Targeting the Hippo pathway to prevent radioresistance brain metastases from the lung (Review)
- Authors:
- Jasmine Taylor
- Fatéméh Dubois
- Emmanuel Bergot
- Guénaëlle Levallet
-
Affiliations: University of Caen Normandy, National Center for Scientific Research, Normandy University, Unit of Imaging and Therapeutic Strategies for Cancers and Cerebral Tissues (ISTCT)‑UMR6030, GIP CYCERON, F‑14074 Caen, France - Published online on: May 17, 2024 https://doi.org/10.3892/ijo.2024.5656
- Article Number: 68
-
Copyright: © Taylor et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Wood SL, Pernemalm M, Crosbie PA and Whetton AD: The role of the tumor-microenvironment in lung cancer-metastasis and its relationship to potential therapeutic targets. Cancer Treat Rev. 40:558–566. 2014. View Article : Google Scholar | |
Dawe DE, Greenspoon JN and Ellis PM: Brain metastases in non-small-cell lung cancer. Clin Lung Cancer. 15:249–257. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fenske DC, Price GL, Hess LM, John WJ and Kim ES: Systematic review of brain metastases in patients with non-small-cell lung cancer in the United States, European Union, and Japan. Clin Lung Cancer. 18:607–614. 2017. View Article : Google Scholar : PubMed/NCBI | |
Myall NJ, Yu H, Soltys SG, Wakelee HA and Pollom E: Management of brain metastases in lung cancer: Evolving roles for radiation and systemic treatment in the era of targeted and immune therapies. Neurooncol Adv. 3(Suppl 5): v52–v62. 2021.PubMed/NCBI | |
Dempke WCM, Edvardsen K, Lu S, Reinmuth N, Reck M and Inoue A: Brain metastases in NSCLC-are TKIs changing the treatment strategy? Anticancer Res. 35:57972015.PubMed/NCBI | |
Ernani V and Stinchcombe TE: Management of brain metastases in non-small-cell lung cancer. J Oncol Pract. 15:563–570. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Xie WJ, Chen RW, You WW, Ye WL, Chen H, Chen WX and Xu JP: The Hippo signaling core components YAP and TAZ as new prognostic factors in lung cancer. Front Surg. 9:8131232022. View Article : Google Scholar : PubMed/NCBI | |
Dubois F, Keller M, Calvayrac O, Soncin F, Hoa L, Hergovich A, Parrini MC, Mazières J, Vaisse-Lesteven M, Camonis J, et al: RASSF1A suppresses the invasion and metastatic potential of human non-small cell lung cancer cells by inhibiting YAP activation through the GEF-H1/RhoB pathway. Cancer Res. 76:1627–1640. 2016. View Article : Google Scholar : PubMed/NCBI | |
Keller M, Dubois F, Teulier S, Martin APJ, Levallet J, Maille E, Brosseau S, Elie N, Hergovich A, Bergot E, et al: NDR2 kinase contributes to cell invasion and cytokinesis defects induced by the inactivation of RASSF1A tumor-suppressor gene in lung cancer cells. J Exp Clin Cancer Res. 38:1582019. View Article : Google Scholar : PubMed/NCBI | |
Hsu PC, Jablons DM, Yang CT and You L: Epidermal growth factor receptor (EGFR) pathway, yes-associated protein (YAP) and the regulation of programmed death-ligand 1 (PD-L1) in non-small cell lung cancer (NSCLC). Int J Mol Sci. 20:38212019. View Article : Google Scholar : PubMed/NCBI | |
Dubois F, Bergot E and Levallet G: Cancer and RASSF1A/RASSF1C, the two faces of Janus. Trends Cancer. 5:662–665. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zeng Y, Liu Q, Wang Y, Tian C, Yang Q, Zhao Y, Liu L, Wu G and Xu S: CDK5 activates hippo signaling to confer resistance to radiation therapy via upregulating TAZ in lung cancer. Int J Radiat Oncol Biol Phys. 108:758–769. 2020. View Article : Google Scholar : PubMed/NCBI | |
