Role of STAT3 in cancer cell epithelial‑mesenchymal transition (Review)
- Authors:
- Guoan Zhang
- Sen Hou
- Shuyue Li
- Yequan Wang
- Wen Cui
-
Affiliations: Department of Forensic Genetics, Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Forensic Science Center of Jining Medical University, Jining, Shandong 272067, P.R. China, Department of Forensic Pathology, Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Forensic Science Center of Jining Medical University, Jining, Shandong 272067, P.R. China - Published online on: March 13, 2024 https://doi.org/10.3892/ijo.2024.5636
- Article Number: 48
-
Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Philips RL, Wang Y, Cheon H, Kanno Y, Gadina M, Sartorelli V, Horvath CM, Darnell JE Jr, Stark GR and O'Shea JJ: The JAK-STAT pathway at 30: Much learned, much more to do. Cell. 185:3857–3876. 2022. View Article : Google Scholar : PubMed/NCBI | |
Johnson DE, O'Keefe RA and Grandis JR: Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol. 15:234–248. 2018. View Article : Google Scholar : PubMed/NCBI | |
Huynh J, Chand A, Gough D and Ernst M: Therapeutically exploiting STAT3 activity in cancer-using tissue repair as a road map. Nat Rev Cancer. 19:82–96. 2019. View Article : Google Scholar | |
Cimica V, Chen HC, Iyer JK and Reich NC: Dynamics of the STAT3 transcription factor: Nuclear import dependent on Ran and importin-β1. PLoS One. 6:e201882011. View Article : Google Scholar | |
Garbers C, Aparicio-Siegmund S and Rose-John S: The IL-6/gp130/STAT3 signaling axis: Recent advances towards specific inhibition. Curr Opin Immunol. 34:75–82. 2015. View Article : Google Scholar : PubMed/NCBI | |
Buchert M, Burns CJ and Ernst M: Targeting JAK kinase in solid tumors: Emerging opportunities and challenges. Oncogene. 35:939–951. 2016. View Article : Google Scholar | |
Yu H, Lee H, Herrmann A, Buettner R and Jove R: Revisiting STAT3 signalling in cancer: New and unexpected biological functions. Nat Rev Cancer. 14:736–746. 2014. View Article : Google Scholar : PubMed/NCBI | |
Diallo M and Herrera F: The role of understudied post-translational modifications for the behavior and function of signal transducer and activator of transcription 3. FEBS J. 289:6235–6255. 2022. View Article : Google Scholar | |
Brabletz S, Schuhwerk H, Brabletz T and Stemmler MP: Dynamic EMT: A multi-tool for tumor progression. EMBO J. 40:e1086472021. View Article : Google Scholar : PubMed/NCBI | |
Hua W, Ten Dijke P, Kostidis S, Giera M and Hornsveld M: TGFβ-induced metabolic reprogramming during epithelial-to-mesenchymal transition in cancer. Cell Mol Life Sci. 77:2103–2123. 2020. View Article : Google Scholar | |
Lai X, Li Q, Wu F, Lin J, Chen J, Zheng H and Guo L: Epithelial-mesenchymal transition and metabolic switching in cancer: Lessons from somatic cell reprogramming. Front Cell Dev Biol. 8:7602020. View Article : Google Scholar : PubMed/NCBI | |
Terry S, Savagner P, Ortiz-Cuaran S, Mahjoubi L, Saintigny P, Thiery JP and Chouaib S: New insights into the role of EMT in tumor immune escape. Mol Oncol. 11:824–846. 2017. View Article : Google Scholar : PubMed/NCBI | |
Stemmler MP, Eccles RL, Brabletz S and Brabletz T: Non-redundant functions of EMT transcription factors. Nat Cell Biol. 21:102–112. 2019. View Article : Google Scholar : PubMed/NCBI | |
Guo H, Zhuang K, Ding N, Hua R, Tang H, Wu Y, Yuan Z, Li T and He S: High-fat diet induced cyclophilin B enhances STAT3/lncRNA-PVT1 feedforward loop and promotes growth and metastasis in colorectal cancer. Cell Death Dis. 13:8832022. View Article : Google Scholar : PubMed/NCBI | |
Akhmetkaliyev A, Alibrahim N, Shafiee D and Tulchinsky E: EMT/MET plasticity in cancer and Go-or-Grow decisions in quiescence: The two sides of the same coin? Mol Cancer. 22:902023. View Article : Google Scholar : PubMed/NCBI | |
Lambert AW and Weinberg RA: Linking EMT programmes to normal and neoplastic epithelial stem cells. Nat Rev Cancer. 21:325–338. 2021. View Article : Google Scholar : PubMed/NCBI | |
Nieto MA, Huang RYJ, Jackson RA and Thiery JP: EMT: 2016. Cell. 166:21–45. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zheng H and Kang Y: Multilayer control of the EMT master regulators. Oncogene. 33:1755–1763. 2014. View Article : Google Scholar | |
Puisieux A, Brabletz T and Caramel J: Oncogenic roles of EMT-inducing transcription factors. Nat Cell Biol. 16:488–494. 2014. View Article : Google Scholar : PubMed/NCBI | |
Thiery JP, Acloque H, Huang RYJ and Nieto MA: Epithelial-mesenchymal transitions in development and disease. Cell. 139:871–890. 2009. View Article : Google Scholar : PubMed/NCBI | |
Vesuna F, van Diest P, Chen JH and Raman V: Twist is a transcriptional repressor of E-cadherin gene expression in breast cancer. Biochem Biophys Res Commun. 367:235–241. 2008. View Article : Google Scholar | |
Yang MH, Hsu DS, Wang HW, Wang HJ, Lan HY, Yang WH, Huang CH, Kao SY, Tzeng CH, Tai SK, et al: Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition. Nat Cell Biol. 12:982–992. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yang J and Weinberg RA: Epithelial-mesenchymal transition: At the crossroads of development and tumor metastasis. Dev Cell. 14:818–829. 2008. View Article : Google Scholar : PubMed/NCBI | |
Shamir ER, Pappalardo E, Jorgens DM, Coutinho K, Tsai WT, Aziz K, Auer M, Tran PT, Bader JS and Ewald AJ: Twist1-induced dissemination preserves epithelial identity and requires E-cadherin. J Cell Biol. 204:839–856. 2014. View Article : Google Scholar : PubMed/NCBI | |
Onder TT, Gupta PB, Mani SA, Yang J, Lander ES and Weinberg RA: Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res. 68:3645–3654. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sullivan NJ, Sasser AK, Axel AE, Vesuna F, Raman V, Ramirez N, Oberyszyn TM and Hall BM: Interleukin-6 induces an epithelial-mesenchymal transition phenotype in human breast cancer cells. Oncogene. 28:2940–2947. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yadav A, Kumar B, Datta J, Teknos TN and Kumar P: IL-6 promotes head and neck tumor metastasis by inducing epithelial-mesenchymal transition via the JAK-STAT3-SNAIL signaling pathway. Mol Cancer Res. 9:1658–1667. 2011. View Article : Google Scholar : PubMed/NCBI | |
Rojas A, Liu G, Coleman I, Nelson PS, Zhang M, Dash R, Fisher PB, Plymate SR and Wu JD: IL-6 promotes prostate tumorigenesis and progression through autocrine cross-activation of IGF-IR. Oncogene. 30:2345–2355. 2011. View Article : Google Scholar : PubMed/NCBI | |
Miao JW, Liu LJ and Huang J: Interleukin-6-induced epithelial-mesenchymal transition through signal transducer and activator of transcription 3 in human cervical carcinoma. Int J Oncol. 45:165–176. 2014. View Article : Google Scholar : PubMed/NCBI | |
Shintani Y, Fujiwara A, Kimura T, Kawamura T, Funaki S, Minami M and Okumura M: IL-6 secreted from cancer-associated fibroblasts mediates chemoresistance in NSCLC by increasing epithelial-mesenchymal transition signaling. J Thorac Oncol. 11:1482–1492. 2016. View Article : Google Scholar : PubMed/NCBI | |
Baulida J, Diaz VM and Herreros AG: Snail1: A transcriptional factor controlled at multiple levels. J Clin Med. 8:7572019. View Article : Google Scholar : PubMed/NCBI | |
Yamashita S, Miyagi C, Fukada T, Kagara N, Che YS and Hirano T: Zinc transporter LIVI controls epithelial-mesenchymal transition in zebrafish gastrula organizer. Nature. 429:298–302. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hogstrand C, Kille P, Ackland ML, Hiscox S and Taylor KM: A mechanism for epithelial-mesenchymal transition and anoikis resistance in breast cancer triggered by zinc channel ZIP6 and STAT3 (signal transducer and activator of transcription 3). Biochem J. 455:229–237. 2013. View Article : Google Scholar : PubMed/NCBI | |
