Targeting tumor‑associated macrophages: Critical players in tumor progression and therapeutic strategies (Review)
- Authors:
- Pengfei Su
- Ou Li
- Kun Ke
- Zhichen Jiang
- Jianzhang Wu
- Yuanyu Wang
- Yiping Mou
- Weiwei Jin
-
Affiliations: Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China - Published online on: April 30, 2024 https://doi.org/10.3892/ijo.2024.5648
- Article Number: 60
-
Copyright: © Su et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Xiao Y and Yu DH: Tumor microenvironment as a therapeutic target in cancer. Pharmacol Ther. 221:1077532021. View Article : Google Scholar : | |
Kumari S, Advani D, Sharma S, Ambasta RK and Kumar P: Combinatorial therapy in tumor microenvironment: Where do we stand? Biochim Biophys Acta Rev Cancer. 1876:1885852021. View Article : Google Scholar : PubMed/NCBI | |
Wang HG, Yung MMH, Ngan HY, Chan KKL and Chan DW: The impact of the tumor microenvironment on macrophage polarization in cancer metastatic progression. Int J Mol Sci. 22:65602021. View Article : Google Scholar : PubMed/NCBI | |
Locati M, Curtale G and Mantovani A: Diversity, mechanisms, and significance of macrophage plasticity. Annu Rev Pathol. 15:123–147. 2020. View Article : Google Scholar | |
Bian Z, Gong Y, Huang T, Lee CZW, Bian L, Bai Z, Shi H, Zeng Y, Liu C, He J, et al: Deciphering human macrophage development at single-cell resolution. Nature. 582:571–576. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mantovani A, Marchesi F, Malesci A, Laghi L and Allavena P: Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol. 14:399–416. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cassetta L and Pollard JW: Targeting macrophages: Therapeutic approaches in cancer. Nat Rev Drug Discov. 17:887–904. 2018. View Article : Google Scholar : PubMed/NCBI | |
Guo S, Chen X, Guo C and Wang W: Tumor-associated macrophages heterogeneity drives resistance to clinical therapy. Expert Rev Mol Med. 24:e172022. View Article : Google Scholar | |
Han S, Wang W, Wang S, Yang T, Zhang G, Wang D, Ju R, Lu Y, Wang H and Wang L: Tumor microenvironment remodeling and tumor therapy based on M2-like tumor associated macrophage-targeting nano-complexes. Theranostics. 11:2892–2916. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kumari N and Choi SH: Tumor-associated macrophages in cancer: recent advancements in cancer nanoimmunotherapies. J Exp Clin Cancer Res. 41:682022. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Song Y, Du W, Gong L, Chang H and Zhou Z: Tumor-associated macrophages: An accomplice in solid tumor progression. J Biomed Sci. 26:782019. View Article : Google Scholar : PubMed/NCBI | |
Sreejit G, Fleetwood AJ, Murphy AJ and Nagareddy PR: Origins and diversity of macrophages in health and disease. Clin Transl Immunology. 9:e12222020. View Article : Google Scholar : PubMed/NCBI | |
Hourani T, Holden JA, Li W, Lenzo JC, Hadjigol S and O'Brien-Simpson NM: Tumor associated macrophages: Origin, recruitment, phenotypic diversity, and targeting. Front Oncol. 11:7883652021. View Article : Google Scholar | |
Lavin Y, Winter D, Blecher-Gonen R, David E, Keren-Shaul H, Merad M, Jung S and Amit I: Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell. 159:1312–1326. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lazarov T, Juarez-Carre ño S, Cox N and Geissmann F: Physiology and diseases of tissue-resident macrophages. Nature. 618:698–707. 2023. View Article : Google Scholar : PubMed/NCBI | |
Casanova-Acebes M, Dalla E, Leader AM, LeBerichel J, Nikolic J, Morales BM, Brown M, Chang C, Troncoso L, Chen ST, et al: Tissue-resident macrophages provide a pro-tumorigenic niche to early NSCLC cells. Nature. 595:578–584. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mu X, Li Y and Fan GC: Tissue-resident macrophages in the control of infection and resolution of inflammation. Shock. 55:14–23. 2021. View Article : Google Scholar | |
Chen Y and Zhang X: Pivotal regulators of tissue homeostasis and cancer: Macrophages. Exp Hematol Oncol. 6:232017. View Article : Google Scholar : PubMed/NCBI | |
Filiberti S, Russo M, Lonardi S, Bugatti M, Vermi W, Tournier C and Giurisato E: Self-renewal of acrophages: Tumor-released factors and signaling pathways. Biomedicines. 10:27092022. View Article : Google Scholar | |
Giurisato E, Lonardi S, Telfer B, Lussoso S, Risa-Ebrí B, Zhang J, Russo I, Wang J, Santucci A, Finegan KG, et al: Extracellular-regulated protein kinase 5-mediated control of p21 expression promotes macrophage proliferation associated with tumor growth and metastasis. Cancer Res. 80:3319–3330. 2020. View Article : Google Scholar : PubMed/NCBI | |
Collins EJ, Cervantes-Silva MP, Timmons GA, O'Siorain JR, Curtis AM and Hurley JM: Post-transcriptional circadian regulation in macrophages organizes temporally distinct immunometabolic states. Genome Res. 31:171–185. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yuan R, Li S, Geng H, Wang X, Guan Q, Li X, Ren C and Yuan X: Reversing the polarization of tumor-associated macrophages inhibits tumor metastasis. Int Immunopharmacol. 49:30–37. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mantuano NR, Oliveira-Nunes MC, Alisson-Silva F, Dias WB and Todeschini AR: Emerging role of glycosylation in the polarization of tumor-associated macrophages. Pharmacol Res. 146:1042852019. View Article : Google Scholar : PubMed/NCBI | |
Gao J, Liang YZ and Wang L: Shaping polarization of tumor-associated macrophages in cancer immunotherapy. Front Immunol. 13:8887132022. View Article : Google Scholar : PubMed/NCBI | |
Yang YL, Yang F, Huang ZQ, Li YY, Shi HY, Sun Q, Ma Y, Wang Y, Zhang Y, Yang S, et al: T cells, NK cells, and tumor-associated macrophages in cancer immunotherapy and the current state of the art of drug delivery systems. Front Immunol. 14:11991732023. View Article : Google Scholar : PubMed/NCBI | |
Li J, Sun J, Zeng Z, Liu Z, Ma M, Zheng Z, He Y and Kang W: Tumor-associated macrophages in gastric cancer: From function and mechanism to application. Clin Transl Med. 13:e13862023. View Article : Google Scholar | |
Larionova I, Cherdyntseva N, Liu T, Patysheva M, Rakina M and Kzhyshkowska J: Interaction of tumor-associated macrophages and cancer chemotherapy. Oncoimmunology. 8:15960042019. View Article : Google Scholar : PubMed/NCBI | |
Li C, Xu X, Wei S, Jiang P, Xue L and Wang J: Senior Correspondence. Tumor-associated macrophages: Potential therapeutic strategies and future prospects in cancer. J Immunother Cancer. 9:e0013412021. View Article : Google Scholar : PubMed/NCBI | |
Shao R, Liu C, Xue R, Deng X, Liu L, Song C, Xie J, Tang H and Liu W: Tumor-derived exosomal ENO2 modulates polarization of tumor-associated macrophages through reprogramming glycolysis to promote progression of diffuse large B-cell lymphoma. Int J Biol Sci. 20:848–863. 2024. View Article : Google Scholar : PubMed/NCBI | |
Gordon S and Martinez FO: Alternative activation of macrophages: Mechanism and functions. Immunity. 32:593–604. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gharib SA, McMahan RS, Eddy WE, Long ME, Parks WC, Aitken ML and Manicone AM: Transcriptional and functional diversity of human macrophage repolarization. J Allergy Clin Immunol. 143:1536–1548. 2019. View Article : Google Scholar : | |
Viola A, Munari F, Sanchez-Rodriguez R, Scolaro T and Castegna A: The metabolic signature of macrophage responses. Front Immunol. 10:14622019. View Article : Google Scholar : PubMed/NCBI | |