Levallet J, Biojout T, Bazille C, Douyère M, Dubois F, Ferreira DL, Taylor J, Teulier S, Toutain J, Elie N, et al: Hypoxia-induced activation of NDR2 underlies brain metastases from non-small cell lung cancer. Cell Death Dis. 14:8232023. View Article : Google Scholar : PubMed/NCBI | |
de Fraipont F, Levallet G, Creveuil C, Bergot E, Beau-Faller M, Mounawar M, Richard N, Antoine M, Rouquette I, Favrot MC, et al: An apoptosis methylation prognostic signature for early lung cancer in the IFCT-0002 trial. Clin Cancer Res. 18:2976–2986. 2012. View Article : Google Scholar : PubMed/NCBI | |
Minniti G, Goldsmith C and Brada M: Chapter 16-radiotherapy. Handb Clin Neurol. 104:215–228. 2012. View Article : Google Scholar | |
Hall EJ and Giaccia AJ: Radiobiology for the radiologist. 8th. Philadelphia Baltimore New York London Buenos Aires: LWW; pp. 6242018 | |
Loh ZH, Doumy G, Arnold C, Kjellsson L, Southworth SH, Al Haddad A, Kumagai Y, Tu MF, Ho PJ, March AM, et al: Observation of the fastest chemical processes in the radiolysis of water. Science. 367:179–182. 2020. View Article : Google Scholar : PubMed/NCBI | |
Huang T, Song X, Xu D, Tiek D, Goenka A, Wu B, Sastry N, Hu B and Cheng SY: Stem cell programs in cancer initiation, progression, and therapy resistance. Theranostics. 10:8721–8743. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Han F, Du Y, Shi H and Zhou W: Hypoxic microenvironment in cancer: Molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther. 8:702023. View Article : Google Scholar : PubMed/NCBI | |
Tang L, Wei F, Wu Y, He Y, Shi L, Xiong F, Gong Z, Guo C, Li X, Deng H, et al: Role of metabolism in cancer cell radioresistance and radiosensitization methods. J Exp Clin Cancer Res. 37:872018. View Article : Google Scholar : PubMed/NCBI | |
Kelley K, Knisely J, Symons M and Ruggieri R: Radioresistance of brain tumors. Cancers (Basel). 8:422016. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Gao Y, Mutter-Rottmayer L, Zlatanou A, Durando M, Ding W, Wyatt D, Ramsden D, Tanoue Y, Tateishi S and Vaziri C: DNA repair factor RAD18 and DNA polymerase Polκ confer tolerance of oncogenic DNA replication stress. J Cell Biol. 216:3097–3115. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang M, Kern AM, Hülskötter M, Greninger P, Singh A, Pan Y, Chowdhury D, Krause M, Baumann M, Benes CH, et al: EGFR-mediated chromatin condensation protects KRAS-mutant cancer cells against ionizing radiation. Cancer Res. 74:2825–2834. 2014. View Article : Google Scholar : PubMed/NCBI | |
Carlos-Reyes A, Muñiz-Lino MA, Romero-Garcia S, López-Camarillo C and Hernández-de la Cruz ON: Biological adaptations of tumor cells to radiation therapy. Front Oncol. 11:7186362021. View Article : Google Scholar : PubMed/NCBI | |
Shi LZ and Bonner JA: Bridging radiotherapy to immunotherapy: The IFN-JAK-STAT axis. Int J Mol Sci. 22:122952021. View Article : Google Scholar : PubMed/NCBI | |
Marampon F, Ciccarelli C and Zani BM: Biological rationale for targeting MEK/ERK pathways in anti-cancer therapy and to potentiate tumour responses to radiation. Int J Mol Sci. 20:25302019. View Article : Google Scholar : PubMed/NCBI | |
Chang L, Graham PH, Hao J, Ni J, Bucci J, Cozzi PJ, Kearsley JH and Li Y: PI3K/Akt/mTOR pathway inhibitors enhance radiosensitivity in radioresistant prostate cancer cells through inducing apoptosis, reducing autophagy, suppressing NHEJ and HR repair pathways. Cell Death Dis. 5:e14372014. View Article : Google Scholar : PubMed/NCBI | |
Chen K, Shang Z, Dai AL and Dai PL: Novel PI3K/Akt/mTOR pathway inhibitors plus radiotherapy: Strategy for non-small cell lung cancer with mutant RAS gene. Life Sci. 255:1178162020. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Zhou H, Zhang G and Xue X: Targeting the canonical Wnt/β-catenin pathway in cancer radioresistance: Updates on the molecular mechanisms. J Cancer Res Ther. 15:272–277. 2019. View Article : Google Scholar | |