Huang C, Yang G, Jiang T, Zhu G, Li H and Qiu Z: The effects and mechanisms of blockage of STAT3 signaling pathway on IL-6 inducing EMT in human pancreatic cancer cells in vitro. Neoplasma. 58:396–405. 2011. View Article : Google Scholar : PubMed/NCBI | |
Rokavec M, Öner MG, Li H, Jackstadt R, Jiang L, Lodygin D, Kaller M, Horst D, Ziegler PK, Schwitalla S, et al: IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. J Clin Invest. 124:1853–1867. 2014. View Article : Google Scholar : PubMed/NCBI | |
Peinado H, Quintanilla M and Cano A: Transforming growth factor beta-1 induces snail transcription factor in epithelial cell lines: Mechanisms for epithelial mesenchymal transitions. J Biol Chem. 278:21113–21123. 2003. View Article : Google Scholar : PubMed/NCBI | |
Saitoh M, Endo K, Furuya S, Minami M, Fukasawa A, Imamura T and Miyazawa K: STAT3 integrates cooperative Ras and TGF-β signals that induce Snail expression. Oncogene. 35:1049–1057. 2016. View Article : Google Scholar | |
Kim M and Lim J, Yang Y, Lee M and Lim J: N-myc downstream-regulated gene 2 (NDRG2) suppresses the epithelial-mesenchymal transition (EMT) in breast cancer cells via STAT3/Snail signaling. Cancer Lett. 354:33–42. 2014. View Article : Google Scholar : PubMed/NCBI | |
Burton LJ, Smith BA, Smith BN, Loyd Q, Nagappan P, McKeithen D, Wilder CL, Platt MO, Hudson T and Odero-Marah VA: Muscadine grape skin extract can antagonize Snail-cathepsin L-mediated invasion, migration and osteoclastogenesis in prostate and breast cancer cells. Carcinogenesis. 36:1019–1027. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhou JJ, Meng Z, He XY, Cheng D, Ye HL, Deng XG and Chen RF: Hepatitis C virus core protein increases Snail expression and induces epithelial-mesenchymal transition through the signal transducer and activator of transcription 3 pathway in hepatoma cells. Hepatol Res. 47:574–583. 2017. View Article : Google Scholar | |
Liu WH, Chen MT, Wang ML, Lee YY, Chiou GY, Chien CS, Huang PI, Chen YW, Huang MC, Chiou SH, et al: Cisplatin-selected resistance is associated with increased motility and stem-like properties via activation of STAT3/Snail axis in atypical teratoid/rhabdoid tumor cells. Oncotarget. 6:1750–1768. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liang H, Chen G, Li J and Yang F: Snail expression contributes to temozolomide resistance in glioblastoma. Am J Transl Res. 11:4277–4289. 2019.PubMed/NCBI | |
Dai X, Ahn KS, Wang LZ, Kim C, Deivasigamni A, Arfuso F, Um JY, Kumar AP, Chang YC, Kumar D, et al: Ascochlorin enhances the sensitivity of doxorubicin leading to the reversal of epithelial-to-mesenchymal transition in hepatocellular carcinoma. Mol Cancer Ther. 15:2966–2976. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xie Q, Zhu Z, He Y, Zhang Z, Zhang Y, Wang Y, Luo J, Peng T, Cheng F, Gao J, et al: A lactate-induced Snail/STAT3 pathway drives GPR81 expression in lung cancer cells. Biochim Biophys Acta Mol Basis Dis. 1866:1655762020. View Article : Google Scholar | |
Kim E, Kim M, Woo DH, Shin Y, Shin J, Chang N, Oh YT, Kim H, Rheey J, Nakano I, et al: Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem-like cells. Cancer Cell. 23:839–852. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Hu Z, Li J and Hu T: EZH2 exacerbates breast cancer by methylating and activating STAT3 directly. J Cancer. 12:5220–5230. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yuan K, Lei Y, Chen HN, Chen Y, Zhang T, Li K, Xie N, Wang K, Feng X, Pu Q, et al: HBV-induced ROS accumulation promotes hepatocarcinogenesis through Snail-mediated epigenetic silencing of SOCS3. Cell Death Differ. 23:616–627. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kim JY, Kim HJ, Jung CW, Lee TS, Kim EH and Park MJ: CXCR4 uses STAT3-mediated slug expression to maintain radioresistance of non-small cell lung cancer cells: Emerges as a potential prognostic biomarker for lung cancer. Cell Death Dis. 12:482021. View Article : Google Scholar : PubMed/NCBI | |
Wu S, Ye S and Lin X, Chen Y, Zhang Y, Jing Z, Liu W, Chen W and Lin X and Lin X: Small hepatitis B virus surface antigen promotes malignant progression of hepatocellular carcinoma via endoplasmic reticulum stress-induced FGF19/JAK2/STAT3 signaling. Cancer Lett. 499:175–187. 2021. View Article : Google Scholar | |
Chesnelong C, Hao X, Cseh O, Wang AY, Luchman HA and Weiss S: SLUG directs the precursor state of human brain tumor stem cells. Cancers (Basel). 11:16352019. View Article : Google Scholar : PubMed/NCBI | |
Lin JC, Tsai JT, Chao TY, Ma HI and Liu WH: The STAT3/Slug axis enhances radiation-induced tumor invasion and cancer stem-like properties in radioresistant glioblastoma. Cancers (Basel). 10:5122018. View Article : Google Scholar : PubMed/NCBI | |
Zhou DD, Liu XF, Lu CW, Pant OP and Liu XD: Long non-coding RNA PVT1: Emerging biomarker in digestive system cancer. Cell Prolif. 50:e123982017. View Article : Google Scholar : PubMed/NCBI | |
Dong L, Wang H, Gao Y, Wang S and Wang W: Long non-coding RNA PVT1 promotes the proliferation, migration and EMT process of ovarian cancer cells by regulating CTGF. Oncol Lett. 25:712023. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Wu J, Qin Y, Zhang W, Huang G and Qin L: LncRNA PVT1 induces aggressive vasculogenic mimicry formation through activating the STAT3/Slug axis and epithelial-to-mesenchymal transition in gastric cancer. Cell Oncol (Dordr). 43:863–876. 2020. View Article : Google Scholar : PubMed/NCBI | |
Barnes RM and Firulli AB: A twist of insight-the role of Twist-family bHLH factors in development. Int J Dev Biol. 53:909–924. 2009. View Article : Google Scholar | |
Qin Q, Xu Y, He T, Qin C and Xu J: Normal and disease-related biological functions of Twist1 and underlying molecular mechanisms. Cell Res. 22:90–106. 2012. View Article : Google Scholar : | |
Ling X and Arlinghaus RB: Knockdown of STAT3 expression by RNA interference inhibits the induction of breast tumors in immunocompetent mice. Cancer Res. 65:2532–2536. 2005. View Article : Google Scholar : PubMed/NCBI | |
Cheng GZ, Zhang WZ, Sun M, Wang Q, Coppola D, Mansour M, Xu LM, Costanzo C, Cheng JQ and Wang LH: Twist is transcriptionally induced by activation of STAT3 and mediates STAT3 oncogenic function. J Biol Chem. 283:14665–14673. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lo HW, Hsu SC, Xia W, Cao X, Shih JY, Wei Y, Abbruzzese JL, Hortobagyi GN and Hung MC: Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial-mesenchymal transition in cancer cells via up-regulation of TWIST gene expression. Cancer Res. 67:9066–9076. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hsu KW, Hsieh RH, Huang KH, Fen-Yau Li A, Chi CW, Wang TY, Tseng MJ, Wu KJ and Yeh TS: Activation of the Notch1/STAT3/Twist signaling axis promotes gastric cancer progression. Carcinogenesis. 33:1459–1467. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kim MS, Lee HS, Kim YJ, Lee DY, Kang SG and Jin W: MEST induces Twist-1-mediated EMT through STAT3 activation in breast cancers. Cell Death Differ. 26:2594–2606. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang CH, Xu GL, Jia WD, Li JS, Ma JL, Ren WH, Ge YS, Yu JH, Liu WB and Wang W: Activation of STAT3 signal pathway correlates with twist and E-cadherin expression in hepatocellular carcinoma and their clinical significance. J Surg Res. 174:120–129. 2012. View Article : Google Scholar | |
Cheng L, Zhou MY, Gu YJ, Chen L and Wang Y: ZEB1: New advances in fibrosis and cancer. Mol Cell Biochem. 476:1643–1650. 2021. View Article : Google Scholar : PubMed/NCBI | |
