Heterogeneity of primary and metastatic CAFs: From differential treatment outcomes to treatment opportunities (Review)
- Authors:
- Zixing Kou
- Cun Liu
- Wenfeng Zhang
- Changgang Sun
- Lijuan Liu
- Qiming Zhang
-
Affiliations: College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China, College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China, State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa Island 999078, Macau SAR, Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong 621000, P.R. China - Published online on: April 4, 2024 https://doi.org/10.3892/ijo.2024.5642
- Article Number: 54
-
Copyright: © Kou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Garcia-Vicién G, Mezheyeuski A, Bañuls M, Ruiz-Roig N and Molleví DG: The Tumor microenvironment in liver metastases from colorectal carcinoma in the context of the histologic growth patterns. Int J Mol Sci. 22:15442021. View Article : Google Scholar : PubMed/NCBI | |
Luo F, Li J, Wu S, Wu X, Chen M, Zhong X and Liu K: Comparative profiling between primary colorectal carcinomas and metastases identifies heterogeneity on drug resistance. Oncotarget. 7:63937–63949. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hu Z, Li Z, Ma Z and Curtis C: Multi-cancer analysis of clonality and the timing of systemic spread in paired primary tumors and metastases. Nat Genet. 52:701–708. 2020. View Article : Google Scholar : PubMed/NCBI | |
Korentzelos D, Clark AM and Wells A: A perspective on therapeutic pan-resistance in metastatic cancer. Int J Mol Sci. 21:73042020. View Article : Google Scholar : PubMed/NCBI | |
Hirata E and Sahai E: Tumor microenvironment and differential responses to therapy. Cold Spring Harb Perspect Med. 7:a0267812017. View Article : Google Scholar : PubMed/NCBI | |
Jiménez-Sánchez A, Memon D, Pourpe S, Veeraraghavan H, Li Y, Vargas HA, Gill MB, Park KJ, Zivanovic O, Konner J, et al: Heterogeneous tumor-immune microenvironments among differentially growing metastases in an ovarian cancer patient. Cell. 170:927–938.e20. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mao X, Xu J, Wang W, Liang C, Hua J, Liu J, Zhang B, Meng Q, Yu X and Shi S: Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: New findings and future perspectives. Mol Cancer. 20:1312021. View Article : Google Scholar : PubMed/NCBI | |
Gui Y, Aguilar-Mahecha A, Krzemien U, Hosein A, Buchanan M, Lafleur J, Pollak M, Ferrario C and Basik M: Metastatic breast carcinoma-associated fibroblasts have enhanced protumorigenic properties related to increased IGF2 expression. Clin Cancer Res. 25:7229–7242. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kalluri R: The biology and function of fibroblasts in cancer. Nat Rev Cancer. 16:582–598. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen X and Song E: Turning foes to friends: Targeting cancer-associated fibroblasts. Nat Rev Drug Discov. 18:99–115. 2019. View Article : Google Scholar | |
Park D, Sahai E and Rullan A: SnapShot: Cancer-associated fibroblasts. Cell. 181:486–486.e1. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shen Y, Wang X, Lu J, Salfenmoser M, Wirsik NM, Schleussner N, Imle A, Freire Valls A, Radhakrishnan P, Liang J, et al: Reduction of liver metastasis stiffness improves response to bevacizumab in metastatic colorectal cancer. Cancer Cell. 37:800–817.e7. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ziemys A, Simic V, Milosevic M, Kojic M, Liu YT and Yokoi K: Attenuated microcirculation in small metastatic tumors in murine liver. Pharmaceutics. 13:7032021. View Article : Google Scholar : PubMed/NCBI | |
Cox TR: The matrix in cancer. Nat Rev Cancer. 21:217–238. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gertych A, Walts AE, Cheng K, Liu M, John J, Lester J, Karlan BY and Orsulic S: Dynamic changes in the extracellular matrix in primary, metastatic, and recurrent ovarian cancers. Cells. 11:73692022. View Article : Google Scholar | |
Fujimori D, Kinoshita J, Yamaguchi T, Nakamura Y, Gunjigake K, Ohama T, Sato K, Yamamoto M, Tsukamoto T, Nomura S, et al: Established fibrous peritoneal metastasis in an immunocompetent mouse model similar to clinical immune microenvironment of gastric cancer. BMC Cancer. 20:10142020. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Liu J, Huang H, Ye M, Li X, Wu R, Liu H and Song Y: Metastasis-associated fibroblasts: an emerging target for metastatic cancer. Biomark Res. 9:472021. View Article : Google Scholar : PubMed/NCBI | |
Biffi G and Tuveson DA: Diversity and biology of cancer-associated fibroblasts. Physiol Rev. 101:147–176. 2021. View Article : Google Scholar : | |
Miyashita N and Saito A: Organ specificity and heterogeneity of cancer-associated fibroblasts in colorectal cancer. Int J Mol Sci. 22:109732021. View Article : Google Scholar : PubMed/NCBI | |
Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, Fearon D, Greten FR, Hingorani SR, Hunter T, et al: A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 20:174–186. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ganguly D, Chandra R, Karalis J, Teke M, Aguilera T, Maddipati R, Wachsmann MB, Ghersi D, Siravegna G, Zeh HJ III, et al: Cancer-associated fibroblasts: versatile players in the tumor microenvironment. Cancers (Basel). 12:26522020. View Article : Google Scholar : PubMed/NCBI | |
Bu L, Baba H, Yoshida N, Miyake K, Yasuda T, Uchihara T, Tan P and Ishimoto T: Biological heterogeneity and versatility of cancer-associated fibroblasts in the tumor microenvironment. Oncogene. 38:4887–4901. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bartoschek M, Oskolkov N, Bocci M, Lövrot J, Larsson C, Sommarin M, Madsen CD, Lindgren D, Pekar G, Karlsson G, et al: Spatially and functionally distinct subclasses of breast cancer-associated fibroblasts revealed by single cell RNA sequencing. Nat Commun. 9:51502018. View Article : Google Scholar : PubMed/NCBI | |
Potenta S, Zeisberg E and Kalluri R: The role of endothelial-to-mesenchymal transition in cancer progression. Br J Cancer. 99:1375–1379. 2008. View Article : Google Scholar : PubMed/NCBI | |
Quante M, Tu SP, Tomita H, Gonda T, Wang SS, Takashi S, Baik GH, Shibata W, Diprete B, Betz KS, et al: Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell. 19:257–272. 2011. View Article : Google Scholar : PubMed/NCBI | |
Rhim AD, Mirek ET, Aiello NM, Maitra A, Bailey JM, McAllister F, Reichert M, Beatty GL, Rustgi AK, Vonderheide RH, et al: EMT and dissemination precede pancreatic tumor formation. Cell. 148:349–361. 2012. View Article : Google Scholar : PubMed/NCBI | |
Dulauroy S, Di Carlo SE, Langa F, Eberl G and Peduto L: Lineage tracing and genetic ablation of ADAM12(+) perivascular cells identify a major source of profibrotic cells during acute tissue injury. Nat Med. 18:1262–1270. 2012. View Article : Google Scholar : PubMed/NCBI | |
Rinkevich Y, Mori T, Sahoo D, Xu PX, Bermingham JR Jr and Weissman IL: Identification and prospective isolation of a mesothelial precursor lineage giving rise to smooth muscle cells and fibroblasts for mammalian internal organs, and their vasculature. Nat Cell Biol. 14:1251–1260. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liu T, Han C, Wang S, Fang P, Ma Z, Xu L and Yin R: Cancer-associated fibroblasts: An emerging target of anti-cancer immunotherapy. J Hematol Oncol. 12:862019. View Article : Google Scholar : PubMed/NCBI | |
Bielczyk-Maczynska E: White adipocyte plasticity in physiology and disease. Cells. 8:15072019. View Article : Google Scholar : PubMed/NCBI | |
Huang X, He C, Hua X, Kan A, Mao Y, Sun S, Duan F, Wang J, Huang P and Li S: Oxidative stress induces monocyte-to-myofibroblast transdifferentiation through p38 in pancreatic ductal adenocarcinoma. Clin Transl Med. 10:e412020. View Article : Google Scholar : PubMed/NCBI | |
Yamamoto G, Taura K, Iwaisako K, Asagiri M, Ito S, Koyama Y, Tanabe K, Iguchi K, Satoh M, Nishio T, et al: Pancreatic stellate cells have distinct characteristics from hepatic stellate cells and are not the unique origin of collagen-producing cells in the pancreas. Pancreas. 46:1141–1151. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bachem MG, Schünemann M, Ramadani M, Siech M, Beger H, Buck A, Zhou S, Schmid-Kotsas A and Adler G: Pancreatic carcinoma cells induce fibrosis by stimulating proliferation and matrix synthesis of stellate cells. Gastroenterology. 128:907–921. 2005. View Article : Google Scholar : PubMed/NCBI | |