Xie SY, Li G, Han C, Yu YY and Li N: RKIP reduction enhances radioresistance by activating the Shh signaling pathway in non-small-cell lung cancer. OncoTargets Ther. 10:5605–5619. 2017. View Article : Google Scholar | |
Calses PC, Crawford JJ, Lill JR and Dey A: Hippo pathway in cancer: Aberrant regulation and therapeutic opportunities. Trends Cancer. 5:297–307. 2019. View Article : Google Scholar : PubMed/NCBI | |
Thompson BJ: YAP/TAZ: Drivers of tumor growth, metastasis, and resistance to therapy. Bioessays. 42:e19001622020. View Article : Google Scholar : PubMed/NCBI | |
Salem A, Asselin MC, Reymen B, Jackson A, Lambin P, West CML, O'Connor JPB and Faivre-Finn C: Targeting hypoxia to improve non-small cell lung cancer outcome. J Natl Cancer Inst. 110:14–30. 2018. View Article : Google Scholar | |
Nguyen DX, Chiang AC, Zhang XHF, Kim JY, Kris MG, Ladanyi M, Gerald WL and Massagué J: WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell. 138:51–62. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hsu PC, You B, Yang YL, Zhang WQ, Wang YC, Xu Z, Dai Y, Liu S, Yang CT, Li H, et al: YAP promotes erlotinib resistance in human non-small cell lung cancer cells. Oncotarget. 7:51922–51933. 2016. View Article : Google Scholar : PubMed/NCBI | |
Miao J, Hsu PC, Yang YL, Xu Z, Dai Y, Wang Y, Chan G, Huang Z, Hu B, Li H, et al: YAP regulates PD-L1 expression in human NSCLC cells. Oncotarget. 8:114576–114587. 2017. View Article : Google Scholar | |
Xiao Y and Dong J: The Hippo signaling pathway in cancer: A cell cycle perspective. Cancers (Basel). 13:62142021. View Article : Google Scholar : PubMed/NCBI | |
Zhou W, Zhang L, Chen P, Li S and Cheng Y: Thymine DNA glycosylase-regulated TAZ promotes radioresistance by targeting nonhomologous end joining and tumor progression in esophageal cancer. Cancer Sci. 111:3613–3625. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xin H, Liu Y, Chen P, Yin T, Wang M, Liu T, Wen Z and Cheng Y: CD155 promotes radioresistance and malignancy of esophageal cancer by regulating Hippo-YAP pathway. Discov Oncol. 13:532022. View Article : Google Scholar : PubMed/NCBI | |
Moon JY, Ediriweera MK, Ryu JY, Kim HY and Cho SK: Catechol enhances chemo- and radio-sensitivity by targeting AMPK/Hippo signaling in pancreatic cancer cells. Oncol Rep. 45:1133–1141. 2021. View Article : Google Scholar : PubMed/NCBI | |
Andrade D, Mehta M, Griffith J, Panneerselvam J, Srivastava A, Kim TD, Janknecht R, Herman T, Ramesh R and Munshi A: YAP1 inhibition radiosensitizes triple negative breast cancer cells by targeting the DNA damage response and cell survival pathways. Oncotarget. 8:98495–98508. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liang Y, Zhou X, Xie Q, Sun H, Huang K, Chen H, Wang W, Zhou B, Wei X, Zeng D and Lin H: CD146 interaction with integrin β1 activates LATS1-YAP signaling and induces radiation-resistance in breast cancer cells. Cancer Lett. 546:2158562022. View Article : Google Scholar | |
Yang K, Zhao Y, Du Y and Tang R: Evaluation of Hippo pathway and CD133 in radiation resistance in small-cell lung cancer. J Oncol. 2021:88425542021. View Article : Google Scholar : PubMed/NCBI | |
Li J, Zhang X, Hou Z, Cai S, Guo Y, Sun L, Li A, Li Q, Wang E and Miao Y: P130cas-FAK interaction is essential for YAP-mediated radioresistance of non-small cell lung cancer. Cell Death Dis. 13:7832022. View Article : Google Scholar : PubMed/NCBI | |