Caramel J, Ligier M and Puisieux A: Pleiotropic roles for ZEB1 in cancer. Cancer Res. 78:30–35. 2018. View Article : Google Scholar | |
Lu R, Zhang YG and Sun J: STAT3 activation in infection and infection-associated cancer. Mol Cell Endocrinol. 451:80–87. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xiong H, Hong J, Du W, Lin YW, Ren LL, Wang YC, Su WY, Wang JL, Cui Y, Wang ZH and Fang JY: Roles of STAT3 and ZEB1 proteins in E-cadherin down-regulation and human colorectal cancer epithelial-mesenchymal transition. J Biol Chem. 287:5819–5832. 2012. View Article : Google Scholar : | |
Avtanski DB, Nagalingam A, Bonner MY, Arbiser JL, Saxena NK and Sharma D: Honokiol inhibits epithelial-mesenchymal transition in breast cancer cells by targeting signal transducer and activator of transcription 3/Zeb1/E-cadherin axis. Mol Oncol. 8:565–580. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Ma L, Sun Y, Yu W and Wang X: Targeting STAT3 signaling overcomes gefitinib resistance in non-small cell lung cancer. Cell Death Dis. 12:5612021. View Article : Google Scholar : PubMed/NCBI | |
Huang YH, Chen HK, Hsu YF, Chen HC, Chuang CH, Huang SW and Hsu MJ: Src-FAK signaling mediates interleukin 6-induced HCT116 colorectal cancer epithelial-mesenchymal transition. Int J Mol Sci. 24:66502023. View Article : Google Scholar : PubMed/NCBI | |
Shi Q and Chen YG: Interplay between TGF-beta signaling and receptor tyrosine kinases in tumor development. Sci China Life Sci. 60:1133–1141. 2017. View Article : Google Scholar : PubMed/NCBI | |
Derynck R and Budi EH: Specificity, versatility, and control of TGF-β family signaling. Sci Signal. 12:eaav51832019. View Article : Google Scholar | |
Katsuno Y and Derynck R: Epithelial plasticity, epithelial-mesenchymal transition, and the TGF-β family. Dev Cell. 56:726–746. 2021. View Article : Google Scholar : PubMed/NCBI | |
Itoh Y, Saitoh M and Miyazawa K: Smad3-STAT3 crosstalk in pathophysiological contexts. Acta Biochim Biophys Sin (Shanghai). 50:82–90. 2018. View Article : Google Scholar | |
Sun CY, Nie J, Huang JP, Zheng GJ and Feng B: Targeting STAT3 inhibition to reverse cisplatin resistance. Biomed Pharmacother. 117:1091352019. View Article : Google Scholar : PubMed/NCBI | |
Bowman T, Broome MA, Sinibaldi D, Wharton W, Pledger WJ, Sedivy JM, Irby R, Yeatman T, Courtneidge SA and Jove R: Stat3-mediated Myc expression is required for Src transformation and PDGF-induced mitogenesis. Proc Natl Acad Sci USA. 98:7319–7324. 2001. View Article : Google Scholar : PubMed/NCBI | |
Yu Y and Feng XH: TGF-β signaling in cell fate control and cancer. Curr Opin Cell Biol. 61:56–63. 2019. View Article : Google Scholar : PubMed/NCBI | |
Horiguchi K, Shirakihara T, Nakano A, Imamura T, Miyazono K and Saitoh M: Role of Ras signaling in the induction of snail by transforming growth factor-beta. J Biol Chem. 284:245–253. 2009. View Article : Google Scholar | |
Long J, Wang G, Matsuura I, He D and Liu F: Activation of Smad transcriptional activity by protein inhibitor of activated STAT3 (PIAS3). Proc Natl Acad Sci USA. 101:99–104. 2004. View Article : Google Scholar : | |
Calon A, Espinet E, Palomo-Ponce S, Tauriello DV, Iglesias M, Céspedes MV, Sevillano M, Nadal C, Jung P, Zhang XH, et al: Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation. Cancer Cell. 22:571–584. 2012. View Article : Google Scholar : PubMed/NCBI | |
Abulaiti A, Shintani Y, Funaki S, Nakagiri T, Inoue M, Sawabata N, Minami M and Okumura M: Interaction between non-small-cell lung cancer cells and fibroblasts via enhancement of TGF-β signaling by IL-6. Lung Cancer. 82:204–213. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liu RY, Zeng Y, Lei Z, Wang L, Yang H, Liu Z, Zhao J and Zhang HT: JAK/STAT3 signaling is required for TGF-β-induced epithelial-mesenchymal transition in lung cancer cells. Int J Oncol. 44:1643–1651. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang B, Liu T, Wu JC, Luo SZ, Chen R, Lu LG and Xu MY: STAT3 aggravates TGF-β1-induced hepatic epithelial-to-mesenchymal transition and migration. Biomed Pharmacother. 98:214–221. 2018. View Article : Google Scholar | |
Morris R, Butler L, Perkins A, Kershaw NJ and Babon JJ: The Role of LNK (SH2B3) in the regulation of JAK-STAT signalling in haematopoiesis. Pharmaceuticals (Basel). 15:242021. View Article : Google Scholar | |
Ding LW, Sun QY, Lin DC, Chien W, Hattori N, Dong XM, Gery S, Garg M, Doan NB, Said JW, et al: LNK (SH2B3): Paradoxical effects in ovarian cancer. Oncogene. 34:1463–1474. 2015. View Article : Google Scholar | |
Lv J, Yu W, Zhang Y, Cao X, Han L, Hu H and Wang C: LNK promotes the growth and metastasis of triple negative breast cancer via activating JAK/STAT3 and ERK1/2 pathway. Cancer Cell Int. 20:1242020. View Article : Google Scholar : PubMed/NCBI | |
Zhong ZM, Chen X, Qi X, Wang XM, Li CY, Qin RJ, Wang SQ, Liang J, Zeng MS and Sun CZ: Adaptor protein LNK promotes anaplastic thyroid carcinoma cell growth via 14-3-3 ε/γ binding. Cancer Cell Int. 20:112020. View Article : Google Scholar | |
Pan J, Peng R, Cheng N, Chen F and Gao B: LNK protein: Low expression in human colorectal carcinoma and relationship with tumor invasion. Biomed Pharmacother. 121:1094672020. View Article : Google Scholar | |
Wang LN, Zhang ZT, Wang L, Wei HX, Zhang T, Zhang LM, Lin H, Zhang H and Wang SQ: TGF-β1/SH2B3 axis regulates anoikis resistance and EMT of lung cancer cells by modulating JAK2/STAT3 and SHP2/Grb2 signaling pathways. Cell Death Dis. 13:4722022. View Article : Google Scholar | |
Dragomir MP, Knutsen E and Calin GA: Classical and noncanonical functions of miRNAs in cancers. Trends Genet. 38:379–394. 2022. View Article : Google Scholar | |
Gregory PA, Bracken CP, Bert AG and Goodall GJ: MicroRNAs as regulators of epithelial-mesenchymal transition. Cell Cycle. 7:3112–3118. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hao J, Zhang Y, Deng M, Ye R, Zhao S, Wang Y, Li J and Zhao Z: MicroRNA control of epithelial-mesenchymal transition in cancer stem cells. Int J Cancer. 135:1019–1027. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Liao Y and Tang L: MicroRNA-34 family: A potential tumor suppressor and therapeutic candidate in cancer. J Exp Clin Cancer Res. 38:532019. View Article : Google Scholar : PubMed/NCBI | |
Li WJ, Wang Y, Liu R, Kasinski AL, Shen H, Slack FJ and Tang DG: MicroRNA-34a: Potent tumor suppressor, cancer stem cell inhibitor, and potential anticancer therapeutic. Front Cell Dev Biol. 9:6405872021. View Article : Google Scholar : PubMed/NCBI | |
Siemens H, Jackstadt R, Hünten S, Kaller M, Menssen A, Götz U and Hermeking H: miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions. Cell Cycle. 10:4256–4271. 2011. View Article : Google Scholar : PubMed/NCBI | |
Imani S, Wei C, Cheng J, Khan MA, Fu S, Yang L, Tania M, Zhang X, Xiao X, Zhang X and Fu J: MicroRNA-34a targets epithelial to mesenchymal transition-inducing transcription factors (EMT-TFs) and inhibits breast cancer cell migration and invasion. Oncotarget. 8:21362–21379. 2017. View Article : Google Scholar : PubMed/NCBI | |
Huang G, Du MY, Zhu H, Zhang N, Lu ZW, Qian LX, Zhang W, Tian X, He X and Yin L: MiRNA-34a reversed TGF-β-induced epithelial-mesenchymal transition via suppression of SMAD4 in NPC cells. Biomed Pharmacother. 106:217–224. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ma ZL, Hou PP, Li YL, Wang DT, Yuan TW, Wei JL, Zhao BT, Lou JT, Zhao XT, Jin Y and Jin YX: MicroRNA-34a inhibits the proliferation and promotes the apoptosis of non-small cell lung cancer H1299 cell line by targeting TGFβR2. Tumour Biol. 36:2481–2490. 2015. View Article : Google Scholar | |