Erez N: Fibroblasts form a hospitable metastatic niche in the liver. Nat Cell Biol. 18:465–466. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bhattacharjee S, Hamberger F, Ravichandra A, Miller M, Nair A, Affo S, Filliol A, Chin L, Savage TM, Yin D, et al: Tumor restriction by type I collagen opposes tumor-promoting effects of cancer-associated fibroblasts. J Clin Invest. 131:e1469872021. View Article : Google Scholar : PubMed/NCBI | |
Omary MB, Lugea A, Lowe AW and Pandol SJ: The pancreatic stellate cell: A star on the rise in pancreatic diseases. J Clin Invest. 117:50–59. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kisseleva T: The origin of fibrogenic myofibroblasts in fibrotic liver. Hepatology. 65:1039–1043. 2017. View Article : Google Scholar | |
Klopp AH, Spaeth EL, Dembinski JL, Woodward WA, Munshi A, Meyn RE, Cox JD, Andreeff M and Marini FC: Tumor irradiation increases the recruitment of circulating mesenchymal stem cells into the tumor microenvironment. Cancer Res. 67:11687–11695. 2007. View Article : Google Scholar : PubMed/NCBI | |
Spaeth EL, Dembinski JL, Sasser AK, Watson K, Klopp A, Hall B, Andreeff M and Marini F: Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS One. 4:e49922009. View Article : Google Scholar : PubMed/NCBI | |
Mi Z, Bhattacharya SD, Kim VM, Guo H, Talbot LJ and Kuo PC: Osteopontin promotes CCL5-mesenchymal stromal cell-mediated breast cancer metastasis. Carcinogenesis. 32:477–487. 2011. View Article : Google Scholar : PubMed/NCBI | |
Raz Y, Cohen N, Shani O, Bell RE, Novitskiy SV, Abramovitz L, Levy C, Milyavsky M, Leider-Trejo L, Moses HL, et al: Bone marrow-derived fibroblasts are a functionally distinct stromal cell population in breast cancer. J Exp Med. 215:3075–3093. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Wang H, He J, Yuan X and Sun W: Rictor ablation in BMSCs inhibits bone metastasis of TM40D cells by attenuating osteolytic destruction and CAF formation. Int J Biol Sci. 15:2448–2460. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jiang Z, Zhou J, Li L, Liao S, He J, Zhou S and Zhou Y: Pericytes in the tumor microenvironment. Cancer Lett. 556:2160742023. View Article : Google Scholar : PubMed/NCBI | |
Hosaka K, Yang Y, Seki T, Fischer C, Dubey O, Fredlund E, Hartman J, Religa P, Morikawa H, Ishii Y, et al: Pericyte-fibroblast transition promotes tumor growth and metastasis. Proc Natl Acad Sci USA. 113:E5618–E5627. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bakir B, Chiarella AM, Pitarresi JR and Rustgi AK: EMT, MET, plasticity, and tumor metastasis. Trends Cell Biol. 30:764–776. 2020. View Article : Google Scholar : PubMed/NCBI | |
Erez N, Truitt M, Olson P, Arron ST and Hanahan D: Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell. 17:135–147. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sharon Y, Raz Y, Cohen N, Ben-Shmuel A, Schwartz H, Geiger T and Erez N: Tumor-derived osteopontin reprograms normal mammary fibroblasts to promote inflammation and tumor growth in breast cancer. Cancer Res. 75:963–973. 2015. View Article : Google Scholar : PubMed/NCBI | |
Vu LT, Peng B, Zhang DX, Ma V, Mathey-Andrews CA, Lam CK, Kiomourtzis T, Jin J, McReynolds L, Huang L, et al: Tumor-secreted extracellular vesicles promote the activation of cancer-associated fibroblasts via the transfer of microRNA-125b. J Extracell Vesicles. 8:15996802019. View Article : Google Scholar : PubMed/NCBI | |
Gong Z, Li Q, Shi J, Wei J, Li P, Chang CH, Shultz LD and Ren G: Lung fibroblasts facilitate pre-metastatic niche formation by remodeling the local immune microenvironment. Immunity. 55:1483–1500.e9. 2022. View Article : Google Scholar : PubMed/NCBI | |
D'Arcangelo E, Wu NC, Cadavid JL and McGuigan AP: The life cycle of cancer-associated fibroblasts within the tumour stroma and its importance in disease outcome. Br J Cancer. 122:931–942. 2020. View Article : Google Scholar : PubMed/NCBI | |
Koliaraki V, Pallangyo CK, Greten FR and Kollias G: Mesenchymal cells in colon cancer. Gastroenterology. 152:964–979. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hawinkels LJAC, Paauwe M, Verspaget HW, Wiercinska E, van der Zon JM, van der Ploeg K, Koelink PJ, Lindeman JHN, Mesker W, ten Dijke P and Sier CFM: Interaction with colon cancer cells hyperactivates TGF-β signaling in cancer-associated fibroblasts. Oncogene. 33:97–107. 2014. View Article : Google Scholar | |
Kobayashi H, Gieniec KA, Lannagan TRM, Wang T, Asai N, Mizutani Y, Iida T, Ando R, Thomas EM, Sakai A, et al: The origin and contribution of cancer-associated fibroblasts in colorectal carcinogenesis. Gastroenterology. 162:890–906. 2022. View Article : Google Scholar | |
Shinagawa K, Kitadai Y, Tanaka M, Sumida T, Kodama M, Higashi Y, Tanaka S, Yasui W and Chayama K: Mesenchymal stem cells enhance growth and metastasis of colon cancer. Int J Cancer. 127:2323–2333. 2010. View Article : Google Scholar : PubMed/NCBI | |
Flier SN, Tanjore H, Kokkotou EG, Sugimoto H, Zeisberg M and Kalluri R: Identification of epithelial to mesenchymal transition as a novel source of fibroblasts in intestinal fibrosis. J Biol Chem. 285:20202–20212. 2010. View Article : Google Scholar : PubMed/NCBI | |
Apte MV, Park S, Phillips PA, Santucci N, Goldstein D, Kumar RK, Ramm GA, Buchler M, Friess H, McCarroll JA, et al: Desmoplastic reaction in pancreatic cancer: Role of pancreatic stellate cells. Pancreas. 29:179–187. 2004. View Article : Google Scholar : PubMed/NCBI | |
Houg DS and Bijlsma MF: The hepatic pre-metastatic niche in pancreatic ductal adenocarcinoma. Mol Cancer. 17:952018. View Article : Google Scholar : PubMed/NCBI | |
Öhlund D, Handly-Santana A, Biffi G, Elyada E, Almeida AS, Ponz-Sarvise M, Corbo V, Oni TE, Hearn SA, Lee EJ, et al: Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J Exp Med. 214:579–596. 2017. View Article : Google Scholar : PubMed/NCBI | |
Elyada E, Bolisetty M, Laise P, Flynn WF, Courtois ET, Burkhart RA, Teinor JA, Belleau P, Biffi G, Lucito MS, et al: Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov. 9:1102–1123. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tsoumakidou M: The advent of immune stimulating CAFs in cancer. Nat Rev Cancer. 23:258–269. 2023. View Article : Google Scholar : PubMed/NCBI | |
Dominguez CX, Müller S, Keerthivasan S, Koeppen H, Hung J, Gierke S, Breart B, Foreman O, Bainbridge TW, Castiglioni A, et al: Single-cell RNA sequencing reveals stromal evolution into LRRC15+ myofibroblasts as a determinant of patient response to cancer immunotherapy. Cancer Discov. 10:232–253. 2020. View Article : Google Scholar | |
Huang H, Wang Z, Zhang Y, Pradhan RN, Ganguly D, Chandra R, Murimwa G, Wright S, Gu X, Maddipati R, et al: Mesothelial cell-derived antigen-presenting cancer-associated fibroblasts induce expansion of regulatory T cells in pancreatic cancer. Cancer Cell. 40:656–673.e7. 2022. View Article : Google Scholar : | |
Iwaisako K, Jiang C, Zhang M, Cong M, Moore-Morris TJ, Park TJ, Liu X, Xu J, Wang P, Paik YH, et al: Origin of myofibroblasts in the fibrotic liver in mice. Proc Natl Acad Sci USA. 111:E3297–E3305. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lua I, Li Y, Zagory JA, Wang KS, French SW, Sévigny J and Asahina K: Characterization of hepatic stellate cells, portal fibroblasts, and mesothelial cells in normal and fibrotic livers. J Hepatol. 64:1137–1146. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tsuchida T and Friedman SL: Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol. 14:397–411. 2017. View Article : Google Scholar : PubMed/NCBI | |
O'Hara SP and LaRusso NF: Portal fibroblasts: A renewable source of liver myofibroblasts. Hepatology. 76:1240–1242. 2022. View Article : Google Scholar : PubMed/NCBI | |
Xie Z, Gao Y, Ho C, Li L, Jin C, Wang X, Zou C, Mao Y, Wang X, Li Q, et al: Exosome-delivered CD44v6/C1QBP complex drives pancreatic cancer liver metastasis by promoting fibrotic liver microenvironment. Gut. 71:568–579. 2022. View Article : Google Scholar | |
Giguelay A, Turtoi E, Khelaf L, Tosato G, Dadi I, Chastel T, Poul MA, Pratlong M, Nicolescu S, Severac D, et al: The landscape of cancer-associated fibroblasts in colorectal cancer liver metastases. Theranostics. 12:7624–7639. 2022. View Article : Google Scholar : PubMed/NCBI | |