Kang S and Kumanogoh A: The spectrum of macrophage activation by immunometabolism. Int Immunol. 32:467–473. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gharavi AT, Hanjani NA, Movahed E and Doroudian M: The role of macrophage subtypes and exosomes in immunomodulation. Cell Mol Biol Lett. 27:832022. View Article : Google Scholar : PubMed/NCBI | |
Henze AT and Mazzone M: The impact of hypoxia on tumor-associated macrophages. J Clin Invest. 126:3672–3679. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mantovani A, Sozzani S, Locati M, Allavena P and Sica A: Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23:549–555. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lin Y, Xu J and Lan H: Tumor-associated macrophages in tumor metastasis: Biological roles and clinical therapeutic applications. J Hematol Oncol. 12:762019. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Liu R, Yu Q, Dong L, Bi Y and Liu G: Metabolic reprogramming of macrophages during infections and cancer. Cancer Lett. 452:14–22. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kwak T, Wang F, Deng H, Condamine T, Kumar V, Perego M, Kossenkov A, Montaner LJ, Xu X, Xu W, et al: Distinct populations of immune-suppressive macrophages differentiate from monocytic myeloid-derived suppressor cells in cancer. Cell Rep. 33:1085712020. View Article : Google Scholar : PubMed/NCBI | |
Sun J, Park C, Guenthner N, Gurley S, Zhang L, Lubben B, Adebayo O, Bash H, Chen Y, Maksimos M, et al: Tumorassociated macrophages in multiple myeloma: Advances in biology and therapy. J Immunother Cancer. 10:e0039752022. View Article : Google Scholar | |
Shi F, Sun MH, Zhou Z, Wu L, Zhu Z, Xia SJ, Han BM, Zhao YY, Jing YF and Cui D: Tumor-associated macrophages in direct contact with prostate cancer cells promote malignant proliferation and metastasis through NOTCH1 pathway. Int J Biol Sci. 18:5994–6007. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liao Q, Zeng Z, Guo X, Li X, Wei F, Zhang W, Li X, Chen P, Liang F, Xiang B, et al: LPLUNC1 suppresses IL-6-induced nasopharyngeal carcinoma cell proliferation via inhibiting the stat3 activation. Oncogene. 33:2098–2109. 2014. View Article : Google Scholar | |
Zhong Q, Fang Y, Lai Q, Wang S, He C, Li A, Liu S and Yan Q: CPEB3 inhibits epithelial-mesenchymal transition by disrupting the crosstalk between colorectal cancer cells and tumor-associated macrophages via IL-6R/STAT3 signaling. J Exp Clin Cancer Res. 39:1322020. View Article : Google Scholar : PubMed/NCBI | |
Yuan H, Lin Z, Liu Y, Jiang Y, Liu K, Tu M, Yao N, Qu C and Hong J: Intrahepatic cholangiocarcinoma induced M2-polarized tumor-associated macrophages facilitate tumor growth and invasiveness. Cancer Cell Int. 20:5862020. View Article : Google Scholar : PubMed/NCBI | |
Azambuja JH, Ludwig N, Yerneni SS, Braganhol E and Whiteside TL: Arginase-1+ exosomes from reprogrammed macrophages promote glioblastoma progression. Int J Mol Sci. 21:39902020. View Article : Google Scholar : PubMed/NCBI | |
Piao H, Fu L, Wang Y, Liu Y, Wang Y, Meng X, Yang D, Xiao X and Zhang J: A positive feedback loop between gastric cancer cells and tumor-associated macrophage induces malignancy progression. J Exp Clin Cancer Res. 41:1742022. View Article : Google Scholar : PubMed/NCBI | |
Hwang MA, Won M, Im JY, Kang MJ, Kweon DH and Kim BK: TNF-α secreted from macrophages increases the expression of prometastatic integrin αV in gastric cancer. Int J Mol Sci. 24:3762022. View Article : Google Scholar | |
Luo Q, Wang J, Zhao W, Peng Z, Liu X, Li B, Zhang H, Shan B, Zhang C and Duan C: Vasculogenic mimicry in carcinogenesis and clinical applications. J Hematol Oncol. 13:192020. View Article : Google Scholar : PubMed/NCBI | |
Wenes M, Shang M, Di Matteo M, Goveia J, Martín-Pérez R, Serneels J, Prenen H, Ghesquière B, Carmeliet P and Mazzone M: Macrophage metabolism controls tumor blood vessel morphogenesis and metastasis. Cell Metab. 24:701–715. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cowman SJ, Fuja DG, Liu XD, Tidwell RSS, Kandula N, Sirohi D, Agarwal AM, Emerson LL, Tripp SR, Mohlman JS, et al: Macrophage HIF-1alpha is an independent prognostic indicator in kidney cancer. Clin Cancer Res. 26:4970–4982. 2020. View Article : Google Scholar : PubMed/NCBI | |
Do MH, Shi W, Ji L, Ladewig E, Zhang X, Srivastava RM, Capistrano KJ, Edwards C, Malik I, Nixon BG, et al: Reprogramming tumor-associated macrophages to outcompete endovascular endothelial progenitor cells and suppress tumor neoangiogenesis. Immunity. 56:2555–2569. 2023. View Article : Google Scholar : PubMed/NCBI | |
Godet I, Shin YJ, Ju JA, Ye IC, Wang G and Gilkes DM: Fate-mapping post-hypoxic tumor cells reveals a ROS-resistant phenotype that promotes metastasis. Nat Commun. 10:48622019. View Article : Google Scholar : PubMed/NCBI | |
Stockmann C, Doedens A, Weidemann A, Zhang N, Takeda N, Greenberg JI, Cheresh DA and Johnson RS: Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis. Nature. 456:814–818. 2008. View Article : Google Scholar : PubMed/NCBI | |
Liu M, Liu L, Song Y, Li W and Xu L: Targeting macrophages: A novel treatment strategy in solid tumors. J Transl Mel. 20:5862022. View Article : Google Scholar | |
Xu T, Yu S, Zhang J and Wu S: Dysregulated tumor-associated macrophages in carcinogenesis, progression and targeted therapy of gynecological and breast cancers. J Hematol Oncol. 14:1812021. View Article : Google Scholar : PubMed/NCBI | |
Du R, Lu KV, Petritsch C, Liu P, Ganss R, Passegué E, Song H, Vandenberg S, Johnson RS, Werb Z and Bergers G: HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell. 13:206–220. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yang L and Zhang Y: Tumor-associated macrophages: From basic research to clinical application. J Hematol Oncol. 10:582017. View Article : Google Scholar : PubMed/NCBI | |
Owen JL and Mohamadzadeh M: Macrophages and chemokines as mediators of angiogenesis. Front Physiol. 4:1592013. View Article : Google Scholar : PubMed/NCBI | |
Riabov V, Gudima A, Wang N, Mickley A, Orekhov A and Kzhyshkowska J: Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis. Front Physiol. 5:752014. View Article : Google Scholar : PubMed/NCBI | |
Fu LQ, Du WL, Cai MH, Yao JY, Zhao YY and Mou XZ: The roles of tumor-associated macrophages in tumor angiogenesis and metastasis. Cell Immunol. 353:1041192020. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Guo Z, Chen W, Wang X, Cao M, Han X, Zhang K, Teng BW, Wu W, Cao P, et al: M2 macrophage-derived exosomes promote angiogenesis and growth of pancreatic ductal adenocarcinoma by targeting E2F2. Mol Ther. 29:1226–1238. 2021. View Article : Google Scholar : | |
Yin Z, Ma T, Huang B, Lin L, Zhou Y, Yan J, Zou Y and Chen S: Macrophage-derived exosomal microRNA-501-3p promotes progression of pancreatic ductal adenocarcinoma through the TGFBR3-mediated TGF-β signaling pathway. J Exp Clin Cancer Res. 38:3102019. View Article : Google Scholar | |
Christie EL and Bowtell DDL: Acquired chemotherapy resistance in ovarian cancer. Ann Oncol. 28(suppl_8): viii13–viii15. 2017. View Article : Google Scholar : PubMed/NCBI | |
Paulus P, Stanley ER, Schäfer R, Abraham D and Aharinejad S: Colony-stimulating factor-1 antibody reverses chemoresistance in human MCF-7 breast cancer xenografts. Cancer Res. 66:4349–4356. 2006. View Article : Google Scholar : PubMed/NCBI | |
DeNardo DG, Brennan DJ, Rexhepaj E, Ruffell B, Shiao SL, Madden SF, Gallagher WM, Wadhwani N, Keil SD, Junaid SA, et al: Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov. 1:54–67. 2011. View Article : Google Scholar : PubMed/NCBI | |