Jiang L and Hermeking H: miR-34a and miR-34b/c suppress intestinal tumorigenesis. Cancer Res. 77:2746–2758. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li B, Guo X, Li N, Chen Q, Shen J, Huang X, Huang G and Wang F: WNT1, a target of miR-34a, promotes cervical squamous cell carcinoma proliferation and invasion by induction of an E-P cadherin switch via the WNT/β-catenin pathway. Cell Oncol (Dordr). 43:489–503. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hashimi ST, Fulcher JA, Chang MH, Gov L, Wang S and Lee B: MicroRNA profiling identifies miR-34a and miR-21 and their target genes JAG1 and WNT1 in the coordinate regulation of dendritic cell differentiation. Blood. 114:404–414. 2009. View Article : Google Scholar : PubMed/NCBI | |
Si W, Li Y, Shao H, Hu R, Wang W, Zhang K and Yang Q: MiR-34a inhibits breast cancer proliferation and progression by targeting Wnt1 in Wnt/β-catenin signaling pathway. Am J Med Sci. 352:191–199. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen WY, Liu SY, Chang YS, Yin JJ, Yeh HL, Mouhieddine TH, Hadadeh O, Abou-Kheir W and Liu YN: MicroRNA-34a regulates WNT/TCF7 signaling and inhibits bone metastasis in Ras-activated prostate cancer. Oncotarget. 6:441–457. 2015. View Article : Google Scholar : | |
Wang X, Zhao Y, Lu Q, Fei X, Lu C, Li C and Chen H: MiR-34a-5p inhibits proliferation, migration, invasion and epithelial-mesenchymal transition in esophageal squamous cell carcinoma by targeting LEF1 and inactivation of the Hippo-YAP1/TAZ signaling pathway. J Cancer. 11:3072–3081. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kang L, Mao J, Tao Y, Song B, Ma W, Lu Y, Zhao L, Li J, Yang B and Li L: MicroRNA-34a suppresses the breast cancer stem cell-like characteristics by downregulating Notch1 pathway. Cancer Sci. 106:700–708. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fan F, Zhuang J, Zhou P, Liu X and Luo Y: MicroRNA-34a promotes mitochondrial dysfunction-induced apoptosis in human lens epithelial cells by targeting Notch2. Oncotarget. 8:110209–110220. 2017. View Article : Google Scholar | |
Mudduluru G, Ceppi P, Kumarswamy R, Scagliotti GV, Papotti M and Allgayer H: Regulation of Axl receptor tyrosine kinase expression by miR-34a and miR-199a/b in solid cancer. Oncogene. 30:2888–2899. 2011. View Article : Google Scholar : PubMed/NCBI | |
Marcucci F, Stassi G and De Maria R: Epithelial-mesenchymal transition: A new target in anticancer drug discovery. Nat Rev Drug Discov. 15:311–325. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang G, Wang M, Zhao H and Cui W: Function of Axl receptor tyrosine kinase in non-small cell lung cancer. Oncol Lett. 15:2726–2734. 2018.PubMed/NCBI | |
Avtanski DB, Nagalingam A, Kuppusamy P, Bonner MY, Arbiser JL, Saxena NK and Sharma D: Honokiol abrogates leptin-induced tumor progression by inhibiting Wnt1-MTA1-β-catenin signaling axis in a microRNA-34a dependent manner. Oncotarget. 6:16396–16410. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cavallari I, Ciccarese F, Sharova E, Urso L, Raimondi V, Silic-Benussi M, D'Agostino DM and Ciminale V: The miR-200 family of microRNAs: Fine tuners of epithelial-mesenchymal transition and circulating cancer biomarkers. Cancers (Basel). 13:58742021. View Article : Google Scholar : PubMed/NCBI | |
Peter ME: Let-7 and miR-200 microRNAs: Guardians against pluripotency and cancer progression. Cell Cycle. 8:843–852. 2009. View Article : Google Scholar : PubMed/NCBI | |
Feng X, Wang Z, Fillmore R and Xi Y: MiR-200, a new star miRNA in human cancer. Cancer Lett. 344:166–173. 2014. View Article : Google Scholar : | |
Georgakopoulos-Soares I, Chartoumpekis DV, Kyriazopoulou V and Zaravinos A: EMT factors and metabolic pathways in cancer. Front Oncol. 10:4992020. View Article : Google Scholar : PubMed/NCBI | |
Park SM, Gaur AB, Lengyel E and Peter ME: The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 22:894–907. 2008. View Article : Google Scholar : PubMed/NCBI | |
Korpal M, Lee ES, Hu G and Kang Y: The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem. 283:14910–14914. 2008. View Article : Google Scholar : PubMed/NCBI | |
Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y and Goodall GJ: The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 10:593–601. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bracken CP, Gregory PA, Kolesnikoff N, Bert AG, Wang J, Shannon MF and Goodall GJ: A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res. 68:7846–7854. 2008. View Article : Google Scholar : PubMed/NCBI | |
Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S and Brabletz T: A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep. 9:582–589. 2008. View Article : Google Scholar : PubMed/NCBI | |
Guo L, Chen C, Shi M, Wang F, Chen X, Diao D, Hu M, Yu M, Qian L and Guo N: Stat3-coordinated Lin-28-let-7-HMGA2 and miR-200-ZEB1 circuits initiate and maintain oncostatin M-driven epithelial-mesenchymal transition. Oncogene. 32:5272–5282. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Guo W, Li Z, Wu Y, Jing C, Ren Y, Zhao M, Kong L, Zhang C, Dong J, et al: Role of the EZH2/miR-200 axis in STAT3-mediated OSCC invasion. Int J Oncol. 52:1149–1164. 2018.PubMed/NCBI | |
Pan YM, Wang CG, Zhu M, Xing R, Cui JT, Li WM, Yu DD, Wang SB, Zhu W, Ye YJ, et al: STAT3 signaling drives EZH2 transcriptional activation and mediates poor prognosis in gastric cancer. Mol Cancer. 15:792016. View Article : Google Scholar : PubMed/NCBI | |
Martínez-Fernández M, Dueñas M, Feber A, Segovia C, García-Escudero R, Rubio C, López-Calderón FF, Díaz-García C, Villacampa F, Duarte J, et al: A Polycomb-mir200 loop regulates clinical outcome in bladder cancer. Oncotarget. 6:42258–42275. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Chen Y and Chen L: The versatile role of microRNA-30a in human cancer. Cell Physiol Biochem. 41:1616–1632. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Zhang H, Liu J, Tu X, Zang Y, Zhu J, Chen J, Dong L and Zhang J: miR-30 inhibits TGF-β1-induced epithelial-to-mesenchymal transition in hepatocyte by targeting Snail1. Biochem Biophys Res Commun. 417:1100–1105. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Wu C, Zhang C, Li Z, Zhu T, Chen J, Ren Y, Wang X, Zhang L and Zhou X: TGF-β-induced STAT3 overexpression promotes human head and neck squamous cell carcinoma invasion and metastasis through malat1/miR-30a interactions. Cancer Lett. 436:52–62. 2018. View Article : Google Scholar : PubMed/NCBI | |
Pfeffer SR, Yang CH and Pfeffer LM: The role of miR-21 in cancer. Drug Dev Res. 76:270–277. 2015. View Article : Google Scholar : PubMed/NCBI | |
Singh A, Singh AK, Giri R, Kumar D, Sharma R, Valis M, Kuca K and Garg N: The role of microRNA-21 in the onset and progression of cancer. Future Med Chem. 13:1885–1906. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yan LX, Liu YH, Xiang JW, Wu QN, Xu LB, Luo XL, Zhu XL, Liu C, Xu FP, Luo DL, et al: PIK3R1 targeting by miR-21 suppresses tumor cell migration and invasion by reducing PI3K/AKT signaling and reversing EMT, and predicts clinical outcome of breast cancer. Int J Oncol. 48:471–484. 2016. View Article : Google Scholar : | |
Tang Y, Zhao Y, Ran J and Wang Y: MicroRNA-21 promotes cell metastasis in cervical cancer through modulating epithelial-mesenchymal transition. Oncol Lett. 19:3289–3295. 2020.PubMed/NCBI | |
Su C, Cheng X, Li Y, Han Y, Song X, Yu D, Cao X and Liu Z: MiR-21 improves invasion and migration of drug-resistant lung adenocarcinoma cancer cell and transformation of EMT through targeting HBP1. Cancer Med. 7:2485–2503. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bian Z, Ji W, Xu B, Huo Z, Huang H, Huang J, Jiao J, Shao J and Zhang X: Noncoding RNAs involved in the STAT3 pathway in glioma. Cancer Cell Int. 21:4452021. View Article : Google Scholar : PubMed/NCBI | |