Tan HX, Gong WZ, Zhou K, Xiao ZG, Hou FT, Huang T, Zhang L, Dong HY, Zhang WL, Liu Y and Huang ZC: CXCR4/TGF-β1 mediated hepatic stellate cells differentiation into carcinoma-associated fibroblasts and promoted liver metastasis of colon cancer. Cancer Biol Ther. 21:258–268. 2020. View Article : Google Scholar | |
Mukaida N, Zhang D and Sasaki SI: Emergence of cancer-associated fibroblasts as an indispensable cellular player in bone metastasis process. Cancers (Basel). 12:28962020. View Article : Google Scholar : PubMed/NCBI | |
Houthuijzen JM and de Visser KE: The lung fibroblast as 'soil fertilizer' in breast cancer metastasis. Immunity. 55:1336–1339. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chang HY, Chi JT, Dudoit S, Bondre C, van de Rijn M, Botstein D and Brown PO: Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc Natl Acad Sci USA. 99:12877–12882. 2002. View Article : Google Scholar : PubMed/NCBI | |
Apte MV, Wilson JS, Lugea A and Pandol SJ: A starring role for stellate cells in the pancreatic cancer microenvironment. Gastroenterology. 144:1210–1219. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hessmann E, Patzak MS, Klein L, Chen N, Kari V, Ramu I, Bapiro TE, Frese KK, Gopinathan A, Richards FM, et al: Fibroblast drug scavenging increases intratumoural gemcitabine accumulation in murine pancreas cancer. Gut. 67:497–507. 2018. View Article : Google Scholar | |
Helms EJ, Berry MW, Chaw RC, DuFort CC, Sun D, Onate MK, Oon C, Bhattacharyya S, Sanford-Crane H, Horton W, et al: Mesenchymal lineage heterogeneity underlies nonredundant functions of pancreatic cancer-associated fibroblasts. Cancer Discov. 12:484–501. 2022. View Article : Google Scholar | |
Garcia PE, Adoumie M, Kim EC, Zhang Y, Scales MK, El-Tawil YS, Shaikh AZ, Wen HJ, Bednar F, Allen BL, et al: Differential contribution of pancreatic fibroblast subsets to the pancreatic cancer stroma. Cell Mol Gastroenterol Hepatol. 10:581–599. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Bian Y, Wang Y, Wang Y, Duan X, Han Y, Zhang L, Wang F, Gu Z and Qin Z: HIF-1α is necessary for activation and tumour-promotion effect of cancer-associated fibroblasts in lung cancer. J Cell Mol Med. 25:5457–5469. 2021. View Article : Google Scholar : PubMed/NCBI | |
Shintani Y, Fujiwara A, Kimura T, Kawamura T, Funaki S, Minami M and Okumura M: IL-6 secreted from cancer-associated fibroblasts mediates chemoresistance in NSCLC by increasing epithelial-mesenchymal transition signaling. J Thorac Oncol. 11:1482–1492. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gottschling S, Granzow M, Kuner R, Jauch A, Herpel E, Xu EC, Muley T, Schnabel PA, Herth FJ and Meister M: Mesenchymal stem cells in non-small cell lung cancer-different from others? Insights from comparative molecular and functional analyses. Lung Cancer. 80:19–29. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Shui L, Chen R and Chen Y, Guo J and Chen Y: Occurrence and prognosis of lung cancer metastasis to major organs: A population-based study. Eur J Cancer Prev. 32:246–253. 2023. View Article : Google Scholar : PubMed/NCBI | |
Kong J, Tian H, Zhang F, Zhang Z, Li J, Liu X, Li X, Liu J, Li X, Jin D, et al: Extracellular vesicles of carcinoma-associated fibroblasts creates a pre-metastatic niche in the lung through activating fibroblasts. Mol Cancer. 18:1752019. View Article : Google Scholar : PubMed/NCBI | |
Duda DG, Duyverman AM, Kohno M, Snuderl M, Steller EJ, Fukumura D and Jain RK: Malignant cells facilitate lung metastasis by bringing their own soil. Proc Natl Acad Sci USA. 107:21677–21682. 2010. View Article : Google Scholar : PubMed/NCBI | |
Buchsbaum RJ and Oh SY: Breast cancer-associated fibroblasts: Where We Are And Where We Need To Go. Cancers (Basel). 8:192016. View Article : Google Scholar : PubMed/NCBI | |
Hu D, Li Z, Zheng B, Lin X, Pan Y, Gong P, Zhuo W, Hu Y, Chen C, Chen L, et al: Cancer-associated fibroblasts in breast cancer: Challenges and opportunities. Cancer Commun (Lond). 42:401–434. 2022. View Article : Google Scholar : PubMed/NCBI | |
Friedman G, Levi-Galibov O, David E, Bornstein C, Giladi A, Dadiani M, Mayo A, Halperin C, Pevsner-Fischer M, Lavon H, et al: Cancer-associated fibroblast compositions change with breast cancer progression linking the ratio of S100A4+ and PDPN+ CAFs to clinical outcome. Nat Cancer. 1:692–708. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang XHF, Jin X, Malladi S, Zou Y, Wen YH, Brogi E, Smid M, Foekens JA and Massagué J: Selection of bone metastasis seeds by mesenchymal signals in the primary tumor stroma. Cell. 154:1060–1073. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kuo MC, Kothari AN, Kuo PC and Mi Z: Cancer stemness in bone marrow micrometastases of human breast cancer. Surgery. 163:330–335. 2018. View Article : Google Scholar | |
Ban J, Fock V, Aryee DNT and Kovar H: Mechanisms, diagnosis and treatment of bone metastases. Cells. 10:29442021. View Article : Google Scholar : PubMed/NCBI | |
Haider MT, Smit DJ and Taipaleenmäki H: The endosteal niche in breast cancer bone metastasis. Front Oncol. 10:3352020. View Article : Google Scholar : PubMed/NCBI | |
Croucher PI, McDonald MM and Martin TJ: Bone metastasis: The importance of the neighbourhood. Nat Rev Cancer. 16:373–386. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cassell K, Thomas-Lopez D, Kjelsø C and Uldum S: Provincial trends in Legionnaires' disease are not explained by population structure in Denmark, 2015 to 2018. Euro Surveill. 26:20000362021. View Article : Google Scholar : PubMed/NCBI | |
Mundim FGL, Pasini FS, Nonogaki S, Rocha RM, Soares FA, Brentani MM and Logullo AF: Breast carcinoma-associated fibroblasts share similar biomarker profiles in matched lymph node metastasis. Appl Immunohistochem Mol Morphol. 24:712–720. 2016. View Article : Google Scholar : PubMed/NCBI | |
Del Valle PR, Milani C, Brentani MM, Katayama ML, de Lyra EC, Carraro DM, Brentani H, Puga R, Lima LA, Rozenchan PB, et al: Transcriptional profile of fibroblasts obtained from the primary site, lymph node and bone marrow of breast cancer patients. Genet Mol Biol. 37:480–489. 2014. View Article : Google Scholar : PubMed/NCBI | |
Puram SV, Tirosh I, Parikh AS, Patel AP, Yizhak K, Gillespie S, Rodman C, Luo CL, Mroz EA, Emerick KS, et al: Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell. 171:1611–1624.e24. 2017. View Article : Google Scholar : PubMed/NCBI | |
Han L, Wu Y, Fang K, Sweeney S, Roesner UK, Parrish M, Patel K, Walter T, Piermattei J, Trimboli A, et al: The splanchnic mesenchyme is the tissue of origin for pancreatic fibroblasts during homeostasis and tumorigenesis. Nat Commun. 14:12023. View Article : Google Scholar : PubMed/NCBI | |
Nielsen SR, Quaranta V, Linford A, Emeagi P, Rainer C, Santos A, Ireland L, Sakai T, Sakai K, Kim YS, et al: Macrophage-secreted granulin supports pancreatic cancer metastasis by inducing liver fibrosis. Nat Cell Biol. 18:549–560. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Wang XY, Zhang P, He TC, Han JH, Zhang R, Lin J, Fan J, Lu L, Zhu WW, et al: Cancer-derived exosomal HSPC111 promotes colorectal cancer liver metastasis by reprogramming lipid metabolism in cancer-associated fibroblasts. Cell Death Dis. 13:572022. View Article : Google Scholar : PubMed/NCBI | |
Calon A, Espinet E, Palomo-Ponce S, Tauriello DV, Iglesias M, Céspedes MV, Sevillano M, Nadal C, Jung P, Zhang XH, et al: Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation. Cancer Cell. 22:571–584. 2012. View Article : Google Scholar : PubMed/NCBI | |
Shi M, Zhu J, Wang R, Chen X, Mi L, Walz T and Springer TA: Latent TGF-β structure and activation. Nature. 474:343–349. 2011. View Article : Google Scholar : PubMed/NCBI | |
Massagué J: TGFbeta signalling in context. Nat Rev Mol Cell Biol. 13:616–630. 2012. View Article : Google Scholar | |