Guan W, Li F, Zhao Z, Zhang Z, Hu J and Zhang Y: Tumor-associated macrophage promotes the survival of cancer cells upon docetaxel chemotherapy via the CSF1/CSF1R-CXCL12/CXCR4 axis in castration-resistant prostate cancer. Genes (Basel). 12:7732021. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Chen Y, Hao L, Hou A, Chen X, Li Y, Wang R, Luo P, Ruan Z, Ou J, et al: Macrophages induce resistance to 5-fuorouracil chemotherapy in colorectal cancer through the release of putrescine. Cancer Lett. 381:305–313. 2016. View Article : Google Scholar : PubMed/NCBI | |
Su P, Jiang L, Zhang Y, Yu T, Kang W, Liu Y and Yu J: Crosstalk between tumor-associated macrophages and tumor cells promotes chemoresistance via CXCL5/PI3K/AKT/mTOR pathway in gastric cancer. Cancer Cell Int. 22:2902022. View Article : Google Scholar : PubMed/NCBI | |
Zhu X, Shen H, Yin X, Yang M, Wei H, Chen Q, Feng F, Liu Y, Xu W and Li Y: Macrophages derived exosomes deliver miR-223 to epithelial ovarian cancer cells to elicit a chemoresistant phenotype. J Exp Clin Cancer Res. 38:812019. View Article : Google Scholar : PubMed/NCBI | |
Binenbaum Y, Fridman E, Yaari Z, Milman N, Schroeder A, Ben David G, Shlomi T and Gil Z: Transfer of miRNA in macrophage-derived exosomes induces drug resistance in pancreatic adenocarcinoma. Cancer Res. 78:5287–5299. 2018. View Article : Google Scholar : PubMed/NCBI | |
Akkari L, Bowman RL, Tessier J, Klemm F, Handgraaf SM, de Groot M, Quail DF, Tillard L, Gadiot J, Huse JT, et al: Dynamic changes in glioma macrophage populations after radiotherapy reveal CSF-1R inhibition as a strategy to overcome resistance. Sci Transl Med. 12:eaaw78432020. View Article : Google Scholar : PubMed/NCBI | |
Rahal OM, Wolfe AR, Mandal PK, Larson R, Tin S, Jimenez C, Zhang D, Horton J, Reuben JM, McMurray JS and Woodward WA: Blocking interleukin (IL)4and IL13-mediated phosphorylation of STAT6 (Tyr641) decreases M2 polarization of macrophages and protects against macrophage-mediated radioresistance of inflammatory breast cancer. Int J Radiat Oncol Biol Phys. 100:1034–1043. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lee HL, Tsai YC, Pikatan NW, Yeh CT, Yadav VK, Chen MY and Tsai JT: Tumor-associated macrophages affect the tumor microenvironment and radioresistance via the Upregulation of CXCL6/CXCR2 in hepatocellular carcinoma. Biomedicines. 11:20812023. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Feng Z and Liu J, Li H, Su Q, Zhang J, Huang P, Wang W and Liu J: Polarization of tumor-associated macrophages by TLR7/8 conjugated radiosensitive peptide hydrogel for overcoming tumor radioresistance. Bioact Mater. 16:359–371. 2022.PubMed/NCBI | |
Zhao F, Tian H, Wang Y, Zhang J, Liu F and Fu L: LINC01004-SPI1 axis-activated SIGLEC9 in tumor-associated macrophages induces radioresistance and the formation of immunosuppressive tumor microenvironment in esophageal squamous cell carcinoma. Cancer Immunol Immunother. 72:1835–1851. 2023. View Article : Google Scholar : PubMed/NCBI | |
Gu X, Shi Y, Dong M, Jiang L, Yang J and Liu Z: Exosomal transfer of tumor-associated macrophage-derived hsa_circ_0001610 reduces radiosensitivity in endometrial cancer. Cell Death Dis. 12:8182021. View Article : Google Scholar : PubMed/NCBI | |
Jiang YS, Chen M, Nie H and Yuan YY: PD-1 and PD-L1 in cancer immunotherapy: Clinical implications and future considerations. Hum Vaccin Immunother. 15:1111–1122. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ren D, Hua Y, Yu B, Ye X, He Z, Li C, Wang J, Mo Y, Wei X, Chen Y, et al: Predictive biomarkers and mechanisms underlying resistance to PD1/PD-L1 blockade cancer immunotherapy. Mol Cancer. 19:192020. View Article : Google Scholar : PubMed/NCBI | |
Quaranta V, Rainer C, Nielsen SR, Raymant ML, Ahmed MS, Engle DD, Taylor A, Murray T, Campbell F, Palmer DH, et al: Macrophage-derived granulin drives resistance to immune checkpoint inhibition in metastatic pancreatic cancer. Cancer Res. 78:4253–4269. 2018. View Article : Google Scholar : PubMed/NCBI | |
Molgora M, Esaulova E, Vermi W, Hou J, Chen Y, Luo J, Brioschi S, Bugatti M, Omodei AS, Ricci B, et al: TREM2 modulation remodels the tumor myeloid landscape enhancing anti-PD-1 immunotherapy. Cell. 182:886–900.e17. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li W, Wu F, Zhao S, Shi P, Wang S and Cui D: Correlation between PD-1/PD-L1 expression and polarization in tumor-associated macrophages: A key player in tumor immunotherapy. Cytokine Growth Factor Rev. 67:49–57. 2022. View Article : Google Scholar : PubMed/NCBI | |
Pich-Bavastro C, Yerly L, Di Domizio J, Tissot-Renaud S, Gilliet M and Kuonen F: Activin A-mediated polarization of cancer-associated fibroblasts and macrophages confers resistance to checkpoint immunotherapy in skin cancer. Clin Cancer Res. 29:3498–3513. 2023. View Article : Google Scholar : PubMed/NCBI | |
Liu KX and Joshi S: 'Re-educating' tumor associated macrophages as a novel immunotherapy strategy for neuroblastoma. Front Immunol. 11:19472020. View Article : Google Scholar | |
Geiger R, Rieckmann JC, Wolf T, Basso C, Feng Y, Fuhrer T, Kogadeeva M, Picotti P, Meissner F, Mann M, et al: L-arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell. 167:829–842.e13. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bronte V and Zanovello P: Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol. 5:641–654. 2005. View Article : Google Scholar : PubMed/NCBI | |
Movahedi K, Laoui D, Gysemans C, Baeten M, Stangé G, Van den Bossche J, Mack M, Pipeleers D, In't Veld P, De Baesselier P and Van Ginderachter JA: Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C (high) monocytes. Cancer Res. 70:5728–5739. 2010. View Article : Google Scholar : PubMed/NCBI | |
Molon B, Ugel S, Del Pozzo F, Soldani C, Zilio S, Avella D, De Palma A, Mauri P, Monegal A, Rescigno M, et al: Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells. J Exp Med. 208:1949–1962. 2011. View Article : Google Scholar : PubMed/NCBI | |
De Palma M and Lewis CE: Macrophage regulation of tumor responses to anticancer therapies. Cancer Cell. 23:277–286. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ruffell B, Chang-Strachan D, Chan V, Rosenbusch A, Ho CM, Pryer N, Daniel D, Hwang ES, Rugo HS and Coussens LM: Macrophage IL-10 blocks CD8+ T cell dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. Cancer Cell. 26:623–637. 2014. View Article : Google Scholar : PubMed/NCBI | |
Komohara Y, Fujiwara Y, Ohnishi K and Takeya M: Tumor-associated macrophages: Potential therapeutic targets for anti-cancer therapy. Adv Drug Delivery Rev. 99(Pt B): 180–185. 2016. View Article : Google Scholar | |
Smith LK, Boukhaled GM, Condotta SA, Mazouz S, Guthmiller JJ, Vijay R, Butler NS, Bruneau J, Shoukry NH, Krawczyk CM and Richer MJ: Interleukin-10 directly inhibits CD8(+) T cell function by enhancing N-glycan branching to decrease antigen sensitivity. Immunity. 48:299–312.e5. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang D, Yang L, Yue D, Cao L, Li L, Wang D, Ping Y, Shen Z, Zheng Y, Wang L and Zhang Y: Macrophage-derived CCL22 promotes an immunosuppressive tumor microenvironment via IL-8 in malignant pleural effusion. Cancer Lett. 452:244–253. 2019. View Article : Google Scholar : PubMed/NCBI | |
Noy R and Pollard JW: Tumor-associated macrophages: From mechanisms to therapy. Immunity. 41:49–61. 2014. View Article : Google Scholar : PubMed/NCBI | |
Morandi F and Pistoia V: Interactions between HLA-G and HLA-E in physiological and pathological conditions. Front Immunol. 5:3942014. View Article : Google Scholar : PubMed/NCBI | |
DeNardo DG and Ruffell B: Macrophages as regulators of tumour immunity and immunotherapy. Nat Rev Immunol. 19:369–382. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li X, Shao C, Shi Y and Han W: Lessons learned from the blockade of immune checkpoints in cancer immunotherapy. J Hematol Oncol. 11:312018. View Article : Google Scholar : PubMed/NCBI | |