Bora-Singhal N, Nguyen J, Schaal C, Perumal D, Singh S, Coppola D and Chellappan S: YAP1 regulates Oct4 activity and Sox2 expression to facilitate self-renewal and vascular mimicry of stem-like cells. Stem Cells. 33:1705–1718. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Zhang Z, Yu X, Huang X, Liu Z, Chai Y, Yang L, Wang Q, Li M, Zhao J, et al: Unbalanced YAP-SOX9 circuit drives stemness and malignant progression in esophageal squamous cell carcinoma. Oncogene. 38:2042–2055. 2019. View Article : Google Scholar | |
Tang Y and Weiss SJ: Snail/Slug-YAP/TAZ complexes cooperatively regulate mesenchymal stem cell function and bone formation. Cell Cycle. 16:399–405. 2017. View Article : Google Scholar : PubMed/NCBI | |
Noce V, Battistelli C, Cozzolino AM, Consalvi V, Cicchini C, Strippoli R, Tripodi M, Marchetti A and Amicone L: YAP integrates the regulatory Snail/HNF4α circuitry controlling epithelial/hepatocyte differentiation. Cell Death Dis. 10:7682019. View Article : Google Scholar | |
Pattschull G, Walz S, Gründl M, Schwab M, Rühl E, Baluapuri A, Cindric-Vranesic A, Kneitz S, Wolf E, Ade CP, et al: The Myb-MuvB complex is required for YAP-dependent transcription of mitotic genes. Cell Rep. 27:3533–3546.e7. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jang W, Kim T, Koo JS, Kim S and Lim D: Mechanical cue-induced YAP instructs Skp2-dependent cell cycle exit and oncogenic signaling. EMBO J. 36:2510–2528. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kim W, Cho YS, Wang X, Park O, Ma X, Kim H, Gan W, Jho EH, Cha B, Jeung YJ, et al: Hippo signaling is intrinsically regulated during cell cycle progression by APC/CCdh1. Proc Natl Acad Sci USA. 116:9423–9432. 2019. View Article : Google Scholar | |
Oku Y, Nishiya N, Tazawa T, Kobayashi T, Umezawa N, Sugawara Y and Uehara Y: Augmentation of the therapeutic efficacy of WEE1 kinase inhibitor AZD1775 by inhibiting the YAP-E2F1-DNA damage response pathway axis. FEBS Open Bio. 8:1001–1012. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hergovich A: The roles of NDR protein kinases in Hippo signalling. Genes (Basel). 7:212016. View Article : Google Scholar : PubMed/NCBI | |
Zhu H, Wang DD, Yuan T, Yan FJ, Zeng CM, Dai XY, Chen ZB, Chen Y, Zhou T, Fan GH, et al: Multikinase inhibitor CT-707 targets liver cancer by interrupting the hypoxia-activated IGF-1R-YAP axis. Cancer Res. 78:3995–4006. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cho Y, Park MJ, Kim K, Kim SW, Kim W, Oh S and Lee JH: Reactive oxygen species-induced activation of yes-associated protein-1 through the c-Myc pathway is a therapeutic target in hepatocellular carcinoma. World J Gastroenterol. 26:6599–6613. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shao D, Zhai P, Del Re DP, Sciarretta S, Yabuta N, Nojima H, Lim DS, Pan D and Sadoshima J: A functional interaction between Hippo-YAP signalling and FoxO1 mediates the oxidative stress response. Nat Commun. 5:33152014. View Article : Google Scholar : PubMed/NCBI | |
Xiao W, Wang J, Ou C, Zhang Y, Ma L, Weng W, Pan Q and Sun F: Mutual interaction between YAP and c-Myc is critical for carcinogenesis in liver cancer. Biochem Biophys Res Commun. 439:167–172. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yu FX, Zhao B and Guan KL: Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell. 163:811–828. 2015. View Article : Google Scholar : PubMed/NCBI | |
Xiang L, Gilkes DM, Hu H, Takano N, Luo W, Lu H, Bullen JW, Samanta D, Liang H and Semenza GL: Hypoxia-inducible factor 1 mediates TAZ expression and nuclear localization to induce the breast cancer stem cell phenotype. Oncotarget. 5:12509–12527. 2014. View Article : Google Scholar | |