Tse J, Pierce T, Carli ALE, Alorro MG, Thiem S, Marcusson EG, Ernst M and Buchert M: Onco-miR-21 promotes Stat3-dependent gastric cancer progression. Cancers (Basel). 14:2642022. View Article : Google Scholar : PubMed/NCBI | |
Yue X, Zhao Y, Zhang C, Li J, Liu Z, Liu J and Hu W: Leukemia inhibitory factor promotes EMT through STAT3-dependent miR-21 induction. Oncotarget. 7:3777–3790. 2016. View Article : Google Scholar : | |
Lu YF, Zhang L, Waye MM, Fu WM and Zhang JF: MiR-218 mediates tumorigenesis and metastasis: Perspectives and implications. Exp Cell Res. 334:173–182. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li YJ, Zhang W, Xia H, Zhang BS, Chen P, Zhao YL and Li J: miR-218 suppresses epithelial-to-mesenchymal transition by targeting Robo1 and Ecop in lung adenocarcinoma cells. Future Oncol. 13:2571–2582. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shi ZM, Wang L, Shen H, Jiang CF, Ge X, Li DM, Wen YY, Sun HR, Pan MH, Li W, et al: Downregulation of miR-218 contributes to epithelial-mesenchymal transition and tumor metastasis in lung cancer by targeting Slug/ZEB2 signaling. Oncogene. 36:2577–2588. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jiang Z, Song Q, Zeng R, Li J, Li J, Lin X, Chen X, Zhang J and Zheng Y: MicroRNA-218 inhibits EMT, migration and invasion by targeting SFMBT1 and DCUN1D1 in cervical cancer. Oncotarget. 7:45622–45636. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Li J, Wang Q, Meng G, Lv X, Zhou H, Li W and Zhang J: The relationship between microRNAs and the STAT3-related signaling pathway in cancer. Tumour Biol. 39:10104283177198692017. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Qian R, Zhang J and Shi X: MiR-218-5p targets LHFPL3 to regulate proliferation, migration, and epithelial-mesenchymal transitions of human glioma cells. Biosci Rep. 39:BSR201808792019. View Article : Google Scholar | |
Lun W, Wu X, Deng Q and Zhi F: MiR-218 regulates epithelial-mesenchymal transition and angiogenesis in colorectal cancer via targeting CTGF. Cancer Cell Int. 18:832018. View Article : Google Scholar : PubMed/NCBI | |
Wang G, Fu Y, Liu G, Ye Y and Zhang X: miR-218 inhibits proliferation, migration, and EMT of gastric cancer cells by targeting WASF3. Oncol Res. 25:355–364. 2017. View Article : Google Scholar | |
Mathew LK, Huangyang P, Mucaj V, Lee SS, Skuli N, Eisinger-Mathason TS, Biju K, Li B, Venneti S, Lal P, et al: Feedback circuitry between miR-218 repression and RTK activation in glioblastoma. Sci Signal. 8:ra422015. View Article : Google Scholar : PubMed/NCBI | |
Mattick JS, Amaral PP, Carninci P, Carpenter S, Chang HY, Chen LL, Chen R, Dean C, Dinger ME, Fitzgerald KA, et al: Long non-coding RNAs: Definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol. 24:430–447. 2023. View Article : Google Scholar : PubMed/NCBI | |
Shen D, Peng H, Xia C, Deng Z, Tong X, Wang G and Qian K: The role of long non-coding RNAs in epithelial-mesenchymal transition-related signaling pathways in prostate cancer. Front Mol Biosci. 9:9390702022. View Article : Google Scholar : PubMed/NCBI | |
Mercer TR, Dinger ME and Mattick JS: Long non-coding RNAs: Insights into functions. Nat Rev Genet. 10:155–159. 2009. View Article : Google Scholar : PubMed/NCBI | |
Rahbar Farzam O, Najafi S, Amini M, Rahimi Z, Dabbaghipour R, Zohdi O, Asemani Shahgoli G, Baradaran B and Akbari B: Interplay of miRNAs and lncRNAs in STAT3 signaling pathway in colorectal cancer progression. Cancer Cell Int. 24:162024. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Li W, Liang L, Zhou Y and Li Y: The regulatory relationship between transcription factor STAT3 and noncoding RNA. Cell Mol Biol Lett. 29:42024. View Article : Google Scholar : PubMed/NCBI | |
Ashrafizadeh M, Zarrabi A, Orouei S, Zarrin V, Rahmani Moghadam E, Zabolian A, Mohammadi S, Hushmandi K, Gharehaghajlou Y, Makvandi P, et al: STAT3 pathway in gastric cancer: Signaling, therapeutic targeting and future prospects. Biology (Basel). 9:1262020.PubMed/NCBI | |
Knutsen E, Harris AL and Perander M: Expression and functions of long non-coding RNA NEAT1 and isoforms in breast cancer. Br J Cancer. 126:551–561. 2022. View Article : Google Scholar : | |
Dong P, Xiong Y, Yue J, Hanley SJB, Kobayashi N, Todo Y and Watari H: Long Non-coding RNA NEAT1: A novel target for diagnosis and therapy in human tumors. Front Genet. 9:4712018. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Qu S, Wang L, Zhang H, Yang Z, Wang J, Dai B, Tao K, Shang R, Liu Z, et al: PTBP3 splicing factor promotes hepatocellular carcinoma by destroying the splicing balance of NEAT1 and pre-miR-612. Oncogene. 37:6399–6413. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang H and Zheng G: LncRNA NEAT1 promotes proliferation, migration, invasion and epithelial-mesenchymal transition process in TGF-β2-stimulated lens epithelial cells through regulating the miR-486-5p/SMAD4 axis. Cancer Cell Int. 20:5292020. View Article : Google Scholar | |
Chen Q, Cai J, Wang Q, Wang Y, Liu M, Yang J, Zhou J, Kang C, Li M and Jiang C: Long noncoding RNA NEAT1, regulated by the EGFR pathway, contributes to glioblastoma progression through the WNT/β-catenin pathway by scaffolding EZH2. Clin Cancer Res. 24:684–695. 2018. View Article : Google Scholar | |
Chen Y, Li J, Xiao JK, Xiao L, Xu BW and Li C: The lncRNA NEAT1 promotes the epithelial-mesenchymal transition and metastasis of osteosarcoma cells by sponging miR-483 to upregulate STAT3 expression. Cancer Cell Int. 21:902021. View Article : Google Scholar : PubMed/NCBI | |
Dong P, Xiong Y, Yue J, Xu D, Ihira K, Konno Y, Kobayashi N, Todo Y and Watari H: Long noncoding RNA NEAT1 drives aggressive endometrial cancer progression via miR-361-regulated networks involving STAT3 and tumor microenvironment-related genes. J Exp Clin Cancer Res. 38:2952019. View Article : Google Scholar : PubMed/NCBI | |
Xia D, Yao R, Zhou P, Wang C, Xia Y and Xu S: LncRNA NEAT1 reversed the hindering effects of miR-495-3p/STAT3 axis and miR-211/PI3K/AKT axis on sepsis-relevant inflammation. Mol Immunol. 117:168–179. 2020. View Article : Google Scholar | |
Ghafouri-Fard S, Esmaeili M and Taheri M: H19 lncRNA: Roles in tumorigenesis. Biomed Pharmacother. 123:1097742020. View Article : Google Scholar | |
Hashemi M, Moosavi MS, Abed HM, Dehghani M, Aalipour M, Heydari EA, Behroozaghdam M, Entezari M, Salimimoghadam S, Gunduz ES, et al: Long non-coding RNA (lncRNA) H19 in human cancer: From proliferation and metastasis to therapy. Pharmacol Res. 184:1064182022. View Article : Google Scholar : PubMed/NCBI | |
Liu SJ, Dang HX, Lim DA, Feng FY and Maher CA: Long noncoding RNAs in cancer metastasis. Nat Rev Cancer. 21:446–460. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Li Y, Zuo C, Zhang K, Lei X, Wang J, Yang Y, Zhang J, Ma K, Wang S, et al: Long non-coding RNA H19 regulates glioma cell growth and metastasis via miR-200a-mediated CDK6 and ZEB1 expression. Front Oncol. 11:7576502021. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Feng C, Li Y, Ma Y and Cai R: LncRNA H19 promotes lung cancer proliferation and metastasis by inhibiting miR-200a function. Mol Cell Biochem. 460:1–8. 2019. View Article : Google Scholar : PubMed/NCBI | |
Luo M, Li Z, Wang W, Zeng Y, Liu Z and Qiu J: Long non-coding RNA H19 increases bladder cancer metastasis by associating with EZH2 and inhibiting E-cadherin expression. Cancer Lett. 333:213–221. 2013. View Article : Google Scholar : PubMed/NCBI | |