Ganesh K and Massagué J: Targeting metastatic cancer. Nat Med. 27:34–44. 2021. View Article : Google Scholar : PubMed/NCBI | |
Pastushenko L and Blanpain C: EMT transition states during tumor progression and metastasis. Trends Cell Biol. 29:212–226. 2019. View Article : Google Scholar | |
Wei C, Yang C, Wang S, Shi D, Zhang C, Lin X, Liu Q, Dou R and Xiong B: Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell-mediated colorectal cancer metastasis. Mol Cancer. 18:642019. View Article : Google Scholar : PubMed/NCBI | |
Lim GJ, Kang S and Lee JY: Novel invasion indices quantify the feed forward facilitation of tumor invasion by macrophages. Sci Rep. 10:718–727. 2020. View Article : Google Scholar | |
Li X, Chen L, Peng X and Zhan X: Progress of tumor-associated macrophages in the epithelial-mesenchymal transition of tumor. Front Oncol. 12:9114102022. View Article : Google Scholar : PubMed/NCBI | |
Zhu F, Li X, Chen S, Zeng Q, Zhao Y and Luo F: Tumorassociated macrophage or chemokine ligand CCL17 positively regulates the tumorigenesis of hepatocellular carcinoma. Med Oncol. 33:172016. View Article : Google Scholar | |
Sun D, Luo T, Dong P, Zhang N, Chen J and Zhang S, Dong L, Janssen HLA and Zhang S: M2-polarized tumor-associated macrophages promote epithelial-mesenchymal transition via activation of the AKT3/PRAS40 signaling pathway in intrahepatic cholangiocarcinoma. J Cell Biochem. 121:2828–2838. 2020. View Article : Google Scholar | |
Lee S, Lee E, Ko E, Ham M, Lee HM, Kim ES, Koh M, Lim HK, Jung J, Park SY and Moon A: Tumor-associated macrophages secrete CCL2 and induce the invasive phenotype of human breast epithelial cells through upregulation of ERO1-alpha and MMP-9. Cancer Lett. 437:25–34. 2018. View Article : Google Scholar : PubMed/NCBI | |
Paolillo M and Schinelli S: Extracellular matrix alterations in metastatic processes. Int J Mol Sci. 20:49472019. View Article : Google Scholar : PubMed/NCBI | |
Kessenbrock K, Plaks V and Werb Z: Matrix metalloproteinases: Regulators of the tumor microenvironment. Cell. 141:52–67. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Zhang S, Wang Q and Zhang X: Tumor-recruited M2 macrophages promote gastric and breast cancer metastasis via M2 macrophage-secreted CHI3L1 protein. J Hematol Oncol. 10:362017. View Article : Google Scholar : PubMed/NCBI | |
Tan Y, Wang M, Zhang Y, Ge S, Zhong F, Xia G and Sun C: Tumor-associated macrophages: A potential target for cancer therapy. Front Oncol. 11:6935172021. View Article : Google Scholar : PubMed/NCBI | |
Kitamura T, Qian BZ, Soong D, Cassetta L, Noy R, Sugano G, Kato Y, Li JF and Pollard JW: CCL2-induced chemokine cascade promotes breast cancer metastasis by enhancing retention of metastasis-associated macrophages. J Exp Med. 212:1043–1059. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kitamura T, Doughty-Shenton D, Cassetta L, Fragkogianni S, Brownlie D, Kato Y, Carragher N and Pollard JW: Monocytes differentiate to immune suppressive precursors of metastasis associated macrophages in mouse models of metastatic breast cancer. Front Immunol. 8:20042018. View Article : Google Scholar | |
Lin EY, Li JF, Gnatovskiy L, Deng Y, Zhu L, Grzesik DA, Qian H, Xue XN and Pollard JW: Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res. 66:11238–11246. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lin EY and Pollard JW: Tumor-associated macrophages press the angiogenic switch in breast cancer. Cancer Res. 67:5064–5066. 2007. View Article : Google Scholar : PubMed/NCBI | |
Cao R, Ji H, Yang Y and Cao Y: Collaborative effects between the TNFα-TNFR1-macrophage axis and the VEGF-C-VEGFR3 signaling in lymphangiogenesis and metastasis. Oncoimmunology. 4:e9897772015. View Article : Google Scholar | |
Alishekevitz D, Gingis-Velitski S, Kaidar-Person O, Gutter-Kapon L, Scherer SD, Raviv Z, Merquiol E, Ben-Nun Y, Miller V, Rachman-Tzemah C, et al: Macrophage-induced lymphangiogenesis and metastasis following paclitaxel chemotherapy is regulated by VEGFR3. Cell Rep. 17:1344–1356. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sun L, Zhang H and Gao P: Metabolic reprogramming and epigenetic modifications on the path to cancer. Protein Cell. 13:877–919. 2022. View Article : Google Scholar : | |
Muri J and Kopf M: Redox regulation of immunometabolism. Nat Rev Immunol. 21:363–381. 2021. View Article : Google Scholar | |
Ringel AE, Drijvers JM, Baker GJ, Catozzi A, Garcia-Canaveras JC, Gassaway BM, Miller BC, Juneja VR, Nguyen TH, Joshi S, et al: Obesity shapes metabolism in the tumor microenvironment to suppress anti-tumor immunity. Cell. 183:1848–1866. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen D, Zhang X, Li Z and Zhu B: Metabolic regulatory crosstalk between tumor microenvironment and tumor-associated macrophages. Theranostics. 11:1016–1030. 2021. View Article : Google Scholar : PubMed/NCBI | |
Netea-Maier RT, Smit JWA and Netea MG: Metabolic changes in tumor cells and tumor-associated macrophages: A mutual relationship. Cancer Lett. 413:102–109. 2018. View Article : Google Scholar | |
Chen F, Chen J, Yang L, Liu J, Zhang X, Zhang Y, Tu Q, Yin D, Lin D, Wong PP, et al: Extracellular vesicle-packaged HIF-1α-tabilizing lncRNA from tumor-associated macrophages regulates aerobic glycolysis of breast cancer cells. Nat Cell Biol. 21:498–510. 2019. View Article : Google Scholar : PubMed/NCBI | |
Brown JM and Wilson WR: Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer. 4:437–447. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kroemer G and Pouyssegur J: Tumor cell metabolism: Cancer's Achilles' heel. Cancer Cell. 13:472–482. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jeong H, Kim S, Hong BJ, Lee CJ, Kim YE, Bok S, Oh JM, Gwak SH, Yoo MY, Lee MS, et al: Tumor-associated macrophages enhance tumor hypoxia and aerobic glycolysis. Cancer Res. 79:795–806. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Yu G, Chu H, Wang X, Xiong L, Cai G, Liu R, Gao H, Tao B, Li W, et al: Macrophage-associated PGK1 phosphorylation promotes aerobic glycolysis and tumorigenesis. Mol Cell. 71:201–215.e7. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lin S, Sun L, Lyu X, Ai X, Du D, Su N, Li H, Zhang L, Yu J and Yuan S: Lactate-activated macrophages induced aerobic glycolysis and epithelial-mesenchymal transition in breast cancer by regulation of CCL5-CCR5 axis: A positive metabolic feedback loop. Oncotarget. 8:110426–110443. 2017. View Article : Google Scholar | |
Ye H, Zhou Q, Zheng S, Li G, Lin Q, Wei L, Fu Z, Zhang B, Liu Y, Li Z and Chen R: Tumor-associated macrophages promote progression and the Warburg effect via CCL18/NF-kB/VCAM-1 pathway in pancreatic ductal adenocarcinoma. Cell Death Dis. 9:4532018. View Article : Google Scholar : PubMed/NCBI | |
Ishida Y, Kuninaka Y, Yamamoto Y, Nosaka M, Kimura A, Furukawa F, Mukaida N and Kondo T: Pivotal involvement of the CX3CL1-CX3CR1 axis for the recruitment of M2 tumor-associated macrophages in skin carcinogenesis. J Invest Dermatol. 140:1951–1961. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cannarile MA, Weisser M, Jacob W, Jegg AM, Ries CH and Ruttinger D: Colony stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J Immunother Cancer. 5:532017. View Article : Google Scholar | |
Pathria P, Louis TL and Varner JA: Targeting tumor-associated macrophages in cancer. Trends Immunol. 40:310–327. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kielbassa K, Vegna S, Ramirez C and Akkari L: Understanding the origin and diversity of macrophages to tailor their targeting in solid cancers. Front Immunol. 10:22152019. View Article : Google Scholar : PubMed/NCBI | |
