouts of dextran sodium sulfate-induced colitis. FEMS Microbiol Ecol. 91:fiv0082015. View Article : Google Scholar : PubMed/NCBI | |
Ariyoshi T, Hagihara M, Eguchi S, Fukuda A, Iwasaki K, Oka K, Takahashi M, Yamagishi Y and Mikamo H: Clostridium butyricum MIYAIRI 588-Induced Protectin D1 Has an anti-inflammatory effect on antibiotic-induced intestinal disorder. Front Microbiol. 11:5877252020. View Article : Google Scholar : PubMed/NCBI | |
Cassir N, Benamar S and La Scola B: Clostridium butyricum: From beneficial to a new emerging pathogen. Clin Microbiol Infect. 22:37–45. 2016. View Article : Google Scholar | |
Tomita Y, Ikeda T, Sakata S, Saruwatari K, Sato R, Iyama S, Jodai T, Akaike K, Ishizuka S, Saeki S and Sakagami T: Association of probiotic clostridium butyricum therapy with survival and response to immune checkpoint blockade in patients with lung cancer. Cancer Immunol Res. 8:1236–1242. 2020. View Article : Google Scholar : PubMed/NCBI | |
Derosa L, Hellmann MD, Spaziano M, Halpenny D, Fidelle M, Rizvi H, Long N, Plodkowski AJ, Arbour KC, Chaft JE, et al: Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small-cell lung cancer. Ann Oncol. 29:1437–1444. 2018. View Article : Google Scholar : PubMed/NCBI | |
Dizman N, Meza L, Bergerot P, Alcantara M, Dorff T, Lyou Y, Frankel P, Cui Y, Mira V, Llamas M, et al: Nivolumab plus ipilimumab with or without live bacterial supplementation in metastatic renal cell carcinoma: A randomized phase 1 trial. Nat Med. 28:704–712. 2022. View Article : Google Scholar : PubMed/NCBI | |
Shinnoh M, Horinaka M, Yasuda T, Yoshikawa S, Morita M, Yamada T, Miki T and Sakai T: Clostridium butyricum MIYAIRI 588 shows antitumor effects by enhancing the release of TRAIL from neutrophils through MMP-8. Int J Oncol. 42:903–911. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liu M, Xie W, Wan X and Deng T: Clostridium butyricum modulates gut microbiota and reduces colitis associated colon cancer in mice. Int Immunopharmacol. 88:1068622020. View Article : Google Scholar : PubMed/NCBI | |
Traisaeng S, Herr DR, Kao HJ, Chuang TH and Huang CM: A derivative of butyric acid, the fermentation metabolite of staphylococcus epidermidis, inhibits the growth of a staphylococcus aureus strain isolated from atopic dermatitis patients. Toxins. 11:3112019. View Article : Google Scholar : PubMed/NCBI | |
Zha Z, Lv Y, Tang H, Li T, Miao Y, Cheng J, Wang G, Tan Y, Zhu Y, Xing X, et al: An orally administered butyrate-releasing xylan derivative reduces inflammation in dextran sulphate sodium-induced murine colitis. Int J Biol Macromol. 156:1217–1233. 2020. View Article : Google Scholar | |
El-Sawy HS, Al-Abd AM, Ahmed TA, El-Say KM and Torchilin VP: Stimuli-Responsive nano-architecture drug-delivery systems to solid tumor micromilieu: Past, present, and future perspectives. ACS Nano. 12:10636–10664. 2018. View Article : Google Scholar : PubMed/NCBI | |
He Y, Fu L, Li Y, Wang W, Gong M, Zhang J, Dong X, Huang J, Wang Q, Mackay CR, et al: Gut microbial metabolites facilitate anticancer therapy efficacy by modulating cytotoxic CD8(+) T cell immunity. Cell Metab. 33:988–1000.e7. 2021. View Article : Google Scholar | |
Lin XB, Farhangfar A, Valcheva R, Sawyer MB, Dieleman L, Schieber A, Gänzle MG and Baracos V: The role of intestinal microbiota in development of irinotecan toxicity and in toxicity reduction through dietary fibres in rats. PLoS One. 9:e836442014. View Article : Google Scholar : PubMed/NCBI | |