Su J, Morgani SM, David CJ, Wang Q, Er EE, Huang YH, Basnet H, Zou Y, Shu W, Soni RK, et al: TGF-β orchestrates fibrogenic and developmental EMTs via the RAS effector RREB1. Nature. 577:566–571. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kojima Y, Acar A, Eaton EN, Mellody KT, Scheel C, Ben-Porath I, Onder TT, Wang ZC, Richardson AL, Weinberg RA and Orimo A: Autocrine TGF-beta and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc Natl Acad Sci USA. 107:20009–20014. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chen IX, Chauhan VP, Posada J, Ng MR, Wu MW, Adstamongkonkul P, Huang P, Lindeman N, Langer R and Jain RK: Blocking CXCR4 alleviates desmoplasia, increases T-lymphocyte infiltration, and improves immunotherapy in metastatic breast cancer. Proc Natl Acad Sci USA. 116:4558–4566. 2019. View Article : Google Scholar : PubMed/NCBI | |
Eckert MA, Coscia F, Chryplewicz A, Chang JW, Hernandez KM, Pan S, Tienda SM, Nahotko DA, Li G, Blaženović I, et al: Proteomics reveals NNMT as a master metabolic regulator of cancer-associated fibroblasts. Nature. 569:723–728. 2019. View Article : Google Scholar : PubMed/NCBI | |
Biffi G, Oni TE, Spielman B, Hao Y, Elyada E, Park Y, Preall J and Tuveson DA: IL1-induced JAK/STAT signaling is antagonized by TGFβ to shape CAF heterogeneity in pancreatic ductal adenocarcinoma. Cancer Discov. 9:282–301. 2019. View Article : Google Scholar | |
Chen Y, McAndrews KM and Kalluri R: Clinical and therapeutic relevance of cancer-associated fibroblasts. Nat Rev Clin Oncol. 18:792–804. 2021. View Article : Google Scholar : PubMed/NCBI | |
Maehira H, Miyake T, Iida H, Tokuda A, Mori H, Yasukawa D, Mukaisho KI, Shimizu T and Tani M: Vimentin expression in tumor microenvironment predicts survival in pancreatic ductal adenocarcinoma: Heterogeneity in fibroblast population. Ann Surg Oncol. 26:4791–4804. 2019. View Article : Google Scholar : PubMed/NCBI | |
Paulsson J and Micke P: Prognostic relevance of cancer-associated fibroblasts in human cancer. Semin Cancer Biol. 25:61–68. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kim HM, Jung WH and Koo JS: Expression of cancer-associated fibroblast related proteins in metastatic breast cancer: An immunohistochemical analysis. J Transl Med. 13:2222015. View Article : Google Scholar : PubMed/NCBI | |
Koerber SA, Staudinger F, Kratochwil C, Adeberg S, Haefner MF, Ungerechts G, Rathke H, Winter E, Lindner T, Syed M, et al: The role of 68Ga-FAPI PET/CT for patients with malignancies of the lower gastrointestinal tract: First clinical experience. J Nucl Med. 61:1331–1336. 2020. View Article : Google Scholar : PubMed/NCBI | |
Altmann A, Haberkorn U and Siveke J: The latest developments in imaging of fibroblast activation protein. J Nucl Med. 62:160–167. 2021. View Article : Google Scholar | |
Imlimthan S, Moon ES, Rathke H, Afshar-Oromieh A, Rösch F, Rominger A and Gourni E: New frontiers in cancer imaging and therapy based on radiolabeled fibroblast activation protein inhibitors: A rational review and current progress. Pharmaceuticals (Basel). 14:10232021. View Article : Google Scholar : PubMed/NCBI | |
Zhao L, Chen J, Pang Y, Fu K, Shang Q, Wu H, Sun L, Lin Q and Chen H: Fibroblast activation protein-based theranostics in cancer research: A state-of-the-art review. Theranostics. 12:1557–1569. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zubaľ M, Výmolová B, Matrasová I, Výmola P, Vepřková J, Syrůček M, Tomáš R, Vaníčková Z, Křepela E, Konečná D, et al: Fibroblast activation protein as a potential theranostic target in brain metastases of diverse solid tumours. Pathology. 55:806–817. 2023. View Article : Google Scholar | |
Peltier A, Seban RD, Buvat I, Bidard FC and Mechta-Grigoriou F: Fibroblast heterogeneity in solid tumors: From single cell analysis to whole-body imaging. Semin Cancer Biol. 86:262–272. 2022. View Article : Google Scholar : PubMed/NCBI | |
Taralli S, Lorusso M, Perrone E, Perotti G, Zagaria L and Calcagni ML: PET/CT with fibroblast activation protein inhibitors in breast cancer: Diagnostic and theranostic application-A literature review. Cancers (Basel). 15:9082023. View Article : Google Scholar : PubMed/NCBI | |
Dong Y, Zhou H, Alhaskawi A, Wang Z, Lai J, Yao C, Liu Z, Hasan Abdullah Ezzi S, Goutham Kota V, Hasan Abdulla Hasan Abdulla M and Lu H: The superiority of fibroblast activation protein inhibitor (FAPI) PET/CT versus FDG PET/CT in the diagnosis of various malignancies. Cancers (Basel). 15:11932023. View Article : Google Scholar : PubMed/NCBI | |
Serfling S, Zhi Y, Schirbel A, Lindner T, Meyer T, Gerhard-Hartmann E, Lapa C, Hagen R, Hackenberg S, Buck AK and Scherzad A: Improved cancer detection in Waldeyer's tonsillar ring by 68Ga-FAPI PET/CT imaging. Eur J Nucl Med Mol Imaging. 48:1178–1187. 2021. View Article : Google Scholar | |
Mona CE, Benz MR, Hikmat F, Grogan TR, Lueckerath K, Razmaria A, Riahi R, Slavik R, Girgis MD, Carlucci G, et al: Correlation of 68Ga-FAPi-46 PET biodistribution with FAP expression by immunohistochemistry in patients with solid cancers: Interim analysis of a prospective translational exploratory study. J Nucl Med. 63:1021–1026. 2022. View Article : Google Scholar : | |
Sollini M, Kirienko M, Gelardi F, Fiz F, Gozzi N and Chiti A: State-of-the-art of FAPI-PET imaging: A systematic review and meta-analysis. Eur J Nucl Med Mol Imaging. 48:4396–4414. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yazdani S, Bansal R and Prakash J: Drug targeting to myofibroblasts: Implications for fibrosis and cancer. Adv Drug Deliv Rev. 121:101–116. 2017. View Article : Google Scholar : PubMed/NCBI | |
Becker LM, O'Connell JT, Vo AP, Cain MP, Tampe D, Bizarro L, Sugimoto H, McGow AK, Asara JM, Lovisa S, et al: Epigenetic reprogramming of cancer-associated fibroblasts deregulates glucose metabolism and facilitates progression of breast cancer. Cell Rep. 31:1077012020. View Article : Google Scholar : PubMed/NCBI | |
Muchlińska A, Nagel A, Popęda M, Szade J, Niemira M, Zieliński J, Skokowski J, Bednarz-Knoll N and Żaczek AJ: Alpha-smooth muscle actin-positive cancer-associated fibroblasts secreting osteopontin promote growth of luminal breast cancer. Cell Mol Biol Lett. 27:452022. View Article : Google Scholar | |
Kwak Y, Lee HE, Kim WH, Kim DW, Kang SB and Lee HS: The clinical implication of cancer-associated microvasculature and fibroblast in advanced colorectal cancer patients with synchronous or metachronous metastases. PLoS One. 9:e918112014. View Article : Google Scholar : PubMed/NCBI | |
Itou RA, Uyama N, Hirota S, Kawada N, Wu S, Miyashita S, Nakamura I, Suzumura K, Sueoka H, Okada T, et al: Immunohistochemical characterization of cancer-associated fibroblasts at the primary sites and in the metastatic lymph nodes of human intrahepatic cholangiocarcinoma. Hum Pathol. 83:77–89. 2019. View Article : Google Scholar | |
Borriello L, Nakata R, Sheard MA, Fernandez GE, Sposto R, Malvar J, Blavier L, Shimada H, Asgharzadeh S, Seeger RC and DeClerck YA: Cancer-associated fibroblasts share characteristics and protumorigenic activity with mesenchymal stromal cells. Cancer Res. 77:5142–5157. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Chen L, Liu X, Kammertoens T, Blankenstein T and Qin Z: Fibroblast-specific protein 1/S100A4-positive cells prevent carcinoma through collagen production and encapsulation of carcinogens. Cancer Res. 73:2770–2781. 2013. View Article : Google Scholar : PubMed/NCBI | |
Shindo K, Aishima S, Ohuchida K, Fujiwara K, Fujino M, Mizuuchi Y, Hattori M, Mizumoto K, Tanaka M and Oda Y: Podoplanin expression in cancer-associated fibroblasts enhances tumor progression of invasive ductal carcinoma of the pancreas. Mol Cancer. 12:1682013. View Article : Google Scholar : PubMed/NCBI | |
Kubouchi Y, Yurugi Y, Wakahara M, Sakabe T, Haruki T, Nosaka K, Miwa K, Araki K, Taniguchi Y, Shiomi T, et al: Podoplanin expression in cancer-associated fibroblasts predicts unfavourable prognosis in patients with pathological stage IA lung adenocarcinoma. Histopathology. 72:490–499. 2018. View Article : Google Scholar | |
Zhou Q, Wang Z, Zeng H, Zhang H, Liu Z, Huang Q, Wang J, Chang Y, Bai Q, Liu L, et al: Identification and validation of poor prognosis immunoevasive subtype of muscle-invasive bladder cancer with tumor-infiltrating podoplanin+ cell abundance. Oncoimmunology. 9:17473332020. View Article : Google Scholar | |
Wang P, Song L, Ge H, Jin P, Jiang Y, Hu W and Geng N: Crenolanib, a PDGFR inhibitor, suppresses lung cancer cell proliferation and inhibits tumor growth in vivo. Onco Targets Ther. 7:1761–1768. 2014. View Article : Google Scholar : PubMed/NCBI | |