Fujiwara T, Yakoub MA, Chandler A, Christ AB, Yang G, Ouerfelli O, Rajasekhar VK, Yoshida A, Kondo H, Hata T, et al: CSF1/CSF1R signaling inhibitor pexidartinib (PLX3397) reprograms tumor-associated macrophages and stimulates T-cell infltration in the sarcoma microenvironment. Mol Cancer Ther. 20:1388–1399. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wesolowski R, Sharma N, Reebel L, Rodal MB, Peck A, West BL, Marimuthu A, Severson P, Karlin DA, Dowlati A, et al: Phase Ib study of the combination of pexidartinib (PLX3397), a CSF-1R inhibitor, and paclitaxel in patients with advanced solid tumors. Ther Adv Med Oncol. 11:17588359198542382019. View Article : Google Scholar : PubMed/NCBI | |
Tap WD, Gelderblom H, Palmerini E, Desai J, Bauer S, Blay JY, Alcindor T, Ganjoo K, Martín-Broto J, Ryan CW, et al: Pexidartinib versus placebo for advanced tenosynovial giant cell tumour (ENLIVEN): A randomised phase 3 trial. Lancet. 394:478–487. 2019. View Article : Google Scholar : PubMed/NCBI | |
Khotskaya YB, Holla VR, Farago AF, Mills Shaw KR, Meric-Bernstam F and Hong DS: Targeting TRK family proteins in cancer. Pharmacol Ther. 173:58–66. 2017. View Article : Google Scholar : PubMed/NCBI | |
Thongchot S, Duangkaew S, Yotchai W, Maungsomboon S, Phimolsarnti R, Asavamongkolkul A, Thuwajit P, Thuwajit C and Chandhanayingyong C: Novel CSF1R-positive tenosynovial giant cell tumor cell lines and their pexidartinib (PLX3397) and sotuletinib (BLZ945)-induced apoptosis. Hum Cell. 36:456–467. 2023. View Article : Google Scholar : | |
Johnson M, Dudek AZ, Sukari A, Call J, Kunk PR, Lewis K, Gainor JF, Sarantopoulos J, Lee P, Golden A, et al: ARRY-382 in combination with pembrolizumab in patients with advanced solid tumors: Results from a phase 1b/2 study. Clin Cancer Res. 28:2517–2526. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kuemmel S, Campone M, Loirat D, Lopez RL, Beck JT, De Laurentiis M, Im SA, Kim SB, Kwong A, Steger GG, et al: A randomized phase II study of anti-CSF1 monoclonal antibody lacnotuzumab (MCS110) combined with gemcitabine and carboplatin in advanced triple-negative breast cancer. Clin Cancer Res. 28:106–115. 2022. View Article : Google Scholar | |
Autio KA, Klebanoff CA, Schaer D, Kauh JSW, Slovin SF, Adamow M, Blinder VS, Brahmachary M, Carlsen M, Comen E, et al: Immunomodulatory activity of a colony-stimulating factor-1 receptor inhibitor in patients with advanced refractory breast or prostate cancer: A phase I study. Clin Cancer Res. 26:5609–5620. 2020. View Article : Google Scholar : PubMed/NCBI | |
Uddin MN and Wang XS: Identifcation of key tumor stroma associated transcriptional. signatures correlated with survival prognosis and tumor progression in breast cancer. Breast Cancer. 29:541–561. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kadomoto S, Izumi K and Mizokami A: Roles of CCL2-CCR2 axis in the tumor microenvironment. Int J Mol Sci. 22:85302021. View Article : Google Scholar : PubMed/NCBI | |
Hao Q, Vadgama JV and Wang P: CCL2/CCR2 signaling in cancer pathogenesis. Cell Commun Signal. 18:822020. View Article : Google Scholar : PubMed/NCBI | |
Li X, Yao W, Yuan Y, Chen P, Li B, Li J, Chu R, Song H, Xie D, Jiang X and Wang H: Targeting of tumour-infltrating macrophages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma. Gut. 66:157–167. 2017. View Article : Google Scholar | |
Sandhu SK, Papadopoulos K, Fong PC, Patnaik A, Messiou C, Olmos D, Wang G, Tromp BJ, Puchalski TA, Balkwill F, et al: A first-in-human, first-in-class, phase I study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 in patients with solid tumors. Cancer Chemother Pharmacol. 71:1041–1050. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pienta KJ, Machiels JP, Schrijvers D, Alekseev B, Shkolnik M, Crabb SJ, Li S, Seetharam S, Puchalsko TA, Takimoto C, et al: Phase 2 study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 (CCL2), in metastatic castration-resistant prostate cancer. Invest New Drugs. 31:760–768. 2013. View Article : Google Scholar | |
Flores-Toro JA, Luo D, Gopinath A, Sarkisian MR, Campbell JJ, Charo IF, Singh R, Schall TJ, Datta M, Jain RK, et al: CCR2 inhibition reduces tumor myeloid cells and unmasks a checkpoint inhibitor effect to slow progression of resistant murine gliomas. Proc Natl Acad Sci USA. 117:1129–1138. 2020. View Article : Google Scholar : | |
Sleightholm RL, Neilsen BK, Li J, Steele MM, Singh RK, Hollingsworth MA and Oupicky D: Emerging roles of the CXCL12/CXCR4 axis in pancreatic cancer progression and therapy. Pharmacol Ther. 179:158–170. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tang C, Lei X, Xiong L, Hu Z and Tang B: HMGA1B/2 transcriptionally activated-POU1F1 facilitates gastric carcinoma metastasis via CXCL12/CXCR4 axis-mediated macrophage polarization. Cell Death Dis. 12:4222021. View Article : Google Scholar : PubMed/NCBI | |
Shi T, Li X, Zheng J, Duan Z, Ooi YY, Gao Y, Wang Q, Yang J, Wang L and Yao L: Increased SPRY1 expression activates NF-κB signaling and promotes pancreatic cancer progression by recruiting neutrophils and macrophages through CXCL12-CXCR4 axis. Cell Oncol (Dordr). 46:969–985. 2023. View Article : Google Scholar : PubMed/NCBI | |
Choueiri TK, Atkins MB, Rose TL, Alter RS, Ju Y, Niland K, Wang Y, Arbeit R, Parasuraman S, Gan L and McDermott DF: A phase 1b trial of the CXCR4 inhibitor mavorixafor and nivolumab in advanced renal cell carcinoma patients with no prior response to nivolumab monotherapy. Invest New Drugs. 39:1019–1027. 2021. View Article : Google Scholar : PubMed/NCBI | |
Bockorny B, Semenisty V, Macarulla T, Borazanci E, Wolpin BM, Stemmer SM, Golan T, Geva R, Borad MJ, Pedersen KS, et al: BL-8040, a CXCR4 antagonist, in combination with pembrolizumab and chemotherapy for pancreatic cancer: the COMBAT trial. Nat Med. 26:878–885. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Liang Y, Li L, Zhou L, Cheng W, Yang X, Yang X, Qi H, Yu J, Jeong LS, et al: Targeting neddylation inhibits intravascular survival and extravasation of cancer cells to prevent lung-cancer metastasis. Cell Biol Toxicol. 35:233–245. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhou L, Jiang Y, Liu X, Li L, Yang X, Dong C, Liu X, Lin Y, Li Y, Yu J, et al: Promotion of tumor-associated macrophages infltration by elevated neddylation pathway via NF-κB-CCL2 signaling in lung cancer. Oncogene. 38:5792–5804. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zheng JH, Nguyen VH, Jiang SN, Park SH, Tan W, Hong SH, Shin MG, Chung IJ, Hong Y, Bom HS, et al: Two-step enhanced cancer immunotherapy with engineered Salmonella typhimurium secreting heterologous flagellin. Sci Transl Med. 9:eaak95372017. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Schulte BC, Zhou Y, Haribhai D, Mackinnon AC, Plaza JA, Williams CB and Hwang ST: Depletion of M2-like tumor-associated macrophages delays cutaneous T-cell lymphoma development in vivo. J Invest Dermatol. 134:2814–2822. 2014. View Article : Google Scholar : PubMed/NCBI | |