Xu JX, Yang Y, Zhang X and Luan XP: MicroRNA-29b promotes cell sensitivity to temozolomide by targeting STAT3 in glioma. Eur Rev Med Pharmacol Sci. 24:1922–1931. 2020.PubMed/NCBI | |
Fang JH, Zheng ZY, Liu JY, Xie C, Zhang ZJ and Zhuang SM: Regulatory role of the MicroRNA-29b-IL-6 signaling in the formation of vascular mimicry. Mol Ther Nucleic Acids. 8:90–100. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu L and Lu S: lncRNA H19 promotes viability and epithelial-mesenchymal transition of lung adenocarcinoma cells by targeting miR-29b-3p and modifying STAT3. Int J Oncol. 54:929–941. 2019.PubMed/NCBI | |
Wang F, Rong L, Zhang Z, Li M, Ma L, Ma Y, Xie X, Tian X and Yang Y: LncRNA H19-derived miR-675-3p promotes epithelial-mesenchymal transition and stemness in human pancreatic cancer cells by targeting the STAT3 pathway. J Cancer. 11:4771–4782. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sasaki N, Hirano K, Shichi Y, Gomi F, Yoshimura H, Matsushita A, Toyoda M and Ishiwata T: Gp130-mediated STAT3 activation contributes to the aggressiveness of pancreatic cancer through H19 long non-coding RNA expression. Cancers (Basel). 14:20552022. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Zhang J, Shen B, Yin K, Xu J, Gao W and Zhang L: Long noncoding RNA lncTCF7, induced by IL-6/STAT3 transactivation, promotes hepatocellular carcinoma aggressiveness through epithelial-mesenchymal transition. J Exp Clin Cancer Res. 34:1162015. View Article : Google Scholar : PubMed/NCBI | |
Li J, Jiang ZZ, Li YY, Tang WT, Yin J and Long XP: LncRNA CHRF promotes TGF-β1 induced EMT in alveolar epithelial cells by inhibiting miR-146a up-regulating L1CAM expression. Exp Lung Res. 47:198–209. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tan WX, Sun G, Shangguan MY, Gui Z, Bao Y, Li YF and Jia ZH: Novel role of lncRNA CHRF in cisplatin resistance of ovarian cancer is mediated by miR-10b induced EMT and STAT3 signaling. Sci Rep. 10:147682020. View Article : Google Scholar : PubMed/NCBI | |
Gong H, Tao Y, Xiao S, Li X, Fang K, Wen J, He P and Zeng M: LncRNA KIAA0087 suppresses the progression of osteosarcoma by mediating the SOCS1/JAK2/STAT3 signaling pathway. Exp Mol Med. 55:831–843. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ghafouri-Fard S, Harsij A, Hussen BM, Taheri M and Sharifi G: A review on the role of CASC11 in cancers. Front Cell Dev Biol. 11:11311992023. View Article : Google Scholar : PubMed/NCBI | |
Huang H, Fan X, Zhang X, Xie Y and Ji Z: LncRNA CARLo-7 facilitates proliferation, migration, invasion, and EMT of bladder cancer cells by regulating Wnt/β-catenin and JAK2/STAT3 signaling pathways. Transl Androl Urol. 9:2251–2261. 2020. View Article : Google Scholar : PubMed/NCBI | |
Han Y, Chen M, Wang A and Fan X: STAT3-induced upregulation of lncRNA CASC11 promotes the cell migration, invasion and epithelial-mesenchymal transition in hepatocellular carcinoma by epigenetically silencing PTEN and activating PI3K/AKT signaling pathway. Biochem Biophys Res Commun. 508:472–479. 2019. View Article : Google Scholar | |
Cheng Z, Guo J, Chen L, Luo N, Yang W and Qu X: A long noncoding RNA AB073614 promotes tumorigenesis and predicts poor prognosis in ovarian cancer. Oncotarget. 6:25381–25389. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zeng S, Liu S, Feng J, Gao J and Xue F: Upregulation of lncRNA AB073614 functions as a predictor of epithelial ovarian cancer prognosis and promotes tumor growth in vitro and in vivo. Cancer Biomark. 24:421–428. 2019. View Article : Google Scholar : PubMed/NCBI | |
Guo LY, Qin CF, Zou HX, Song MY, Gong ML and Chen C: LncRNA AB073614 promotes the proliferation and inhibits apoptosis of cervical cancer cells by repressing RBM5. Eur Rev Med Pharmacol Sci. 23:2374–2379. 2019.PubMed/NCBI | |
Hu L, Lv QL, Chen SH, Sun B, Qu Q, Cheng L, Guo Y, Zhou HH and Fan L: Up-regulation of long non-coding RNA AB073614 predicts a poor prognosis in patients with glioma. Int J Environ Res Public Health. 13:4332016. View Article : Google Scholar : PubMed/NCBI | |
Li J, Wang YM and Song YL: Knockdown of long noncoding RNA AB073614 inhibits glioma cell proliferation and migration via affecting epithelial-mesenchymal transition. Eur Rev Med Pharmacol Sci. 20:3997–4002. 2016.PubMed/NCBI | |
Wang Y, Kuang H, Xue J, Liao L, Yin F and Zhou X: LncRNA AB073614 regulates proliferation and metastasis of colorectal cancer cells via the PI3K/AKT signaling pathway. Biomed Pharmacother. 93:1230–1237. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xue J, Liao L, Yin F, Kuang H, Zhou X and Wang Y: LncRNA AB073614 induces epithelial-mesenchymal transition of colorectal cancer cells via regulating the JAK/STAT3 pathway. Cancer Biomark. 21:849–858. 2018. View Article : Google Scholar | |
Zhao F, Tan F, Tang L, Du Z, Chen X, Yang Y, Zhou G and Yuan C: Long non-coding RNA DLGAP1-AS1 and DLGAP1-AS2: Two novel oncogenes in multiple cancers. Curr Med Chem. 30:2822–2834. 2023. View Article : Google Scholar | |
Lin Y, Jian Z, Jin H, Wei X, Zou X, Guan R and Huang J: Long non-coding RNA DLGAP1-AS1 facilitates tumorigenesis and epithelial-mesenchymal transition in hepatocellular carcinoma via the feedback loop of miR-26a/b-5p/IL-6/JAK2/STAT3 and Wnt/β-catenin pathway. Cell Death Dis. 11:342020. View Article : Google Scholar | |
Zheng X, Hu H and Li S: High expression of lncRNA PVT1 promotes invasion by inducing epithelial-to-mesenchymal transition in esophageal cancer. Oncol Lett. 12:2357–2362. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Feng W, Zhang J, Ge L, Zhang Y, Jiang X, Peng W, Wang D, Gong A and Xu M: Long non-coding RNA PVT1 promotes epithelial-mesenchymal transition via the TGF-β/Smad pathway in pancreatic cancer cells. Oncol Rep. 40:1093–1102. 2018.PubMed/NCBI | |
Wang L, Xiao B, Yu T, Gong L, Wang Y, Zhang X, Zou Q and Zuo Q: lncRNA PVT1 promotes the migration of gastric cancer by functioning as ceRNA of miR-30a and regulating Snail. J Cell Physiol. 236:536–548. 2021. View Article : Google Scholar | |
Chang Z, Cui J and Song Y: Long noncoding RNA PVT1 promotes EMT via mediating microRNA-186 targeting of Twist1 in prostate cancer. Gene. 654:36–42. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Xu S, Xia H, Gao Z, Huang R, Tang E and Jiang X: Long noncoding RNA FEZF1-AS1 in human cancers. Clin Chim Acta. 497:20–26. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Wu Y, Wang Z, Chen Y, Mo J, Guan W, Zhang Y and Yao H: The LncRNA FEZF1-AS1 promotes tumor proliferation in colon cancer by regulating the mitochondrial protein PCK2. Oncol Res. 29:201–215. 2022. View Article : Google Scholar | |
Zhang G, Yang W, Li D, Li X, Huang J, Huang R and Luo J: lncRNA FEZF1-AS1 promotes migration, invasion and epithelial-mesenchymal transition of retinoblastoma cells by targeting miR-1236-3p. Mol Med Rep. 22:3635–3644. 2020.PubMed/NCBI | |
He R, Zhang FH and Shen N: LncRNA FEZF1-AS1 enhances epithelial-mesenchymal transition (EMT) through suppressing E-cadherin and regulating WNT pathway in non-small cell lung cancer (NSCLC). Biomed Pharmacother. 95:331–338. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhao X, Cheng Z and Wang J: Long noncoding RNA FEZF1-AS1 promotes proliferation and inhibits apoptosis in ovarian cancer by activation of JAK-STAT3 pathway. Med Sci Monit. 24:8088–8095. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bian Z, Zhang J, Li M, Feng Y, Wang X, Zhang J, Yao S, Jin G, Du J, Han W, et al: LncRNA-FEZF1-AS1 promotes tumor proliferation and metastasis in colorectal cancer by regulating PKM2 signaling. Clin Cancer Res. 24:4808–4819. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang YD, Sun XJ, Yin JJ, Yin M, Wang W, Nie ZQ and Xu J: Long non-coding RNA FEZF1-AS1 promotes cell invasion and epithelial-mesenchymal transition through JAK2/STAT3 signaling pathway in human hepatocellular carcinoma. Biomed Pharmacother. 106:134–141. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shang BQ, Li ML, Quan HY, Hou PF, Li ZW, Chu SF, Zheng JN and Bai J: Functional roles of circular RNAs during epithelial-to-mesenchymal transition. Mol Cancer. 18:1382019. View Article : Google Scholar : PubMed/NCBI | |