Matsuwaki R, Ishii G, Zenke Y, Neri S, Aokage K, Hishida T, Yoshida J, Fujii S, Kondo H, Goya T, et al: Immunophenotypic features of metastatic lymph node tumors to predict recurrence in N2 lung squamous cell carcinoma. Cancer Sci. 105:905–911. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lavie D, Ben-Shmuel A, Erez N and Scherz-Shouval R: Cancer-associated fibroblasts in the single-cell era. Nat Cancer. 3:793–807. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Zhu R, Yu D, Wang J, Yan Y and Xu K: Single-cell RNA sequencing to explore cancer-associated fibroblasts heterogeneity: 'Single' vision for 'heterogeneous' environment. Cell Prolif. e135922023.Epub ahead of print. View Article : Google Scholar | |
Li C, Wu H, Guo L, Liu D, Yang S, Li S and Hua K: Single-cell transcriptomics reveals cellular heterogeneity and molecular stratification of cervical cancer. Commun Biol. 5:12082022. View Article : Google Scholar : PubMed/NCBI | |
Li X, Sun Z, Peng G, Xiao Y, Guo J, Wu B, Li X, Zhou W, Li J, Li Z, et al: Single-cell RNA sequencing reveals a pro-invasive cancer-associated fibroblast subgroup associated with poor clinical outcomes in patients with gastric cancer. Theranostics. 12:620–638. 2022. View Article : Google Scholar : PubMed/NCBI | |
Guo W, Zhou B, Yang Z, Liu X, Huai Q, Guo L, Xue X, Tan F, Li Y, Xue Q, et al: Integrating microarray-based spatial transcriptomics and single-cell RNA-sequencing reveals tissue architecture in esophageal squamous cell carcinoma. EBioMedicine. 84:1042812022. View Article : Google Scholar : PubMed/NCBI | |
Buechler MB, Pradhan RN, Krishnamurty AT, Cox C, Calviello AK, Wang AW, Yang YA, Tam L, Caothien R, Roose-Girma M, et al: Cross-tissue organization of the fibroblast lineage. Nature. 593:575–579. 2021. View Article : Google Scholar : PubMed/NCBI | |
Garcia-Recio S, Hinoue T, Wheeler GL, Kelly BJ, Garrido-Castro AC, Pascual T, De Cubas AA, Xia Y, Felsheim BM, McClure MB, et al: Multiomics in primary and metastatic breast tumors from the AURORA US network finds microenvironment and epigenetic drivers of metastasis. Nat Cancer. 4:128–147. 2023. | |
Liu S, Suhail Y, Novin A, Perpetua L and Kshitiz: Metastatic transition of pancreatic ductal cell adenocarcinoma is accompanied by the emergence of pro-invasive cancer-associated fibroblasts. Cancers (Basel). 14:21972022. View Article : Google Scholar : PubMed/NCBI | |
Hill M and Tran N: MicroRNAs regulating MicroRNAs in cancer. Trends Cancer. 4:465–468. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tkach M and Théry C: Communication by extracellular vesicles: Where we are and where we need to go. Cell. 164:1226–1232. 2016. View Article : Google Scholar : PubMed/NCBI | |
Vivacqua A, Muoio MG, Miglietta AM and Maggiolini M: Differential MicroRNA landscape triggered by estrogens in cancer associated fibroblasts (CAFs) of primary and metastatic breast tumors. Cancers (Basel). 11:4122019. View Article : Google Scholar : PubMed/NCBI | |
Lee KS, Nam SK, Koh J, Kim DW, Kang SB, Choe G, Kim WH and Lee HS: Stromal expression of MicroRNA-21 in advanced colorectal cancer patients with distant metastases. J Pathol Transl Med. 50:270–277. 2016. View Article : Google Scholar : PubMed/NCBI | |
Han Q, Tan S, Gong L, Li G, Wu Q, Chen L, Du S, Li W, Liu X, Cai J and Wang Z: Omental cancer-associated fibroblast-derived exosomes with low microRNA-29c-3p promote ovarian cancer peritoneal metastasis. Cancer Sci. 114:1929–1942. 2023. View Article : Google Scholar : PubMed/NCBI | |
Alsayed RKME, Khan AQ, Ahmad F, Ansari AW, Alam MA, Buddenkotte J, Steinhoff M, Uddin S and Ahmad A: Epigenetic regulation of CXCR4 signaling in cancer pathogenesis and progression. Semin Cancer Biol. 86:697–708. 2022. View Article : Google Scholar : PubMed/NCBI | |
Petit I, Jin D and Rafii S: The SDF-1-CXCR4 signaling pathway: A molecular hub modulating neo-angiogenesis. Trends Immunol. 28:299–307. 2007. View Article : Google Scholar : PubMed/NCBI | |
Shi Y, Riese DJ II and Shen J: The role of the CXCL12/CXCR4/CXCR7 chemokine axis in cancer. Front Pharmacol. 11:5746672020. View Article : Google Scholar : PubMed/NCBI | |
Dai JM, Sun K, Li C, Cheng M, Guan JH, Yang LN and Zhang LW: Cancer-associated fibroblasts contribute to cancer metastasis and apoptosis resistance in human ovarian cancer via paracrine SDF-1α. Clin Transl Oncol. 25:1606–1616. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Yang P, Sun T, Li D, Xu X, Rui Y, Li C, Chong M, Ibrahim T, Mercatali L, et al: miR-126 and miR-126* repress recruitment of mesenchymal stem cells and inflammatory monocytes to inhibit breast cancer metastasis. Nat Cell Biol. 15:284–294. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhong B, Cheng B, Huang X, Xiao Q, Niu Z, Chen YF, Yu Q, Wang W and Wu XJ: Colorectal cancer-associated fibroblasts promote metastasis by up-regulating LRG1 through stromal IL-6/STAT3 signaling. Cell Death Dis. 13:162021. View Article : Google Scholar : PubMed/NCBI | |
Xie H, Lei Y, Mao Y, Lan J, Yang J, Quan H and Zhang T: FK866 inhibits colorectal cancer metastasis by reducing NAD+ levels in cancer-associated fibroblasts. Genes Genomics. 44:1531–1541. 2022. View Article : Google Scholar : PubMed/NCBI | |
Walterskirchen N, Müller C, Ramos C, Zeindl S, Stang S, Herzog D, Sachet M, Schimek V, Unger L, Gerakopoulos V, et al: Metastatic colorectal carcinoma-associated fibroblasts have immunosuppressive properties related to increased IGFBP2 expression. Cancer Lett. 540:2157372022. View Article : Google Scholar : PubMed/NCBI | |
Mukherjee S, Sakpal A, Mehrotra M, Phadte P, Rekhi B and Ray P: Homo and heterotypic cellular cross-talk in epithelial ovarian cancer impart pro-tumorigenic properties through differential activation of the notch3 pathway. Cancers (Basel). 14:33652022. View Article : Google Scholar : PubMed/NCBI | |
Pan X, Zhou J, Xiao Q, Fujiwara K, Zhang M, Mo G, Gong W and Zheng L: Cancer-associated fibroblast heterogeneity is associated with organ-specific metastasis in pancreatic ductal adenocarcinoma. J Hematol Oncol. 14:1842021. View Article : Google Scholar : PubMed/NCBI | |
Muhl L, Genové G, Leptidis S, Liu J, He L, Mocci G, Sun Y, Gustafsson S, Buyandelger B, Chivukula IV, et al: Single-cell analysis uncovers fibroblast heterogeneity and criteria for fibroblast and mural cell identification and discrimination. Nat Commun. 11:39532020. View Article : Google Scholar : PubMed/NCBI | |
Ewald CY: The matrisome during aging and longevity: A systems-level approach toward defining matreotypes promoting healthy aging. Gerontology. 66:266–274. 2020. View Article : Google Scholar | |
Rhim AD, Oberstein PE, Thomas DH, Mirek ET, Palermo CF, Sastra SA, Dekleva EN, Saunders T, Becerra CP, Tattersall IW, et al: Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell. 25:735–747. 2014. View Article : Google Scholar : PubMed/NCBI | |
Boyd LNC, Andini KD, Peters GJ, Kazemier G and Giovannetti E: Heterogeneity and plasticity of cancer-associated fibroblasts in the pancreatic tumor microenvironment. Semin Cancer Biol. 82:184–196. 2022. View Article : Google Scholar | |
von Ahrens D, Bhagat TD, Nagrath D, Maitra A and Verma A: The role of stromal cancer-associated fibroblasts in pancreatic cancer. J Hematol Oncol. 10:762017. View Article : Google Scholar : PubMed/NCBI | |
Deasy SK and Erez N: A glitch in the matrix: organ-specific matrisomes in metastatic niches. Trends Cell Biol. 32:110–123. 2022. View Article : Google Scholar | |
Elia I, Rossi M, Stegen S, Broekaert D, Doglioni G, van Gorsel M, Boon R, Escalona-Noguero C, Torrekens S, Verfaillie C, et al: Breast cancer cells rely on environmental pyruvate to shape the metastatic niche. Nature. 568:117–121. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yuzhalin AE, Gordon-Weeks AN, Tognoli ML, Jones K, Markelc B, Konietzny R, Fischer R, Muth A, O'Neill E, Thompson PR, et al: Colorectal cancer liver metastatic growth depends on PAD4-driven citrullination of the extracellular matrix. Nat Commun. 9:47832018. View Article : Google Scholar : PubMed/NCBI | |
Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, Fong SF, Csiszar K, Giaccia A, Weninger W, et al: Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell. 139:891–906. 2009. View Article : Google Scholar : PubMed/NCBI | |
Er EE, Valiente M, Ganesh K, Zou Y, Agrawal S, Hu J, Griscom B, Rosenblum M, Boire A, Brogi E, et al: Pericyte-like spreading by disseminated cancer cells activates YAP and MRTF for metastatic colonization. Nat Cell Biol. 20:966–978. 2018. View Article : Google Scholar : PubMed/NCBI | |