Azad T, Janse van Rensburg HJ, Lightbody ED, Neveu B, Champagne A, Ghaffari A, Kay VR, Hao Y, Shen H, Yeung B, et al: A LATS biosensor screen identifies VEGFR as a regulator of the Hippo pathway in angiogenesis. Nat Commun. 9:10612018. View Article : Google Scholar : PubMed/NCBI | |
Lopez-Hernandez A, Sberna S and Campaner S: Emerging principles in the transcriptional control by YAP and TAZ. Cancers (Basel). 13:42422021. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Xiao ZD, Li X, Aziz KE, Gan B, Johnson RL and Chen J: AMPK modulates Hippo pathway activity to regulate energy homeostasis. Nat Cell Biol. 17:490–499. 2015. View Article : Google Scholar : PubMed/NCBI | |
Basu-Roy U, Bayin NS, Rattanakorn K, Han E, Placantonakis DG, Mansukhani A and Basilico C: Sox2 antagonizes the Hippo pathway to maintain stemness in cancer cells. Nat Commun. 6:64112015. View Article : Google Scholar : PubMed/NCBI | |
Frum T, Watts JL and Ralston A: TEAD4, YAP1 and WWTR1 prevent the premature onset of pluripotency prior to the 16-cell stage. Development. 146:dev1798612019. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Ji JY, Yu M, Overholtzer M, Smolen GA, Wang R, Brugge JS, Dyson NJ and Haber DA: YAP-dependent induction of amphiregulin identifies a non-cell-autonomous component of the Hippo pathway. Nat Cell Biol. 11:1444–1450. 2009. View Article : Google Scholar : PubMed/NCBI | |
Koo JH, Plouffe SW, Meng Z, Lee DH, Yang D, Lim DS, Wang CY and Guan KL: Induction of AP-1 by YAP/TAZ contributes to cell proliferation and organ growth. Genes Dev. 34:72–86. 2020. View Article : Google Scholar : | |
Li H, Li Q, Dang K, Ma S, Cotton JL, Yang S, Zhu LJ, Deng AC, Ip YT, Johnson RL, et al: YAP/TAZ activation drives uveal melanoma initiation and progression. Cell Rep. 29:3200–3211.e4. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fang C, Li J, Qi S, Lei Y, Zeng Y, Yu P, Hu Z, Zhou Y, Wang Y, Dai R, et al: An alternatively transcribed TAZ variant negatively regulates JAK-STAT signaling. EMBO Rep. 20:e472272019. View Article : Google Scholar : PubMed/NCBI | |
Gruber R, Panayiotou R, Nye E, Spencer-Dene B, Stamp G and Behrens A: YAP1 and TAZ control pancreatic cancer initiation in mice by direct up-regulation of JAK-STAT3 signaling. Gastroenterology. 151:526–539. 2016. View Article : Google Scholar : PubMed/NCBI | |
Prabhu KS, Bhat AA, Siveen KS, Kuttikrishnan S, Raza SS, Raheed T, Jochebeth A, Khan AQ, Chawdhery MZ, Haris M, et al: Sanguinarine mediated apoptosis in non-small cell lung cancer via generation of reactive oxygen species and suppression of JAK/STAT pathway. Biomed Pharmacother. 144:1123582021. View Article : Google Scholar : PubMed/NCBI | |
Meng J, Li Y, Wan C, Sun Y, Dai X, Huang J, Hu Y, Gao Y, Wu B, Zhang Z, et al: Targeting senescence-like fibroblasts radiosensitizes non-small cell lung cancer and reduces radiation-induced pulmonary fibrosis. JCI Insight. 6:e1463342021. View Article : Google Scholar : PubMed/NCBI | |
Li L, Wang J, Zhang Y, Zhang Y, Ma L, Weng W, Qiao Y, Xiao W, Wang H, Yu W, et al: MEK1 promotes YAP and their interaction is critical for tumorigenesis in liver cancer. FEBS Lett. 587:3921–3927. 2013. View Article : Google Scholar : PubMed/NCBI | |
Santoro R, Zanotto M, Carbone C, Piro G, Tortora G and Melisi D: MEKK3 sustains EMT and stemness in pancreatic cancer by regulating YAP and TAZ transcriptional activity. Anticancer Res. 38:1937–1946. 2018.PubMed/NCBI | |