Piaggio F, Kondylis V, Pastorino F, Di Paolo D, Perri P, Cossu I, Schorn F, Marinaccio C, Murgia D, Daga A, et al: A novel liposomal Clodronate depletes tumor-associated macrophages in primary and metastatic melanoma: anti-angiogenic and anti-tumor effects. J Control Release. 223:165–177. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zang X, Zhang X, Hu H, Qiao M, Zhao X, Deng Y and Chen D: Targeted delivery of zoledronate to tumor-associated macrophages for cancer immunotherapy. Mol Pharm. 16:2249–2258. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cao Y, Qiao B, Chen Q, Xie Z, Dou X, Xu L, Ran H, Zhang L and Wang Z: Tumor microenvironment remodeling via targeted depletion of M2-like tumor-associated macrophages for cancer immunotherapy. Acta Biomater. 160:239–251. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Huang M, Chen M, Sun Z, Jiao Y, Ye G, Pan J, Ye W, Zhao J and Zhang D: Zoledronic acid and thymosin α1 elicit antitumor immunity against prostate cancer by enhancing tumor inflammation and cytotoxic T cells. J Immunother Cancer. 11:e0063812023. View Article : Google Scholar | |
Grignani G, D'Ambrosio L, Pignochino Y, Palmerini E, Zucchetti M, Boccone P, Aliberti S, Stacchiotti S, Bertulli R, Piana R, et al: Trabectedin and olaparib in patients with advanced and non-resectable bone and soft-tissue sarcomas (TOMAS): An open-label, phase 1b study from the Italian Sarcoma Group. Lancet Oncol. 19:1360–1371. 2018. View Article : Google Scholar : PubMed/NCBI | |
Povo-Retana A, Fariñas M, Landauro-Vera R, Mojena M, Alvarez-Lucena C, Fernández-Moreno MA, Castrillo A, de la Rosa Medina JV, Sánchez-García S, Foguet C, et al: Immunometabolic actions of trabectedin and lurbinectedin on human macrophages: Relevance for their anti-tumor activity. Front Immunol. 14:12110682023. View Article : Google Scholar : PubMed/NCBI | |
Germano G, Frapolli R, Belgiovine C, Anselmo A, Pesce S, Liguori M, Erba E, Uboldi S, Zucchetti M, Pasqualini F, et al: Role of macrophage targeting in the antitumor activity of trabectedin. Cancer Cell. 23:249–262. 2013. View Article : Google Scholar : PubMed/NCBI | |
D'Incalci M and Zambelli A: Trabectedin for the treatment of breast cancer. Expert Opin Investig Drugs. 25:105–115. 2016. View Article : Google Scholar | |
Carminati L, Pinessi D, Borsotti P, Minoli L, Giavazzi R, D'Incalci M, Belotti D and Taraboletti G: Antimetastatic and antiangiogenic activity of trabectedin in cutaneous melanoma. Carcinogenesis. 40:303–312. 2019. View Article : Google Scholar | |
Lee C, Jeong H, Bae Y, Shin K, Kang S, Kim H, Oh J and Bae H: Targeting of M2-like tumor-associated macrophages with a melittin-based pro-apoptotic peptide. J Immunother Cancer. 7:1472019. View Article : Google Scholar : PubMed/NCBI | |
Sánchez-Paulete AR, Mateus-Tique J, Mollaoglu G, Nielsen SR, Marks A, Lakshmi A, Khan JA, Wilk CM, Pia L, Baccarini A, et al: Targeting macrophages with CAR T cells delays solid tumor progression and enhances antitumor immunity. Cancer Immunol Res. 10:1354–1369. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yanai H, Hangai S and Taniguchi T: Damage-associated molecular patterns and Toll-like receptors in the tumor immune microenvironment. Int Immunol. 33:841–846. 2021. View Article : Google Scholar : PubMed/NCBI | |
Rameshbabu S, Labadie BW, Argulian A and Patnaik A: Targeting innate immunity in cancer therapy. Vaccines (Basel). 9:1382021. View Article : Google Scholar : PubMed/NCBI | |
Urban-Wojciuk Z, Khan MM, Oyler BL, Fahraeus R, Marek-Trzonkowska N, Nita-Lazar A, Hupp TR and Goodlett DR: The role of TLRs in anti-cancer immunity and tumor rejection. Front Immunol. 10:23882019. View Article : Google Scholar : PubMed/NCBI | |
Vidyarthi A, Khan N, Agnihotri T, Negi S, Das DK, Aqdas M, Chatterjee D, Colegio OR, Tewari MK and Agrewala JN: TLR-3 stimulation skews M2 macrophages to M1 through IFN-αβ signaling and restricts tumor progression. Front Immunol. 9:16502018. View Article : Google Scholar | |
McGowan DC: Latest advances in small molecule TLR7/8 agonist drug research. Curr Top Med Chem. 19:2228–2238. 2019. View Article : Google Scholar | |
Wang Z, Gao Y, He L, Sun S, Xia T, Hu L, Yao L, Wang L, Li D, Shi H and Liao X: Structure-based design of highly potent toll-like receptor 7/8 dual agonists for cancer immunotherapy. J Med Chem. 64:7507–7532. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Xie Y, Xiong Y, Liu S, Qiu C, Zhu Z, Mao H, Yu M and Wang X: TLR 7/8 agonist reverses oxaliplatin resistance in colorectal cancer via directing the myeloid-derived suppressor cells to tumoricidal M1-macrophages. Cancer Lett. 469:173–185. 2020. View Article : Google Scholar | |
Figueiredo P, Lepland A, Scodeller P, Fontana F, Torrieri G, Tiboni M, Shahbazi MA, Casettari L, Kostiainen MA, Hirvonen J, et al: Peptide-guided resiquimod-loaded lignin nanoparticles convert tumor-associated macrophages from M2 to M1 phenotype for enhanced chemotherapy. Acta Biomater. 133:231–243. 2021. View Article : Google Scholar | |
Mullins SR, Vasilakos JP, Deschler K, Grigsby I, Gillis P, John J, Elder MJ, Swales J, Timosenko E, Cooper Z, et al: Intratumoral immunotherapy with TLR7/8 agonist MEDI9197 modulates the tumor microenvironment leading to enhanced activity when combined with other immunotherapies. J Immunother Cancer. 7:2442019. View Article : Google Scholar : PubMed/NCBI | |
Smith DA, Conkling P, Richards DA, Nemunaitis JJ, Boyd TE, Mita AC, de La Bourdonnaye G, Wages D and Bexon AS: Antitumor activity and safety of combination therapy with the Toll-like receptor 9 agonist IMO-2055, erlotinib, and bevacizumab in advanced or metastatic non-small cell lung cancer patients who have progressed following chemotherapy. Cancer Immunol Immunother. 63:787–796. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ji N, Mukherjee N, Morales EE, Tomasini ME, Hurez V, Curiel TJ, Abate G, Hoft DF, Zhao XR, Gelfond J, et al: Percutaneous BCG enhances innate effector antitumor cytotoxicity during treatment of bladder cancer: A translational clinical trial. Oncoimmunology. 8:16148572019. View Article : Google Scholar : PubMed/NCBI | |
Ji N, Mukherjee N, Reyes RM, Gelfond J, Javors M, Meeks JJ, McConey DJ, Shu ZJ, Ramamurthy C, Dennett R, et al: Rapamycin enhances BCG-specifc γδ T cells during intravesical BCG therapy for non-muscle invasive bladder cancer: A randomized, double-blind study. J Immunother Cancer. 9:e0019412021. View Article : Google Scholar | |
Takada YK, Yu J, Shimoda M and Takada Y: Integrin binding to the trimeric interface of CD40L plays a critical role in CD40/CD40L signaling. J Immunol. 203:1383–1391. 2019. View Article : Google Scholar : PubMed/NCBI | |
Vonderheide RH: CD40 agonist antibodies in cancer immunotherapy. Annu Rev Med. 71:47–58. 2020. View Article : Google Scholar | |
Beatty GL, Chiorean EG, Fishman MP, Saboury B, Teitelbaum UR, Sun W, Huhn RD, Song W, Li D, Sharp LL, et al: CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science. 331:1612–1616. 2011. View Article : Google Scholar : PubMed/NCBI | |
Nanda S: Cancer: CD40 agonists-a promising new treatment for pancreatic cancer? Nat Rev Gastroenterol Hepatol. 8:3002011. View Article : Google Scholar | |
Hoves S, Ooi CH, Wolter C, Sade H, Bissinger S, Schmittnaegel M, Ast O, Giusti AM, Wartha K, Runza V, et al: Rapid activation of tumor-associated macrophages boosts preexisting tumor immunity. J Exp Med. 215:859–876. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wiehagen KR, Girgis NM, Yamada DH, Smith AA, Chan SR, Grewal IS, Quigley M and Verona RI: Combination of CD40 agonism and CSF-1R blockade reconditions tumor-associated macrophages and drives potent antitumor immunity. Cancer Immunol Res. 5:1109–1121. 2017. View Article : Google Scholar : PubMed/NCBI | |
Baumann D, Hägele T, Mochayedi J, Drebant J, Vent C, Blobner S, Noll JH, Nickel I, Schumacher C, Boos SL, et al: Proimmunogenic impact of MEK inhibition synergizes with agonist anti-CD40 immunostimulatory antibodies in tumor therapy. Nat Commun. 11:21762020. View Article : Google Scholar : PubMed/NCBI | |