Wei X, Shi Y, Dai Z, Wang P, Meng X and Yin B: Underlying metastasis mechanism and clinical application of exosomal circular RNA in tumors (review). Int J Oncol. 58:289–297. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sharma AR, Banerjee S, Bhattacharya M, Saha A, Lee SS and Chakraborty C: Recent progress of circular RNAs in different types of human cancer: Technological landscape, clinical opportunities and challenges (review). Int J Oncol. 60:562022. View Article : Google Scholar : PubMed/NCBI | |
Liu CX and Chen LL: Circular RNAs: Characterization, cellular roles, and applications. Cell. 185:2016–2034. 2022. View Article : Google Scholar : PubMed/NCBI | |
Xue C, Li G, Zheng Q, Gu X, Bao Z, Lu J and Li L: The functional roles of the circRNA/Wnt axis in cancer. Mol Cancer. 21:1082022. View Article : Google Scholar : PubMed/NCBI | |
Long F, Lin Z, Li L, Ma M, Lu Z, Jing L, Li X and Lin C: Comprehensive landscape and future perspectives of circular RNAs in colorectal cancer. Mol Cancer. 20:262021. View Article : Google Scholar : PubMed/NCBI | |
Kristensen LS, Jakobsen T, Hager H and Kjems J: The emerging roles of circRNAs in cancer and oncology. Nat Rev Clin Oncol. 19:188–206. 2022. View Article : Google Scholar | |
Tang X, Ren H, Guo M, Qian J, Yang Y and Gu C: Review on circular RNAs and new insights into their roles in cancer. Comput Struct Biotechnol J. 19:910–928. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen S, Chen C, Hu Y, Song G and Shen X: The diverse roles of circular RNAs in pancreatic cancer. Pharmacol Ther. 226:1078692021. View Article : Google Scholar : PubMed/NCBI | |
Song J, Liu Q, Han L, Song T, Huang S, Zhang X, He Q, Liang C, Zhu S and Xiong B: Hsa_circ_0009092/miR-665/NLK signaling axis suppresses colorectal cancer progression via recruiting TAMs in the tumor microenvironment. J Exp Clin Cancer Res. 42:3192023. View Article : Google Scholar : PubMed/NCBI | |
Wu M, Sun T and Xing L: Circ_0004913 inhibits cell growth, metastasis, and glycolysis by absorbing miR-184 to regulate HAMP in hepatocellular carcinoma. Cancer Biother Radiopharm. 38:708–719. 2023. | |
Li G, Kong J, Dong S, Niu H, Wu S and Sun W: Circular BANP knockdown inhibits the malignant progression of residual hepatocellular carcinoma after insufficient radiofrequency ablation. Chin Med J (Engl). 135:1578–1587. 2022.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
He SL, Zhao X and Yi SJ: CircAHNAK upregulates EIF2B5 expression to inhibit the progression of ovarian cancer by modulating the JAK2/STAT3 signaling pathway. Carcinogenesis. 43:941–955. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zou S, Tong Q, Liu B, Huang W, Tian Y and Fu X: Targeting STAT3 in cancer immunotherapy. Mol Cancer. 19:1452020. View Article : Google Scholar : PubMed/NCBI | |
Beebe JD, Liu JY and Zhang JT: Two decades of research in discovery of anticancer drugs targeting STAT3, how close are we? Pharmacol Ther. 191:74–91. 2018. View Article : Google Scholar : PubMed/NCBI | |
Turkson J, Ryan D, Kim JS, Zhang Y, Chen Z, Haura E, Laudano A, Sebti S, Hamilton AD and Jove R: Phosphotyrosyl peptides block Stat3-mediated DNA binding activity, gene regulation, and cell transformation. J Biol Chem. 276:45443–45455. 2001. View Article : Google Scholar : PubMed/NCBI | |
Turkson J, Kim JS, Zhang S, Yuan J, Huang M, Glenn M, Haura E, Sebti S, Hamilton AD and Jove R: Novel peptidomimetic inhibitors of signal transducer and activator of transcription 3 dimerization and biological activity. Mol Cancer Ther. 3:261–269. 2004. View Article : Google Scholar : PubMed/NCBI | |
Auzenne EJ, Klostergaard J, Mandal PK, Liao WS, Lu Z, Gao F, Bast RC Jr, Robertson FM and McMurray JS: A phosphopeptide mimetic prodrug targeting the SH2 domain of Stat3 inhibits tumor growth and angiogenesis. J Exp Ther Oncol. 10:155–162. 2012. | |
Wong ALA, Hirpara JL, Pervaiz S, Eu JQ, Sethi G and Goh BC: Do STAT3 inhibitors have potential in the future for cancer therapy? Expert Opin Investig Drugs. 26:883–887. 2017. View Article : Google Scholar : PubMed/NCBI | |
Redell MS, Ruiz MJ, Alonzo TA, Gerbing RB and Tweardy DJ: Stat3 signaling in acute myeloid leukemia: Ligand-dependent and -independent activation and induction of apoptosis by a novel small-molecule Stat3 inhibitor. Blood. 117:5701–5709. 2011. View Article : Google Scholar : PubMed/NCBI | |
Peng HY, Wang L, Das JK, Kumar A, Ballard DJ, Ren Y, Xiong X, de Figueiredo P, Yang JM and Song J: Control of CD4+ T cells to restrain inflammatory diseases via eukaryotic elongation factor 2 kinase. Signal Transduct Target Ther. 8:4152023. View Article : Google Scholar | |
Bharadwaj U, Eckols TK, Xu X, Kasembeli MM, Chen Y, Adachi M, Song Y, Mo Q, Lai SY and Tweardy DJ: Small-molecule inhibition of STAT3 in radioresistant head and neck squamous cell carcinoma. Oncotarget. 7:26307–26330. 2016. View Article : Google Scholar : PubMed/NCBI | |
Genini D, Brambilla L, Laurini E, Merulla J, Civenni G, Pandit S, D'Antuono R, Perez L, Levy DE, Pricl S, et al: Mitochondrial dysfunction induced by a SH2 domain-targeting STAT3 inhibitor leads to metabolic synthetic lethality in cancer cells. Proc Natl Acad Sci USA. 114:E4924–E4933. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kim MJ, Nam HJ, Kim HP, Han SW, Im SA, Kim TY, Oh DY and Bang YJ: OPB-31121, a novel small molecular inhibitor, disrupts the JAK2/STAT3 pathway and exhibits an antitumor activity in gastric cancer cells. Cancer Lett. 335:145–152. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hayakawa F, Sugimoto K, Harada Y, Hashimoto N, Ohi N, Kurahashi S and Naoe T: A novel STAT inhibitor, OPB-31121, has a significant antitumor effect on leukemia with STAT-addictive oncokinases. Blood Cancer J. 3:e1662013. View Article : Google Scholar : PubMed/NCBI | |
Brambilla L, Genini D, Laurini E, Merulla J, Perez L, Fermeglia M, Carbone GM, Pricl S and Catapano CV: Hitting the right spot: Mechanism of action of OPB-31121, a novel and potent inhibitor of the signal transducer and activator of transcription 3 (STAT3). Mol Oncol. 9:1194–1206. 2015. View Article : Google Scholar : PubMed/NCBI | |
Crooke ST, Baker BF, Crooke RM and Liang XH: Antisense technology: An overview and prospectus. Nat Rev Drug Discov. 20:427–453. 2021. View Article : Google Scholar : PubMed/NCBI | |
Odate S, Veschi V, Yan S, Lam N, Woessner R and Thiele CJ: Inhibition of STAT3 with the generation 2.5 antisense oligonucleotide, azd9150, decreases neuroblastoma tumorigenicity and increases Chemosensitivity. Clin Cancer Res. 23:1771–1784. 2017. View Article : Google Scholar : | |
Reilley MJ, McCoon P, Cook C, Lyne P, Kurzrock R, Kim Y, Woessner R, Younes A, Nemunaitis J, Fowler N, et al: STAT3 antisense oligonucleotide AZD9150 in a subset of patients with heavily pretreated lymphoma: Results of a phase 1b trial. J Immunother Cancer. 6:1192018. View Article : Google Scholar : PubMed/NCBI | |
Roschewski M, Patel MR, Reagan PM, Saba NS, Collins GP, Arkenau HT, de Vos S, Nuttall B, Acar M, Burke K, et al: Phase I study of acalabrutinib plus danvatirsen (AZD9150) in relapsed/refractory diffuse large B-cell lymphoma including circulating tumor DNA biomarker assessment. Clin Cancer Res. 29:3301–3312. 2023. View Article : Google Scholar : PubMed/NCBI | |