Che LH, Liu JW, Huo JP, Luo R, Xu RM, He C, Li YQ, Zhou AJ, Huang P, Chen YY, et al: A single-cell atlas of liver metastases of colorectal cancer reveals reprogramming of the tumor microenvironment in response to preoperative chemotherapy. Cell Discov. 7:802021. View Article : Google Scholar : PubMed/NCBI | |
Whatcott CJ, Diep CH, Jiang P, Watanabe A, LoBello J, Sima C, Hostetter G, Shepard HM, Von Hoff DD and Han H: Desmoplasia in primary tumors and metastatic lesions of pancreatic cancer. Clin Cancer Res. 21:3561–3568. 2015. View Article : Google Scholar : PubMed/NCBI | |
Placencio-Hickok VR, Lauzon M, Moshayedi N, Guan M, Kim S, Nissen N, Lo S, Pandol S, Larson BK, Gong J, et al: Hyaluronan heterogeneity in pancreatic ductal adenocarcinoma: Primary tumors compared to sites of metastasis. Pancreatology. 22:92–97. 2022. View Article : Google Scholar | |
Ueno H, Sekine S, Oshiro T, Kanemitsu Y, Hamaguchi T, Shida D, Takashima A, Ishiguro M, Ito E, Hashiguchi Y, et al: Disentangling the prognostic heterogeneity of stage III colorectal cancer through histologic stromal categorization. Surgery. 163:777–783. 2018. View Article : Google Scholar | |
Ao T, Kajiwara Y, Yonemura K, Shinto E, Mochizuki S, Okamoto K, Aosasa S and Ueno H: Prognostic significance of histological categorization of desmoplastic reaction in colorectal liver metastases. Virchows Arch. 475:341–348. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ao T, Kajiwara Y, Yonemura K, Shinto E, Mochizuki S, Okamoto K, Kishi Y and Ueno H: Morphological consistency of desmoplastic reactions between the primary colorectal cancer lesion and associated metastatic lesions. Virchows Arch. 477:47–55. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mayorca-Guiliani AE, Madsen CD, Cox TR, Horton ER, Venning FA and Erler JT: ISDoT: In situ decellularization of tissues for high-resolution imaging and proteomic analysis of native extracellular matrix. Nat Med. 23:890–898. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yang H, Sun B, Fan L, Ma W, Xu K, Hall SRR, Wang Z, Schmid RA, Peng RW, Marti TM, et al: Multi-scale integrative analyses identify THBS2+ cancer-associated fibroblasts as a key orchestrator promoting aggressiveness in early-stage lung adenocarcinoma. Theranostics. 12:3104–3130. 2022. View Article : Google Scholar : | |
Irum B, Asif M, Mumtaz B and Aslam N: Effect of dental proximal restorations on periodontal health in patients. J Ayub Med Coll Abbottabad. 34(Suppl 1): S987–S990. 2022. View Article : Google Scholar | |
Machado RB, Aguiar LMS and Silva JMC: Brazil: Plan for zero vegetation loss in the Cerrado. Nature. 615:2162023. View Article : Google Scholar : PubMed/NCBI | |
Dean M, Fojo T and Bates S: Tumour stem cells and drug resistance. Nat Rev Cancer. 5:275–284. 2005. View Article : Google Scholar : PubMed/NCBI | |
Brabletz T, Kalluri R, Nieto MA and Weinberg RA: EMT in cancer. Nat Rev Cancer. 18:128–134. 2018. View Article : Google Scholar : PubMed/NCBI | |
Belfiore A, Rapicavoli RV, Le Moli R, Lappano R, Morrione A, De Francesco EM and Vella V: IGF2: A role in metastasis and tumor evasion from immune surveillance? Biomedicines. 11:2292023. View Article : Google Scholar : PubMed/NCBI | |
Chhabra Y and Weeraratna AT: Fibroblasts in cancer: Unity in heterogeneity. Cell. 186:1580–1609. 2023. View Article : Google Scholar : PubMed/NCBI | |
Minchinton AI and Tannock IF: Drug penetration in solid tumours. Nat Rev Cancer. 6:583–592. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wong L, Kumar A, Gabela-Zuniga B, Chua J, Singh G, Happe CL, Engler AJ, Fan Y and McCloskey KE: Substrate stiffness directs diverging vascular fates. Acta Biomater. 96:321–329. 2019. View Article : Google Scholar : PubMed/NCBI | |
Engler AJ, Sen S, Sweeney HL and Discher DE: Matrix elasticity directs stem cell lineage specification. Cell. 126:677–689. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ruehle MA, Eastburn EA, LaBelle SA, Krishnan L, Weiss JA, Boerckel JD, Wood LB, Guldberg RE and Willett NJ: Extracellular matrix compression temporally regulates microvascular angiogenesis. Sci Adv. 6:eabb63512020. View Article : Google Scholar : PubMed/NCBI | |
Jing X, Yang F, Shao C, Wei K, Xie M, Shen H and Shu Y: Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer. 18:1572019. View Article : Google Scholar : PubMed/NCBI | |
Alvarez R, Musteanu M, Garcia-Garcia E, Lopez-Casas PP, Megias D, Guerra C, Muñoz M, Quijano Y, Cubillo A, Rodriguez-Pascual J, et al: Stromal disrupting effects of nab-paclitaxel in pancreatic cancer. Br J Cancer. 109:926–933. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kim H, Samuel S, Lopez-Casas P, Grizzle W, Hidalgo M, Kovar J, Oelschlager D, Zinn K, Warram J and Buchsbaum D: SPARC-independent delivery of nab-paclitaxel without depleting tumor stroma in patient-derived pancreatic cancer xenografts. Mol Cancer Ther. 15:680–688. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Zeng Y, Zhao L, Xu Q, Miao D and Yu F: Targeting hepatic stellate cell death to reverse hepatic fibrosis. Curr Drug Targets. 24:568–583. 2023. View Article : Google Scholar : PubMed/NCBI | |
Jin H, Lian N, Zhang F, Chen L, Chen Q, Lu C, Bian M, Shao J, Wu L and Zheng S: Activation of PPARγ/P53 signaling is required for curcumin to induce hepatic stellate cell senescence. Cell Death Dis. 7:e21892016. View Article : Google Scholar | |
Xia S, Liu Z, Cai J, Ren H, Li Q, Zhang H, Yue J, Zhou Q, Zhou T, Wang L, et al: Liver fibrosis therapy based on biomimetic nanoparticles which deplete activated hepatic stellate cells. J Control Release. 355:54–67. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zi F, He J, He D, Li Y, Yang L and Cai Z: Fibroblast activation protein alpha in tumor microenvironment: Recent progression and implications (review). Mol Med Rep. 11:3203–3211. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bughda R, Dimou P, D'Souza RR and Klampatsa A: Fibroblast activation protein (FAP)-targeted CAR-T cells: Launching an attack on tumor stroma. Immunotargets Ther. 10:313–323. 2021. View Article : Google Scholar : PubMed/NCBI | |
Claus C, Ferrara C, Xu W, Sam J, Lang S, Uhlenbrock F, Albrecht R, Herter S, Schlenker R, Hüsser T, et al: Tumor-targeted 4-1BB agonists for combination with T cell bispecific antibodies as off-the-shelf therapy. Sci Transl Med. 11:eaav59892019. View Article : Google Scholar : PubMed/NCBI | |
Melero I, Tanos T, Bustamante M, Sanmamed MF, Calvo E, Moreno I, Moreno V, Hernandez T, Martinez Garcia M, Rodriguez-Vida A, et al: A first-in-human study of the fibroblast activation protein-targeted, 4-1BB agonist RO7122290 in patients with advanced solid tumors. Sci Transl Med. 15:eabp92292023. View Article : Google Scholar : PubMed/NCBI | |
Ballal S, Yadav MP, Kramer V, Moon ES, Roesch F, Tripathi M, Mallick S, ArunRaj ST and Bal C: A theranostic approach of [68Ga]Ga-DOTA.SA.FAPi PET/CT-guided [177Lu]Lu-DOTA. SA.FAPi radionuclide therapy in an end-stage breast cancer patient: New frontier in targeted radionuclide therapy. Eur J Nucl Med Mol Imaging. 48:942–944. 2021. View Article : Google Scholar | |
Assadi M, Rekabpour SJ, Jafari E, Divband G, Nikkholgh B, Amini H, Kamali H, Ebrahimi S, Shakibazad N, Jokar N, et al: Feasibility and therapeutic potential of 177Lu-fibroblast activation protein inhibitor-46 for patients with relapsed or refractory cancers: A preliminary study. Clin Nucl Med. 46:e523–e530. 2021. View Article : Google Scholar : PubMed/NCBI | |
Baum RP, Schuchardt C, Singh A, Chantadisai M, Robiller FC, Zhang J, Mueller D, Eismant A, Almaguel F, Zboralski D, et al: Feasibility, biodistribution, and preliminary dosimetry in peptide-targeted radionuclide therapy of diverse adenocarcinomas using 177Lu-FAP-2286: First-in-humans results. J Nucl Med. 63:415–423. 2022. View Article : Google Scholar : | |
Vallet SD and Ricard-Blum S: Lysyl oxidases: from enzyme activity to extracellular matrix cross-links. Essays Biochem. 63:349–364. 2019. View Article : Google Scholar : PubMed/NCBI | |
Granzow M, Schierwagen R, Klein S, Kowallick B, Huss S, Linhart M, Mazar IG, Görtzen J, Vogt A, Schildberg FA, et al: Angiotensin-II type 1 receptor-mediated Janus kinase 2 activation induces liver fibrosis. Hepatology. 60:334–348. 2014. View Article : Google Scholar : PubMed/NCBI | |