Leblond MM, Tillé L, Nassiri S, Gilfillan CB, Imbratta C, Schmittnaegel M, Ries CH, Speiser DE and Verdeil G: CD40 agonist restores the antitumor efficacy of anti-PD1 therapy in muscle-invasive bladder cancer in an IFN I/II-mediated manner. Cancer Immunol Res. 8:1180–1192. 2020. View Article : Google Scholar : PubMed/NCBI | |
Djureinovic D, Wang M and Kluger HM: Agonistic CD40 antibodies in cancer treatment. Cancers (Basel). 13:13022021. View Article : Google Scholar : PubMed/NCBI | |
Georgoudaki AM, Prokopec KE, Boura VF, Hellqvist E, Sohn S, Ostling J, Dahan R, Harris RA, Rantalainen M, Klevebring D, et al: Reprogramming tumor-associated macrophages by antibody targeting inhibits cancer progression and metastasis. Cell Rep. 15:2000–2011. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ding L, Qian J, Yu X, Wu Q, Mao J, Liu X, Wang Y, Guo D, Su R, Xie H, et al: Blocking MARCO+ tumor-associated macrophages improves anti-PD-L1 therapy of hepatocellular carcinoma by promoting the activation of STING-IFN type I pathway. Cancer Lett. 582:2165682024. View Article : Google Scholar | |
Dong Q, Zhang S, Zhang H, Sun J, Lu J, Wang G and Wang X: MARCO is a potential prognostic and immunotherapy biomarker. Int Immunopharmacol. 116:1097832023. View Article : Google Scholar : PubMed/NCBI | |
Eisinger S, Sarhan D, Boura VF, Ibarlucea-Benitez I, Tyystjärvi S, Oliynyk G, Arsenian-Henriksson M, Lane D, Wikström SL, Kiessling R, et al: Targeting a scavenger receptor on tumor-associated macrophages activates tumor cell killing by natural killer cells. Proc Natl Acad Sci USA. 117:32005–32016. 2020. View Article : Google Scholar : PubMed/NCBI | |
Masetti M, Carriero R, Portale F, Marelli G, Morina N, Pandini M, Iovino M, Partini B, Erreni M, Ponzetta A, et al: Lipid-loaded tumor-associated macrophages sustain tumor growth and invasiveness in prostate cancer. J Exp Med. 219:e202105642022. View Article : Google Scholar : | |
Toma VA, Tigu AB, Farcaș AD, Sevastre B, Taulescu M, Gherman AMR, Roman I, Fischer-Fodor E and Pârvu M: New aspects towards a molecular understanding of the allicin immunostimulatory mechanism via Colec12, MARCO, and SCARB1 receptors. Int J Mol Sci. 20:36272019. View Article : Google Scholar : PubMed/NCBI | |
Liu B, Li L, Xiu B, Zhang Y, Zhou Y, Yang Q, Qi W, Wu W, Wang L, Gu J and Xie J: C-terminus of heat shock protein 60 can activate macrophages by lectin-like oxidized low-density lipoprotein receptor 1. Biochem Biophys Res Commun. 508:1113–1119. 2019. View Article : Google Scholar | |
Kaneda MM, Cappello P, Nguyen AV, Ralainirina N, Hardamon CR, Foubert P, Schmid MC, Sun P, Mose E, Bouvet M, et al: Macrophage PI3Kγ drives pancreatic ductal adenocarcinoma progression. Cancer Discov. 6:870–885. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kaneda MM, Messer KS, Ralainirina N, Li H, Leem CJ, Gorjestani S, Woo G, Nguyen AV, Figueiredo CC, Foubert P, et al: PI3Kγ is a molecular switch that controls immune suppression. Nature. 539:437–442. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hong DS, Postow M, Chmielowski B, Sullivan R, Patnaik A, Cohen EEW, Shapiro G, Steuer C, Gutierrez M, Yeckes-Rodin H, et al: Eganelisib, a first-in-class PI3Kγ inhibitor, in patients with advanced solid tumors: results of the phase 1/1b MARIO-1 trial. Clin Cancer Res. 29:2210–2219. 2023. View Article : Google Scholar : PubMed/NCBI | |
Giurisato E, Xu Q, Lonardi S, Telfer B, Russo I, Pearson A, Finegan KG, Wang W, Wang J, Gray NS, et al: Myeloid ERK5 deficiency suppresses tumor growth by blocking protumor macrophage polarization via STAT3 inhibition. Proc Natl Acad Sci USA. 115:E2801–E2810. 2018. View Article : Google Scholar : PubMed/NCBI | |
Baer C, Squadrito ML, Laoui D, Thompson D, Hansen SK, Kiialainen A, Hoves S, Ries CH, Ooi CH and De Palma M: Suppression of microRNA activity amplifies IFN-γ-induced macrophage activation and promotes anti-tumour immunity. Nat Cell Biol. 18:790–802. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chao MP, Weissman IL and Majeti R: The CD47-SIRPα pathway in cancer immune evasion and potential therapeutic implications. Curr Opin Immunol. 24:225–232. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zhao C, Liu Y, Wang C, Jiang H, Hu Y and Wu J: Recent advances of tumor therapy based on the CD47-SIRPα axis. Mol Pharm. 19:1273–1293. 2022. View Article : Google Scholar : PubMed/NCBI | |
Grottoli M, Carrega P, Zullo L, Dellepiane C, Rossi G, Parisi F, Barletta G, Zinoli L, Coco S, Alama A, et al: Immune checkpoint blockade: A strategy to unleash the potential of natural killer cells in the anti-cancer therapy. Cancers (Basel). 14:50462022. View Article : Google Scholar : PubMed/NCBI | |
Hayat SMG, Bianconi V, Pirro M, Jaafari MR, Hatamipour M and Sahebkar A: CD47: Role in the immune system and application to cancer therapy. Cell Oncol (Dordr). 43:19–30. 2020. View Article : Google Scholar | |
Eladl E, Tremblay-LeMay R, Rastgoo N, Musani R, Chen W, Liu A and Chang H: Role of CD47 in hematological malignancies. J Hematol Oncol. 13:962020. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Chen W, Fan J, Wang S, Xian Z, Luan J, Li Y, Wang Y, Nan Y, Luo M, et al: Disrupting CD47-SIRPα axis alone or combined with autophagy depletion for the therapy of glioblastoma. Carcinogenesis. 39:689–699. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xiao Z, Chung H, Banan B, Manning PT, Ott KC, Lin S, Capoccia BJ, Subramanian V, Hiebsch RR, Upadhya GA, et al: Antibody mediated therapy targeting CD47 inhibits tumor progression of hepatocellular carcinoma. Cancer Lett. 360:302–309. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sikic BI, Lakhani N, Patnaik A, Shah SA, Chandana SR, Rasco D, Colevas AD, O'Rourke T, Narayanan S, Papadopoulos K, et al: First-in-human, first-in-class phase I trial of the anti-CD47 antibody Hu5F9-G4 in patients with advanced cancers. J Clin Oncol. 37:946–953. 2019. View Article : Google Scholar : PubMed/NCBI | |
Su S, Zhao J, Xing Y, Zhang X, Liu J, Ouyang Q, Chen J, Su F, Liu Q and Song E: Immune checkpoint inhibition overcomes ADCP-induced immunosuppression by macrophages. Cell. 175:442–457.e23. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Xavy S, Mihardja S, Chen S, Sompalli K, Feng D, Choi T, Agoram B, Majeti R, Weissman IL and Volkmer JP: Targeting macrophage checkpoint inhibitor SIRPα for anticancer therapy. JCI Insight. 5:e1347282020. View Article : Google Scholar | |
Lakhani NJ, Chow LQM, Gainor JF, LoRusso P, Lee KW, Chung HC, Lee J, Bang YJ, Hodi FS, Kim WS, et al: Evorpacept alone and in combination with pembrolizumab or trastuzumab in patients with advanced solid tumours (ASPEN-01): A first-in-human, open-label, multicentre, phase 1 dose-escalation and dose-expansion study. Lancet Oncol. 22:1740–1751. 2021. View Article : Google Scholar : PubMed/NCBI | |
Oronsky B, Carter C, Reid T, Brinkhaus F and Knox SJ: Just eat it: A review of CD47 and SIRP-α antagonism. Semin Oncol. 47:117–124. 2020. View Article : Google Scholar : PubMed/NCBI | |
Feng M, Jiang W, Kim BYS, Zhang CC, Fu YX and Weissman IL: Phagocytosis checkpoints as new targets for cancer immunotherapy. Nat Rev Cancer. 19:568–586. 2019. View Article : Google Scholar : PubMed/NCBI | |
Barkal AA, Weiskopf K, Kao KS, Gordon SR, Rosental B, Yiu YY, George BM, Markovic M, Ring NG, Tsai JM, et al: Engagement of MHC class I by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy. Nat Immunol. 19:76–84. 2018. View Article : Google Scholar : | |
Chen HM, van der Touw W, Wang YS, Kang K, Mai S, Zhang J, Alsina-Beauchamp D, Duty JA, Mungamuri SK, Zhang B, et al: Blocking immunoinhibitory receptor LILRB2 reprograms tumor associated myeloid cells and promotes antitumor immunity. J Clin Invest. 128:5647–5662. 2018. View Article : Google Scholar : PubMed/NCBI | |