Cascone T, Kar G, Spicer JD, García-Campelo R, Weder W, Daniel DB, Spigel DR, Hussein M, Mazieres J, Oliveira J, et al: Neoadjuvant durvalumab alone or combined with novel immuno-oncology agents in resectable lung cancer: The phase II NeoCOAST platform trial. Cancer Discov. 13:2394–2411. 2023. View Article : Google Scholar : PubMed/NCBI | |
Shastri A, Choudhary G, Teixeira M, Gordon-Mitchell S, Ramachandra N, Bernard L, Bhattacharyya S, Lopez R, Pradhan K, Giricz O, et al: Antisense STAT3 inhibitor decreases viability of myelodysplastic and leukemic stem cells. J Clin Invest. 128:5479–5488. 2018. View Article : Google Scholar : PubMed/NCBI | |
Proia TA, Singh M, Woessner R, Carnevalli L, Bommakanti G, Magiera L, Srinivasan S, Grosskurth S, Collins M, Womack C, et al: STAT3 antisense oligonucleotide remodels the suppressive tumor microenvironment to enhance immune activation in combination with anti-PD-L1. Clin Cancer Res. 26:6335–6349. 2020. View Article : Google Scholar : PubMed/NCBI | |
Leong PL, Andrews GA, Johnson DE, Dyer KF, Xi S, Mai JC, Robbins PD, Gadiparthi S, Burke NA, Watkins SF and Grandis JR: Targeted inhibition of Stat3 with a decoy oligonucleotide abrogates head and neck cancer cell growth. Proc Natl Acad Sci USA. 100:4138–4143. 2003. View Article : Google Scholar : PubMed/NCBI | |
Xi S, Gooding WE and Grandis JR: In vivo antitumor efficacy of STAT3 blockade using a transcription factor decoy approach: Implications for cancer therapy. Oncogene. 24:970–979. 2005. View Article : Google Scholar | |
Zhang X, Zhang J, Wang L, Wei H and Tian Z: Therapeutic effects of STAT3 decoy oligodeoxynucleotide on human lung cancer in xenograft mice. BMC Cancer. 7:1492007. View Article : Google Scholar : PubMed/NCBI | |
Sen M, Thomas SM, Kim S, Yeh JI, Ferris RL, Johnson JT, Duvvuri U, Lee J, Sahu N, Joyce S, et al: First-in-human trial of a STAT3 decoy oligonucleotide in head and neck tumors: Implications for cancer therapy. Cancer Discov. 2:694–705. 2012. View Article : Google Scholar : PubMed/NCBI | |
Njatcha C, Farooqui M, Kornberg A, Johnson DE, Grandis JR and Siegfried JM: STAT3 cyclic decoy demonstrates robust antitumor effects in non-small cell lung cancer. Mol Cancer Ther. 17:1917–1926. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q, Hossain DMS, Duttagupta P, Moreira D, Zhao X, Won H, Buettner R, Nechaev S, Majka M, Zhang B, et al: Serum-resistant CpG-STAT3 decoy for targeting survival and immune checkpoint signaling in acute myeloid leukemia. Blood. 127:1687–1700. 2016. View Article : Google Scholar : PubMed/NCBI | |
Pettersson M and Crews CM: PROteolysis targeting chimeras (PROTACs)-past, present and future. Drug Discov Today Technol. 31:15–27. 2019. View Article : Google Scholar : PubMed/NCBI | |
Békés M, Langley DR and Crews CM: PROTAC targeted protein degraders: The past is prologue. Nat Rev Drug Discov. 21:181–200. 2022. View Article : Google Scholar : PubMed/NCBI | |
Bai L, Zhou H, Xu R, Zhao Y, Chinnaswamy K, McEachern D, Chen J, Yang CY, Liu Z, Wang M, et al: A potent and selective small-molecule degrader of STAT3 achieves complete tumor regression in vivo. Cancer Cell. 36:498–511.e17. 2019. View Article : Google Scholar : | |
Jin J, Wu Y, Zhao Z, Wu Y, Zhou YD, Liu S, Sun Q, Yang G, Lin J, Nagle DG, et al: Small-molecule PROTAC mediates targeted protein degradation to treat STAT3-dependent epithelial cancer. JCI Insight. 7:e1606062022. View Article : Google Scholar : PubMed/NCBI | |
Shih PC, Naganuma M, Tsuji G, Demizu Y and Naito M: Development of decoy oligonucleotide-warheaded chimeric molecules targeting STAT3. Bioorg Med Chem. 95:1175072023. View Article : Google Scholar : PubMed/NCBI | |
He X, Weng Z and Zou Y: Progress in the controllability technology of PROTAC. Eur J Med Chem. 265:1160962024. View Article : Google Scholar : PubMed/NCBI | |
Kang S, Tanaka T, Narazaki M and Kishimoto T: Targeting interleukin-6 signaling in clinic. Immunity. 50:1007–1023. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shen P, Wang Y, Jia X, Xu P, Qin L, Feng X, Li Z and Qiu Z: Dual-target Janus kinase (JAK) inhibitors: Comprehensive review on the JAK-based strategies for treating solid or hematological malignancies and immune-related diseases. Eur J Med Chem. 239:1145512022. View Article : Google Scholar : PubMed/NCBI | |
Liang D, Wang Q, Zhang W, Tang H, Song C, Yan Z, Liang Y and Wang H: JAK/STAT in leukemia: A clinical update. Mol Cancer. 23:252024. View Article : Google Scholar : PubMed/NCBI | |
Plimack ER, Lorusso PM, McCoon P, Tang W, Krebs AD, Curt G and Eckhardt SG: AZD1480: A phase I study of a novel JAK2 inhibitor in solid tumors. Oncologist. 18:819–820. 2013. View Article : Google Scholar : PubMed/NCBI | |
Deisseroth A, Ko CW, Nie L, Zirkelbach JF, Zhao L, Bullock J, Mehrotra N, Del Valle P, Saber H, Sheth C, et al: FDA approval: Siltuximab for the treatment of patients with multicentric Castleman disease. Clin Cancer Res. 21:950–954. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rossi JF, Lu ZY, Jourdan M and Klein B: Interleukin-6 as a therapeutic target. Clin Cancer Res. 21:1248–1257. 2015. View Article : Google Scholar : PubMed/NCBI | |
Dorff TB, Goldman B, Pinski JK, Mack PC, Lara PN Jr, Van Veldhuizen PJ Jr, Quinn DI, Vogelzang NJ, Thompson IM Jr and Hussain MH; Clinical and correlative results of SWOG S0354: A phase II trial of CNTO328 (siltuximab), a monoclonal antibody against interleukin-6, in chemotherapy-pretreated patients with castration-resistant prostate cancer. Clin Cancer Res. 16:3028–3034. 2010. View Article : Google Scholar : PubMed/NCBI | |
Angevin E, Tabernero J, Elez E, Cohen SJ, Bahleda R, van Laethem JL, Ottensmeier C, Lopez-Martin JA, Clive S, Joly F, et al: A phase I/II, multiple-dose, dose-escalation study of siltuximab, an anti-interleukin-6 monoclonal antibody, in patients with advanced solid tumors. Clin Cancer Res. 20:2192–2204. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fizazi K, De Bono JS, Flechon A, Heidenreich A, Voog E, Davis NB, Qi M, Bandekar R, Vermeulen JT, Cornfeld M and Hudes GR: Randomised phase II study of siltuximab (CNTO 328), an anti-IL-6 monoclonal antibody, in combination with mitoxantrone/prednisone versus mitoxantrone/prednisone alone in metastatic castration-resistant prostate cancer. Eur J Cancer. 48:85–93. 2012. View Article : Google Scholar | |
Beg MS, Brenner AJ, Sachdev J, Borad M, Kang YK, Stoudemire J, Smith S, Bader AG, Kim S and Hong DS: Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Invest New Drugs. 35:180–188. 2017. View Article : Google Scholar | |
Liu S, Wang L, Li Y, Cui Y, Wang Y and Liu C: Long non-coding RNA CHRF promotes proliferation and mesenchymal transition (EMT) in prostate cancer cell line PC3 requiring up-regulating microRNA-10b. Biol Chem. 400:1035–1045. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li Y and Xu X: The long noncoding RNA cardiac hypertrophy-related factor plays oncogenic roles in hepatocellular carcinoma by downregulating microRNA-211. J Cell Biochem. 120:13361–13371. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tao Y, Han T, Zhang T, Ma C and Sun C: LncRNA CHRF-induced miR-489 loss promotes metastasis of colorectal cancer via TWIST1/EMT signaling pathway. Oncotarget. 8:36410–36422. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gong J, Wang Y and Shu C: LncRNA CHRF promotes cell invasion and migration via EMT in gastric cancer. Eur Rev Med Pharmacol Sci. 24:1168–1176. 2020.PubMed/NCBI |