1
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Ward EM, Sherman RL, Henley SJ, Jemal A,
Siegel DA, Feuer EJ, Firth AU, Kohler BA, Scott S, Ma J, et al:
Annual report to the nation on the status of cancer, featuring
cancer in men and women age 20-49 years. J Natl Cancer Inst.
111:1279–1297. 2019. View Article : Google Scholar : PubMed/NCBI
|
3
|
Siegel RL, Miller KD, Fuchs HE and Jemal
A: Cancer statistics, 2022. CA Cancer J Clin. 72:7–33. 2022.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Znaor A, Lortet-Tieulent J, Laversanne M,
Jemal A and Bray F: International variations and trends in renal
cell carcinoma incidence and mortality. Eur Urol. 67:519–530. 2015.
View Article : Google Scholar
|
5
|
Moch H, Cubilla AL, Humphrey PA, Reuter VE
and Ulbright TM: The 2016 WHO classification of tumours of the
urinary system and male genital organs-part A: Renal, penile, and
testicular tumours. Eur Urol. 70:93–105. 2016. View Article : Google Scholar : PubMed/NCBI
|
6
|
Jonasch E, Gao J and Rathmell WK: Renal
cell carcinoma. BMJ. 349:g47972014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Bannister AJ and Kouzarides T: Regulation
of chromatin by histone modifications. Cell Res. 21:381–395. 2011.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Lawrence M, Daujat S and Schneider R:
Lateral thinking: How histone modifications regulate gene
expression. Trends Genet. 32:42–56. 2016. View Article : Google Scholar
|
9
|
Audia JE and Campbell RM: Histone
modifications and cancer. Cold Spring Harb Perspect Biol.
8:a0195212016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Morgan MA and Shilatifard A: Chromatin
signatures of cancer. Genes Dev. 29:238–249. 2015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Cancer Genome Atlas Research Network:
Comprehensive molecular characterization of clear cell renal cell
carcinoma. Nature. 499:43–49. 2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Dawson MA and Kouzarides T: Cancer
epigenetics: From mechanism to therapy. Cell. 150:12–27. 2012.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Herz HM, Garruss A and Shilatifard A: SET
for life: Biochemical activities and biological functions of SET
domain-containing proteins. Trends Biochem Sci. 38:621–639. 2013.
View Article : Google Scholar
|
14
|
Wang Y and Jia S: Degrees make all the
difference: The multifunctionality of histone H4 lysine 20
methylation. Epigenetics. 4:273–276. 2009. View Article : Google Scholar : PubMed/NCBI
|
15
|
van Nuland R and Gozani O: Histone H4
lysine 20 (H4K20) methylation, expanding the signaling potential of
the proteome one methyl moiety at a time. Mol Cell Proteomics.
15:755–764. 2016. View Article : Google Scholar :
|
16
|
Svobodová Kovaříková A, Legartová S,
Krejčí J and Bártová E: H3K9me3 and H4K20me3 represent the
epigenetic landscape for 53BP1 binding to DNA lesions. Aging
(Albany NY). 10:2585–2605. 2018. View Article : Google Scholar
|
17
|
Tsang LW, Hu N and Underhill DA:
Comparative analyses of SUV420H1 isoforms and SUV420H2 reveal
differences in their cellular localization and effects on myogenic
differentiation. PLoS One. 5:e144472010. View Article : Google Scholar
|
18
|
Bromberg KD, Mitchell TR, Upadhyay AK,
Jakob CG, Jhala MA, Comess KM, Lasko LM, Li C, Tuzon CT, Dai Y, et
al: The SUV4-20 inhibitor A-196 verifies a role for epigenetics in
genomic integrity. Nat Chem Biol. 13:317–324. 2017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Carvalho Alves-Silva J, do Amaral Rabello
D, Oliveira Bravo M, Lucena-Araujo A, Madureira de Oliveira D,
Morato de Oliveira F, Magalhaes Rego E, Pittella-Silva F and
Saldanha-Araujo F: Aberrant levels of SUV39H1 and SUV39H2
methyltransferase are associated with genomic instability in
chronic lymphocytic leukemia. Environ Mol Mutagen. 58:654–661.
2017. View
Article : Google Scholar : PubMed/NCBI
|
20
|
Khani F, Thaler R, Paradise CR, Deyle DR,
Kruijthof-de Julio M, Galindo M, Gordon JA, Stein GS, Dudakovic A
and van Wijnen AJ: Histone H4 methyltransferase Suv420h2 maintains
fidelity of osteoblast differentiation. J Cell Biochem.
118:1262–1272. 2017. View Article : Google Scholar
|
21
|
Jørgensen S, Schotta G and Sørensen CS:
Histone H4 lysine 20 methylation: Key player in epigenetic
regulation of genomic integrity. Nucleic Acids Res. 41:2797–2806.