Siu LL, Wang D, Hilton J, Geva R, Rasco D, Perets R, Abraham AK, Wilson DC, Markensohn JF, Lunceford J, et al: First-in-class anti-immunoglobulin-like transcript 4 myeloid-specific antibody MK-4830 abrogates a PD-1 resistance mechanism in patients with advanced solid tumors. Clin Cancer Res. 28:57–70. 2022. View Article : Google Scholar | |
Xia Y, Rao L, Yao H, Wang Z, Ning P and Chen X: Engineering macrophages for cancer immunotherapy and drug delivery. Adv Mater. 32:e20020542020. View Article : Google Scholar : PubMed/NCBI | |
Wang N, Wang S, Wang X, Zheng Y, Yang B, Zhang J, Pan B, Gao J and Wang Z: Research trends in pharmacological modulation of tumor-associated macrophages. Clin Transl Med. 11:e2882021. View Article : Google Scholar : PubMed/NCBI | |
Rao L, Zhao SK, Wen C, Tian R, Lin L, Cai B, Sun Y, Kang F, Yang Z, He L, et al: Activating macrophage-mediated cancer immunotherapy by genetically edited nanoparticles. Adv Mater. 32:e20048532020. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Cai K, Li C, Guo Q, Chen Q, He X, Liu L, Zhang Y, Lu Y, Chen X, et al: Macrophage-membrane-coated nanoparticles for tumor-targeted chemotherapy. Nano Lett. 18:1908–1915. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhu S, Li S, Yi M, Li N and Wu K: Roles of microvesicles in tumor progression and clinical applications. Int J Nanomedicine. 16:7071–7090. 2021. View Article : Google Scholar : PubMed/NCBI | |
Moradi-Chaleshtori M, Bandehpour M, Heidari N, Mohammadi-Yeganeh S and Mahmoud Hashemi S: Exosome-mediated miR-33 transfer induces M1 polarization in mouse macrophages and exerts antitumor effect in 4T1 breast cancer cell line. Int Immunopharmacol. 90:1071982021. View Article : Google Scholar | |
Rayamajhi S, Nguyen TDT, Marasini R and Aryal S: Macrophage derived exosome-mimetic hybrid vesicles for tumor targeted drug delivery. Acta Biomater. 94:482–494. 2019. View Article : Google Scholar : PubMed/NCBI | |
Salvagno C, Ciampricotti M, Tuit S, Hau CS, van Weverwijk A, Coffelt SB, Kersten K, Vrijland K, Kos K, Ulas T, et al: Therapeutic targeting of macrophages enhances chemotherapy efficacy by unleashing type I interferon response. Nat Cell Biol. 21:511–521. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lapenna A, De Palma M and Lewis CE: Perivascular macrophages in health and disease. Nat Rev Immunol. 18:689–702. 2018. View Article : Google Scholar : PubMed/NCBI | |
De Palma M and Lewis CE: Macrophages limit chemotherapy. Cancer Discov. 1:54–67. 2011. | |
Duhamel M, Rose M, Rodet F, Murgoci AN, Zografidou L, Régnier-Vigouroux A, Vanden Abeele F, Kobeissy F, Nataf S, Pays L, et al: Paclitaxel treatment and PC1/3 knockdown in macrophages is a promising anti-glioma strategy as revealed by proteomics and cytotoxicity studies. Mol Cell Proteomics. 17:1126–1143. 2018. View Article : Google Scholar : PubMed/NCBI | |
P ra kash H, K lug F, Nadella V, Ma zumda r V, Schmitz-Winnenthal H and Umansky L: Low doses of gamma irradiation potentially modifies immunosuppressive tumor microenvironment by retuning tumor-associated macrophages: Lesson from insulinoma. Carcinogenesis. 37:301–313. 2016. View Article : Google Scholar | |
Choi SH, Kim AR, Nam JK, Kim JM, Kim JY, Seo HR, Lee HJ, Cho J and Lee YJ: Tumor-vasculature development via endothelial-to-mesenchymal transition after radiotherapy controls CD44v6+ cancer cell and macrophage polarization. Nat Commun. 9:51082018. View Article : Google Scholar | |
Genard G, Lucas S and Michiels C: Reprogramming of tumor-associated macrophages with anticancer therapies: Radiotherapy versus chemoand immunotherapies. Front Immunol. 8:8282017. View Article : Google Scholar | |
Brown JM, Thomas R, Nagpal S and Recht L: Macrophage exclusion after radiation therapy (MERT): A new and efective way to increase the therapeutic ratio of radiotherapy. Radiother Oncol. 144:159–164. 2019. View Article : Google Scholar | |
Klug F, Prakash H, Huber PE, Seibel T, Bender N, Halama N, Pfirschke C, Voss RH, Timke C, Umansky L, et al: Low dose irradiation programs macrophage differentiation to an iNOS+/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell. 24:589–602. 2013. View Article : Google Scholar : PubMed/NCBI | |
Stary V, Wolf B, Unterleuthner D, List J, Talic M, Laengle J, Beer A, Strobl J, Stary G, Dolznig H and Bergmann M: Short-course radiotherapy promotes pro-inflammatory macrophages via extracellular vesicles in human rectal cancer. J Immunother Cancer. 8:e0006672020. View Article : Google Scholar : PubMed/NCBI | |
Golden EB, Frances D, Pellicciotta I, Demaria S, Helen Barcellos-Hoff M and Formenti SC: Radiation fosters dose-dependent and chemotherapy-induced immunogenic cell death. Oncoimmunology. 3:e285182014. View Article : Google Scholar : PubMed/NCBI | |
Lv M, Zhuang X, Shao S, Li X, Cheng Y, Wu D, Wang X and Qiao T: Myeloid-derived suppressor cells and CD68+CD163+ M2-like macrophages as therapeutic response biomarkers are associated with plasma inflammatory cytokines: A preliminary study for non-small cell lung cancer patients in radiotherapy. J Immunol Res. 2022:36214962022. | |
Wei SC, Duffy CR and Allison JP: Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 8:1069–1086. 2018. View Article : Google Scholar : PubMed/NCBI | |
Beaver JA, Hazarika M, Mulkey F, Mushti S, Chen H, He K, Sridhara R, Goldberg KB, Chuk MK, Chi DC, et al: Patients with melanoma treated with an anti-PD-1 antibody beyond RECIST progression: A US Food and Drug Administration pooled analysis. Lancet Oncol. 19:229–239. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xiang X, Wang J, Lu D and Xu X: Targeting tumor-associated macrophages to synergize tumor immunotherapy. Signal Transduct Target Ther. 6:752021. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Singh R, Hsu DK, Zhou Y, Yu S, Han D, Shi ZR, Huynh M, Campbell JJ and Hwang ST: A small molecule CCR2 antagonist depletes tumor macrophages and synergizes with anti-PD1 in a murine model of cutaneous T cell lymphoma (CTCL). J Invest Dermatol. 140:1390–1400.e4. 2020. View Article : Google Scholar | |
Teng KY, Han J, Zhang X, Hsu SH, He S, Wani NA, Barajas JM, Snyder LA, Frankel WL, Caligiuri MA, et al: Blocking the CCL2-CCR2 axis using CCL2-neutralizing antibody is an effective therapy for hepatocellular cancer in a mouse model. Mol Cancer Ther. 16:312–322. 2017. View Article : Google Scholar | |
Yao W, Ba Q, Li X, Li H, Zhang S, Yuan Y, Wang F, Duan X, Li J, Zhang W and Wang H: A natural CCR2 antagonist relieves tumor-associated macrophage-mediated immunosuppression to produce a therapeutic effect for liver cancer. EBioMedicine. 22:58–67. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhu Y, Yang J, Xu D, Gao XM, Zhang Z, Hsu JL, Li CW, Lim SO, Sheng YY, Zhang Y, et al: Disruption of tumor-associated macrophage trafficking by the osteopontin-induced colony-stimulating factor-1 signaling sensitises hepatocellular carcinoma to anti-PD-L1 blockade. Gut. 68:1653–1666. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Ding Y, Liu J, Wang J, Mo F, Wang Y, Chen-Mayfield TJ, Sondel PM, Hong S and Hu Q: Depletion of tumor associated macrophages enhances local and systemic platelet-mediated anti-PD-1 delivery for post-surgery tumor recurrence treatment. Nat Commun. 13:18452022. View Article : Google Scholar : PubMed/NCBI | |
Simpson TR, Li F, Montalvo-Ortiz W, Sepulveda MA, Bergerhoff K, Arce F, Roddie C, Henry JY, Yagita H, Wolchok JD, et al: Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. J Exp Med. 210:1695–1710. 2013. View Article : Google Scholar : PubMed/NCBI |