Ferreira TM, Leonel AJ, Melo MA, Santos RR, Cara DC, Cardoso VN, Correia MI and Alvarez-Leite JI: Oral supplementation of butyrate reduces mucositis and intestinal permeability associated with 5-Fluorouracil administration. Lipids. 47:669–678. 2012. View Article : Google Scholar : PubMed/NCBI | |
Murga-Garrido SM, Hong Q, Cross TL, Hutchison ER, Han J, Thomas SP, Vivas EI, Denu J, Ceschin DG, Tang ZZ and Rey FE: Gut microbiome variation modulates the effects of dietary fiber on host metabolism. Microbiome. 9:1172021. View Article : Google Scholar : PubMed/NCBI | |
Li L, Chang L, Zhang X, Ning Z, Mayne J, Ye Y, Stintzi A, Liu J and Figeys D: Berberine and its structural analogs have differing effects on functional profiles of individual gut microbiomes. Gut Microbes. 11:1348–1361. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lukovac S, Belzer C, Pellis L, Keijser BJ, de Vos WM, Montijn RC and Roeselers G: Differential modulation by Akkermansia muciniphila and Faecalibacterium prausnitzii of host peripheral lipid metabolism and histone acetylation in mouse gut organoids. mBio. 5:e014382014. View Article : Google Scholar : PubMed/NCBI | |
Park M, Kwon J, Shin HJ, Moon SM, Kim SB, Shin US, Han YH and Kim Y: Butyrate enhances the efficacy of radiotherapy via FOXO3A in colorectal cancer patient-derived organoids. Int J Oncol. 57:1307–1318. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bouges E, Segers C, Leys N, Lebeer S, Zhang J and Mastroleo F: Human intestinal organoids and microphysiological systems for modeling radiotoxicity and assessing radioprotective agents. Cancers (Basel). 15:58592023. View Article : Google Scholar : PubMed/NCBI | |
Cai J, Cheung J, Cheung SWM, Chin KTC, Leung RWK, Lam RST, Sharma R, Yiu JHC and Woo CW: Butyrate acts as a positive allosteric modulator of the 5-HT transporter to decrease availability of 5-HT in the ileum. Br J Pharmacol. Dec 21–2023.Epub ahead of print. PubMed/NCBI | |
Mun SJ, Lee J, Chung KS, Son MY and Son MJ: Effect of microbial short-chain fatty acids on CYP3A4-Mediated metabolic activation of human pluripotent stem cell-derived liver organoids. Cells. 10:1262021. View Article : Google Scholar : PubMed/NCBI | |
Wong SH, Zhao L, Zhang X, Nakatsu G, Han J, Xu W, Xiao X, Kwong TNY, Tsoi H, Wu WKK, et al: Gavage of fecal samples from patients with colorectal cancer promotes intestinal carcinogenesis in germ-free and conventional mice. Gastroenterology. 153:1621–1633.e6. 2017. View Article : Google Scholar | |
Rosshart SP, Vassallo BG, Angeletti D, Hutchinson DS, Morgan AP, Takeda K, Hickman HD, McCulloch JA, Badger JH, Ajami NJ, et al: Wild mouse gut microbiota promotes host fitness and improves disease resistance. Cell. 171:1015–1028.e13. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chang CW, Lee HC, Li LH, Chiang Chiau JS, Wang TE, Chuang WH, Chen MJ, Wang HY, Shih SC, Liu CY, et al: Fecal microbiota transplantation prevents intestinal injury, upregulation of toll-like receptors, and 5-fluorouracil/oxaliplatin-induced toxicity in colorectal cancer. Int J Mol Sci. 21:3862020. View Article : Google Scholar : PubMed/NCBI | |
Pandey SP, Bender MJ, McPherson AC, Phelps CM, Sanchez LM, Rana M, Hedden L, Sangani KA, Chen L, Shapira JH, et al: Tet2 deficiency drives liver microbiome dysbiosis triggering Tc1 cell autoimmune hepatitis. Cell Host Microbe. 30:1003–1019.e10. 2022. View Article : Google Scholar : PubMed/NCBI |