2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Shinchi Y, Hieda M, Nishioka Y, Matsumoto
A, Yokoyama Y, Kimura H, Matsuura S and Matsuura N: SUV420H2
suppresses breast cancer cell invasion through down regulation of
the SH2 domain-containing focal adhesion protein tensin-3. Exp Cell
Res. 334:90–99. 2015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Wu Y, Shi W, Tang T, Wang Y, Yin X, Chen
Y, Zhang Y, Xing Y, Shen Y, Xia T, et al: miR-29a contributes to
breast cancer cells epithelial-mesenchymal transition, migration,
and invasion via down-regulating histone H4K20 trimethylation
through directly targeting SUV420H2. Cell Death Dis. 10:1762019.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Pastushenko I and Blanpain C: EMT
transition states during tumor progression and metastasis. Trends
Cell Biol. 29:212–226. 2019. View Article : Google Scholar
|
25
|
Viotti M, Wilson C, McCleland M, Koeppen
H, Haley B, Jhunjhunwala S, Klijn C, Modrusan Z, Arnott D, Classon
M, et al: SUV420H2 is an epigenetic regulator of
epithelial/mesenchymal states in pancreatic cancer. J Cell Biol.
217:763–777. 2018. View Article : Google Scholar :
|
26
|
Goldman MJ, Craft B, Hastie M, Repečka K,
McDade F, Kamath A, Banerjee A, Luo Y, Rogers D, Brooks AN, et al:
Visualizing and interpreting cancer genomics data via the Xena
platform. Nat Biotechnol. 38:675–678. 2020. View Article : Google Scholar : PubMed/NCBI
|
27
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
28
|
Yiangou L, Grandy RA, Morell CM, Tomaz RA,
Osnato A, Kadiwala J, Muraro D, Garcia-Bernardo J, Nakanoh S,
Bernard WG, et al: Method to synchronize cell cycle of human
pluripotent stem cells without affecting their fundamental
characteristics. Stem Cell Reports. 12:165–179. 2019. View Article : Google Scholar : PubMed/NCBI
|
29
|
Caines JK, Barnes DA and Berry MD: The Use
of seahorse XF assays to interrogate real-time energy metabolism in
cancer cell lines. Methods Mol Biol. 2508:225–234. 2022. View Article : Google Scholar : PubMed/NCBI
|
30
|
Zhao Q, Zhang Z, Rong W, Jin W, Yan L, Jin
W, Xu Y, Cui X, Tang QQ and Pan D: KMT5c modulates adipocyte
thermogenesis by regulating Trp53 expression. Proc Natl Acad Sci
USA. 117:22413–22422. 2020. View Article : Google Scholar : PubMed/NCBI
|
31
|
Son MJ, Kim WK, Oh KJ, Park A, Lee da S,
Han BS, Lee SC and Bae KH: Methyltransferase and demethylase
profiling studies during brown adipocyte differentiation. BMB Rep.
49:388–393. 2016. View Article : Google Scholar : PubMed/NCBI
|
32
|
Kang H, Kim B, Park J, Youn H and Youn B:
The warburg effect on radioresistance: Survival beyond growth.
Biochim Biophys Acta Rev Cancer. 1878:1889882023. View Article : Google Scholar : PubMed/NCBI
|
33
|
Jehanno C, Vulin M, Richina V, Richina F
and Bentires-Alj M: Phenotypic plasticity during metastatic
colonization. Trends Cell Biol. 32:854–867. 2022. View Article : Google Scholar : PubMed/NCBI
|
34
|
Kurup JT, Han Z, Jin W and Kidder BL:
H4K20me3 methyltransferase SUV420H2 shapes the chromatin landscape
of pluripotent embryonic stem cells. Development.
147:dev1885162020. View Article : Google Scholar : PubMed/NCBI
|
35
|
Gabellini D and Pedrotti S: The SUV4-20H
histone methyltransferases in health and disease. Int J Mol Sci.
23:47362022. View Article : Google Scholar : PubMed/NCBI
|
36
|
Gao J, Li E, Liu W, Yang Q, Xie C, Ai J,
Zhou F, Liao W and Wu L: Circular RNA MYLK promotes hepatocellular
carcinoma progression through the miR29a/KMT5C signaling pathway.
Onco Targets Ther. 13:8615–8627. 2020. View Article : Google Scholar : PubMed/NCBI
|
37
|
Tryndyak VP, Kovalchuk O and Pogribny IP:
Loss of DNA methylation and histone H4 lysine 20 trimethylation in
human breast cancer cells is associated with aberrant expression of
DNA methyltransferase 1, SUV420H2 histone methyltransferase and
methyl-binding proteins. Cancer Biol Ther. 5:65–70. 2006.
View Article : Google Scholar
|
38
|
Pedrotti S, Caccia R, Neguembor MV,
Garcia-Manteiga JM, Ferri G, de Palma C, Canu T, Giovarelli M,
Marra P, Fiocchi A, et al: The Suv420h histone methyltransferases
regulate PPAR-gamma and energy expenditure in response to
environmental stimuli. Sci Adv. 5:eaav14722019. View Article : Google Scholar
|
39
|
Wang Y and Patti GJ: The warburg effect: A
signature of mitochondrial overload. Trends Cell Biol.
33:1014–1020. 2023. View Article : Google Scholar : PubMed/NCBI
|
40
|
Cho HS, Suzuki T, Dohmae N, Hayami S,
Unoki M, Yoshimatsu M, Toyokawa G, Takawa M, Chen T, Kurash JK, et
al: Demethylation of RB regulator MYPT1 by histone demethylase LSD1
promotes cell cycle progression in cancer cells. Cancer Res.
71:655–660. 2011. View Article : Google Scholar
|