Takiguchi T, Takahashi-Yanaga F, Ishikane S, Tetsuo F, Hosoda H, Arioka M, Kitazono T and Sasaguri T: Angiotensin II promotes primary tumor growth and metastasis formation of murine TNBC 4T1 cells through the fibroblasts around cancer cells. Eur J Pharmacol. 909:1744152021. View Article : Google Scholar : PubMed/NCBI | |
Murphy JE, Wo JY, Ryan DP, Clark JW, Jiang W, Yeap BY, Drapek LC, Ly L, Baglini CV, Blaszkowsky LS, et al: Total neoadjuvant therapy with FOLFIRINOX in combination with losartan followed by chemoradiotherapy for locally advanced pancreatic cancer: A phase 2 clinical trial. JAMA Oncol. 5:1020–1027. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wong KM, Horton KJ, Coveler AL, Hingorani SR and Harris WP: Targeting the tumor stroma: The biology and clinical development of pegylated recombinant human hyaluronidase (PEGPH20). Curr Oncol Rep. 19:472017. View Article : Google Scholar : PubMed/NCBI | |
Kudo D, Suto A and Hakamada K: The development of a novel therapeutic strategy to target hyaluronan in the extracellular matrix of pancreatic ductal adenocarcinoma. Int J Mol Sci. 18:6002017. View Article : Google Scholar : PubMed/NCBI | |
Ramanathan RK, McDonough SL, Philip PA, Hingorani SR, Lacy J, Kortmansky JS, Thumar J, Chiorean EG, Shields AF, Behl D, et al: Phase IB/II randomized study of FOLFIRINOX plus pegylated recombinant human hyaluronidase versus FOLFIRINOX alone in patients with metastatic pancreatic adenocarcinoma: SWOG S1313. J Clin Oncol. 37:1062–1069. 2019. View Article : Google Scholar : PubMed/NCBI | |
Van Cutsem E, Tempero MA, Sigal D, Oh DY, Fazio N, Macarulla T, Hitre E, Hammel P, Hendifar AE, Bates SE, et al: Randomized phase III trial of pegvorhyaluronidase alfa with nab-paclitaxel plus gemcitabine for patients with hyaluronan-high metastatic pancreatic adenocarcinoma. J Clin Oncol. 38:3185–3194. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sakers A, De Siqueira MK, Seale P and Villanueva CJ: Adipose-tissue plasticity in health and disease. Cell. 185:419–446. 2022. View Article : Google Scholar : PubMed/NCBI | |
Koudelka S and Turánek J: Liposomal paclitaxel formulations. J Control Release. 163:322–334. 2012. View Article : Google Scholar : PubMed/NCBI | |
Shahriari K, Shen F, Worrede-Mahdi A, Liu Q, Gong Y, Garcia FU and Fatatis A: Cooperation among heterogeneous prostate cancer cells in the bone metastatic niche. Oncogene. 36:2846–2856. 2017. View Article : Google Scholar : | |
Nakamura Y, Kinoshita J, Yamaguchi T, Aoki T, Saito H, Hamabe-Horiike T, Harada S, Nomura S, Inaki N and Fushida S: Crosstalk between cancer-associated fibroblasts and immune cells in peritoneal metastasis: Inhibition in the migration of M2 macrophages and mast cells by Tranilast. Gastric Cancer. 25:515–526. 2022. View Article : Google Scholar : PubMed/NCBI | |
Suetsugu A, Osawa Y, Nagaki M, Saji S, Moriwaki H, Bouvet M and Hoffman RM: Imaging the recruitment of cancer-associated fibroblasts by liver-metastatic colon cancer. J Cell Biochem. 112:949–953. 2011. View Article : Google Scholar : PubMed/NCBI | |
Jung Y, Kim JK, Shiozawa Y, Wang J, Mishra A, Joseph J, Berry JE, McGee S, Lee E, Sun H, et al: Recruitment of mesenchymal stem cells into prostate tumours promotes metastasis. Nat Commun. 4:17952013. View Article : Google Scholar : PubMed/NCBI | |
Kidd S, Spaeth E, Watson K, Burks J, Lu H, Klopp A, Andreeff M and Marini FC: Origins of the tumor microenvironment: Quantitative assessment of adipose-derived and bone marrow-derived stroma. PLoS One. 7:e305632012. View Article : Google Scholar : PubMed/NCBI | |
Tang H, Chu Y, Huang Z, Cai J and Wang Z: The metastatic phenotype shift toward myofibroblast of adipose-derived mesenchymal stem cells promotes ovarian cancer progression. Carcinogenesis. 41:182–193. 2020. View Article : Google Scholar | |
Cho JA, Park H, Lim EH and Lee KW: Exosomes from breast cancer cells can convert adipose tissue-derived mesenchymal stem cells into myofibroblast-like cells. Int J Oncol. 40:130–138. 2012. | |
Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, Richardson AL, Polyak K, Tubo R and Weinberg RA: Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 449:557–563. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Sun D, Fu Q, Cao Q, Zhang H and Zhang K: Bone mesenchymal stem cells differentiate into myofibroblasts in the tumor microenvironment. Oncol Lett. 12:644–650. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bochet L, Lehuédé C, Dauvillier S, Wang YY, Dirat B, Laurent V, Dray C, Guiet R, Maridonneau-Parini I, Le Gonidec S, et al: Adipocyte-derived fibroblasts promote tumor progression and contribute to the desmoplastic reaction in breast cancer. Cancer Res. 73:5657–5668. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jotzu C, Alt E, Welte G, Li J, Hennessy BT, Devarajan E, Krishnappa S, Pinilla S, Droll L and Song YH: Adipose tissue derived stem cells differentiate into carcinoma-associated fibroblast-like cells under the influence of tumor derived factors. Cell Oncol (Dordr). 34:55–67. 2011. View Article : Google Scholar : PubMed/NCBI | |
Baroni S, Romero-Cordoba S, Plantamura I, Dugo M, D'Ippolito E, Cataldo A, Cosentino G, Angeloni V, Rossini A, Daidone MG and Iorio MV: Exosome-mediated delivery of miR-9 induces cancer-associated fibroblast-like properties in human breast fibroblasts. Cell Death Dis. 7:e23122016. View Article : Google Scholar : PubMed/NCBI | |
Arina A, Idel C, Hyjek EM, Alegre ML, Wang Y, Bindokas VP, Weichselbaum RR and Schreiber H: Tumor-associated fibroblasts predominantly come from local and not circulating precursors. Proc Natl Acad Sci USA. 113:7551–7556. 2016. View Article : Google Scholar : PubMed/NCBI | |
Vicent S, Sayles LC, Vaka D, Khatri P, Gevaert O, Chen R, Zheng Y, Gillespie AK, Clarke N, Xu Y, et al: Cross-species functional analysis of cancer-associated fibroblasts identifies a critical role for CLCF1 and IL-6 in non-small cell lung cancer in vivo. Cancer Res. 72:5744–5756. 2012. View Article : Google Scholar : PubMed/NCBI | |
Nair N, Calle AS, Zahra MH, Prieto-Vila M, Oo AKK, Hurley L, Vaidyanath A, Seno A, Masuda J, Iwasaki Y, et al: A cancer stem cell model as the point of origin of cancer-associated fibroblasts in tumor microenvironment. Sci Rep. 7:68382017. View Article : Google Scholar : PubMed/NCBI | |
Sandoval P, Jiménez-Heffernan JA, Rynne-Vidal Á, Pérez-Lozano ML, Gilsanz Á, Ruiz-Carpio V, Reyes R, García-Bordas J, Stamatakis K, Dotor J, et al: Carcinoma-associated fibroblasts derive from mesothelial cells via mesothelial-to-mesenchymal transition in peritoneal metastasis. J Pathol. 231:517–531. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zeisberg EM, Potenta S, Xie L, Zeisberg M and Kalluri R: Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res. 67:10123–10128. 2007. View Article : Google Scholar : PubMed/NCBI | |
Xin Y, Li K, Yang M and Tan Y: Fluid shear stress induces EMT of circulating tumor cells via JNK signaling in favor of their survival during hematogenous dissemination. Int J Mol Sci. 21:81152020. View Article : Google Scholar : PubMed/NCBI | |
Kan T, Wang W, Ip PP, Zhou S, Wong AS, Wang X and Yang M: Single-cell EMT-related transcriptional analysis revealed intra-cluster heterogeneity of tumor cell clusters in epithelial ovarian cancer ascites. Oncogene. 39:4227–4240. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yoshimura Y, Suzuki D and Miyahara K: Measurement accuracy of fat and iron deposits in the liver using 1H-MRS (HISTO). Nihon Hoshasen Gijutsu Gakkai Zasshi. 74:148–153. 2018.In Japanese. View Article : Google Scholar | |
Ringuette Goulet C, Bernard G, Tremblay S, Chabaud S, Bolduc S and Pouliot F: Exosomes induce fibroblast differentiation into cancer-associated fibroblasts through TGFbeta signaling. Mol Cancer Res. 16:1196–1204. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Fu L, Yasuda-Yoshihara N, Yonemura A, Wei F, Bu L, Hu X, Akiyama T, Kitamura F, Yasuda T, et al: IL-1β derived from mixed-polarized macrophages activates fibroblasts and synergistically forms a cancer-promoting microenvironment. Gastric Cancer. 26:187–202. 2023. View Article : Google Scholar | |
Wei LY, Lee JJ, Yeh CY, Yang CJ, Kok SH, Ko JY, Tsai FC and Chia JS: Reciprocal activation of cancer-associated fibroblasts and oral squamous carcinoma cells through CXCL1. Oral Oncol. 88:115–123. 2019. View Article : Google Scholar : PubMed/NCBI | |
Goulet CR, Champagne A, Bernard G, Vandal D, Chabaud S, Pouliot F and Bolduc S: Cancer-associated fibroblasts induce epithelial-mesenchymal transition of bladder cancer cells through paracrine IL-6 signalling. BMC Cancer. 19:1372019. View Article : Google Scholar : PubMed/NCBI | |
Scognamiglio I, Cocca L, Puoti I, Palma F, Ingenito F, Quintavalle C, Affinito A, Roscigno G, Nuzzo S, Chianese RV, et al: Exosomal microRNAs synergistically trigger stromal fibroblasts in breast cancer. Mol Ther Nucleic Acids. 28:17–31. 2022. View Article : Google Scholar : PubMed/NCBI | |
Qin X, Lu M, Li G, Zhou Y and Liu Z: Downregulation of tumor-derived exosomal miR-34c induces cancer-associated fibroblast activation to promote cholangiocarcinoma progress. Cancer Cell Int. 21:3732021. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Yan T, Huang C, Xu Z, Wang L, Jiang E, Wang H, Chen Y, Liu K, Shao Z and Shang Z: Melanoma cell-secreted exosomal miR-155-5p induce proangiogenic switch of cancer-associated fibroblasts via SOCS1/JAK2/STAT3 signaling pathway. J Exp Clin Cancer Res. 37:2422018. View Article : Google Scholar : PubMed/NCBI | |
Ye B, Duan Y, Zhou M, Wang Y, Lai Q, Yue K, Cao J, Wu Y, Wang X and Jing C: Hypoxic tumor-derived exosomal miR-21 induces cancer-associated fibroblast activation to promote head and neck squamous cell carcinoma metastasis. Cell Signal. 108:1107252023. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Kuai R, Chu YM, Zhou L, Zhang HQ and Li J: Hypoxia facilitates the proliferation of colorectal cancer cells by inducing cancer-associated fibroblast-derived IL6. Neoplasma. 68:1015–1022. 2021. View Article : Google Scholar : PubMed/NCBI | |
Butti R, Nimma R, Kundu G, Bulbule A, Kumar TVS, Gunasekaran VP, Tomar D, Kumar D, Mane A, Gill SS, et al: Tumor-derived osteopontin drives the resident fibroblast to myofibroblast differentiation through Twist1 to promote breast cancer progression. Oncogene. 40:2002–2017. 2021. View Article : Google Scholar : PubMed/NCBI | |
Calvo F, Ege N, Grande-Garcia A, Hooper S, Jenkins RP, Chaudhry SI, Harrington K, Williamson P, Moeendarbary E, Charras G and Sahai E: Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat Cell Biol. 15:637–646. 2013. View Article : Google Scholar : PubMed/NCBI | |
Foster CT, Gualdrini F and Treisman R: Mutual dependence of the MRTF-SRF and YAP-TEAD pathways in cancer-associated fibroblasts is indirect and mediated by cytoskeletal dynamics. Genes Dev. 31:2361–2375. 2017. View Article : Google Scholar | |
Cadamuro M, Nardo G, Indraccolo S, Dall'olmo L, Sambado L, Moserle L, Franceschet I, Colledan M, Massani M, Stecca T, et al: Platelet-derived growth factor-D and Rho GTPases regulate recruitment of cancer-associated fibroblasts in cholangiocarcinoma. Hepatology. 58:1042–1053. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pietras K, Pahler J, Bergers G and Hanahan D: Functions of paracrine PDGF signaling in the proangiogenic tumor stroma revealed by pharmacological targeting. PLoS Med. 5:e192008. View Article : Google Scholar : PubMed/NCBI | |
Scherz-Shouval R, Santagata S, Mendillo ML, Sholl LM, Ben-Aharon I, Beck AH, Dias-Santagata D, Koeva M, Stemmer SM, Whitesell L and Lindquist S: The reprogramming of tumor stroma by HSF1 is a potent enabler of malignancy. Cell. 158:564–578. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ferrari N, Ranftl R, Chicherova I, Slaven ND, Moeendarbary E, Farrugia AJ, Lam M, Semiannikova M, Westergaard MCW, Tchou J, et al: Dickkopf-3 links HSF1 and YAP/TAZ signalling to control aggressive behaviours in cancer-associated fibroblasts. Nat Commun. 10:1302019. View Article : Google Scholar : PubMed/NCBI | |
Guo Z, Zhang H, Fu Y, Kuang J, Zhao B, Zhang L, Lin J, Lin S, Wu D and Xie G: Cancer-associated fibroblasts induce growth and radioresistance of breast cancer cells through paracrine IL-6. Cell Death Discov. 9:62023. View Article : Google Scholar : PubMed/NCBI | |
Çermik TF, Ergül N, Yılmaz B and Mercanoğlu G: Tumor imaging with 68Ga-DOTA-FAPI-04 PET/CT: Comparison with 18F-FDG PET/CT in 22 different cancer types. Clin Nucl Med. 47:e333–e339. 2022. View Article : Google Scholar : PubMed/NCBI | |
Pang Y, Zhao L, Meng T, Xu W, Lin Q, Wu H, Zhang J, Chen X, Sun L and Chen H: PET imaging of fibroblast activation protein in various types of cancer using 68Ga-FAP-2286: comparison with 18F-FDG and 68Ga-FAPI-46 in a single-center, prospective study. J Nucl Med. 64:386–394. 2023. View Article : Google Scholar : | |
Hosein AN, Huang H, Wang Z, Parmar K, Du W, Huang J, Maitra A, Olson E, Verma U and Brekken RA: Cellular heterogeneity during mouse pancreatic ductal adenocarcinoma progression at single-cell resolution. JCI Insight. 5:e1292122019. View Article : Google Scholar : PubMed/NCBI | |
Neuzillet C, Tijeras-Raballand A, Ragulan C, Cros J, Patil Y, Martinet M, Erkan M, Kleeff J, Wilson J, Apte M, et al: Inter- and intra-tumoural heterogeneity in cancer-associated fibroblasts of human pancreatic ductal adenocarcinoma. J Pathol. 248:51–65. 2019. View Article : Google Scholar : | |
Lin W, Noel P, Borazanci EH, Lee J, Amini A, Han IW, Heo JS, Jameson GS, Fraser C, Steinbach M, et al: Single-cell transcriptome analysis of tumor and stromal compartments of pancreatic ductal adenocarcinoma primary tumors and metastatic lesions. Genome Med. 12:802020. View Article : Google Scholar : PubMed/NCBI | |
Sebastian A, Hum NR, Martin KA, Gilmore SF, Peran I, Byers SW, Wheeler EK, Coleman MA and Loots GG: Single-cell transcriptomic analysis of tumor-derived fibroblasts and normal tissue-resident fibroblasts reveals fibroblast heterogeneity in breast cancer. Cancers (Basel). 12:13072020. View Article : Google Scholar : PubMed/NCBI | |
Li H, Courtois ET, Sengupta D, Tan Y, Chen KH, Goh JJL, Kong SL, Chua C, Hon LK, Tan WS, et al: Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors. Nat Genet. 49:708–718. 2017. View Article : Google Scholar : PubMed/NCBI | |
Peng Z, Ye M, Ding H, Feng Z and Hu K: Spatial transcriptomics atlas reveals the crosstalk between cancer-associated fibroblasts and tumor microenvironment components in colorectal cancer. J Transl Med. 20:3022022. View Article : Google Scholar : PubMed/NCBI | |
Lambrechts D, Wauters E, Boeckx B, Aibar S, Nittner D, Burton O, Bassez A, Decaluwé H, Pircher A, Van den Eynde K, et al: Phenotype molding of stromal cells in the lung tumor microenvironment. Nat Med. 24:1277–1289. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hornburg M, Desbois M, Lu S, Guan Y, Lo AA, Kaufman S, Elrod A, Lotstein A, DesRochers TM, Munoz-Rodriguez JL, et al: Single-cell dissection of cellular components and interactions shaping the tumor immune phenotypes in ovarian cancer. Cancer Cell. 39:928–944.e6. 2021. View Article : Google Scholar : PubMed/NCBI | |
Izar B, Tirosh I, Stover EH, Wakiro I, Cuoco MS, Alter I, Rodman C, Leeson R, Su MJ, Shah P, et al: A single-cell landscape of high-grade serous ovarian cancer. Nat Med. 26:1271–1279. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Yang H, Wan L, Wang Z, Wang H, Ge C, Liu Y, Hao Y, Zhang D, Shi G, et al: Single-cell transcriptomic architecture and intercellular crosstalk of human intrahepatic cholangiocarcinoma. J Hepatol. 73:1118–1130. 2020. View Article : Google Scholar : PubMed/NCBI | |
Davidson S, Efremova M, Riedel A, Mahata B, Pramanik J, Huuhtanen J, Kar G, Vento-Tormo R, Hagai T, Chen X, et al: Single-cell RNA sequencing reveals a dynamic stromal niche that supports tumor growth. Cell Rep. 31:1076282020. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Zhou L, Liu L, Hou Y, Xiong M, Yang Y, Hu J and Chen K: Single-cell RNA sequencing highlights the role of inflammatory cancer-associated fibroblasts in bladder urothelial carcinoma. Nat Commun. 11:50772020. View Article : Google Scholar : PubMed/NCBI | |
Kürten CHL, Kulkarni A, Cillo AR, Santos PM, Roble AK, Onkar S, Reeder C, Lang S, Chen X, Duvvuri U, et al: Investigating immune and non-immune cell interactions in head and neck tumors by single-cell RNA sequencing. Nat Commun. 12:73382021. View Article : Google Scholar : PubMed/NCBI |