You B, Yang YL, Xu Z, Dai Y, Liu S, Mao JH, Tetsu O, Li H, Jablons DM and You L: Inhibition of ERK1/2 down-regulates the Hippo/YAP signaling pathway in human NSCLC cells. Oncotarget. 6:4357–4368. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kim NG and Gumbiner BM: Adhesion to fibronectin regulates Hippo signaling via the FAK-Src-PI3K pathway. J Cell Biol. 210:503–515. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Montminy T, Azad T, Lightbody E, Hao Y, SenGupta S, Asselin E, Nicol C and Yang X: PI3K positively regulates YAP and TAZ in mammary tumorigenesis through multiple signaling pathways. Mol Cancer Res. 16:1046–1058. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gokey JJ, Sridharan A, Xu Y, Green J, Carraro G, Stripp BR, Perl AT and Whitsett JA: Active epithelial Hippo signaling in idiopathic pulmonary fibrosis. JCI Insight. 3:e987382018. View Article : Google Scholar : PubMed/NCBI | |
Fernandez-L A, Squatrito M, Northcott P, Awan A, Holland EC, Taylor MD, Nahlé Z and Kenney AM: Oncogenic YAP promotes radioresistance and genomic instability in medulloblastoma through IGF2-mediated Akt activation. Oncogene. 31:1923–1937. 2012. View Article : Google Scholar | |
Artinian N, Cloninger C, Holmes B, Benavides-Serrato A, Bashir T and Gera J: Phosphorylation of the Hippo pathway component AMOTL2 by the mTORC2 kinase promotes YAP signaling, resulting in enhanced glioblastoma growth and invasiveness. J Biol Chem. 290:19387–19401. 2015. View Article : Google Scholar : PubMed/NCBI | |
Takeda T, Yamamoto Y, Tsubaki M, Matsuda T, Kimura A, Shimo N and Nishida S: PI3K/Akt/YAP signaling promotes migration and invasion of DLD-1 colorectal cancer cells. Oncol Lett. 23:1062022. View Article : Google Scholar : PubMed/NCBI | |
Park HW, Kim YC, Yu B, Moroishi T, Mo JS, Plouffe SW, Meng Z, Lin KC, Yu FX, Alexander CM, et al: Alternative Wnt signaling activates YAP/TAZ. Cell. 162:780–794. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Park JS, Wei Y, Rajurkar M, Cotton JL, Fan Q, Lewis BC, Ji H and Mao J: TRIB2 acts downstream of Wnt/TCF in liver cancer cells to regulate YAP and C/EBPα function. Mol Cell. 51:211–225. 2013. View Article : Google Scholar : PubMed/NCBI | |
Simula L, Alifano M and Icard P: How phosphofructokinase-1 promotes PI3K and YAP/TAZ in cancer: Therapeutic perspectives. Cancers (Basel). 14:24782022. View Article : Google Scholar : PubMed/NCBI | |
Konsavage WM Jr, Kyler SL, Rennoll SA, Jin G and Yochum GS: Wnt/β-catenin signaling regulates Yes-associated protein (YAP) gene expression in colorectal carcinoma cells. J Biol Chem. 287:11730–11739. 2012. View Article : Google Scholar : PubMed/NCBI | |
Azzolin L, Zanconato F, Bresolin S, Forcato M, Basso G, Bicciato S, Cordenonsi M and Piccolo S: Role of TAZ as Mediator of Wnt signaling. Cell. 151:1443–1456. 2012. View Article : Google Scholar : PubMed/NCBI | |
Deng F, Peng L, Li Z, Tan G, Liang E, Chen S, Zhao X and Zhi F: YAP triggers the Wnt/β-catenin signalling pathway and promotes enterocyte self-renewal, regeneration and tumorigenesis after DSS-induced injury. Cell Death Dis. 9:1532018. View Article : Google Scholar | |
Jiang L, Li J, Zhang C, Shang Y and Lin J: YAP-mediated crosstalk between the Wnt and Hippo signaling pathways (review). Mol Med Rep. 22:4101–4106. 2020.PubMed/NCBI | |
Chen Y, Jin Y, Ying H, Zhang P, Chen M and Hu X: Synergistic effect of PAF inhibition and X-ray irradiation in non-small cell lung cancer cells. Strahlenther Onkol. 197:343–352. 2021. View Article : Google Scholar | |
Cotton JL, Li Q, Ma L, Park JS, Wang J, Ou J, Zhu LJ, Ip YT, Johnson RL and Mao J: YAP/TAZ and hedgehog coordinate growth and patterning in gastrointestinal mesenchyme. Dev Cell. 43:35–47.e4. 2017. View Article : Google Scholar : PubMed/NCBI | |
Isago H, Mitani A, Mikami Y, Horie M, Urushiyama H, Hamamoto R, Terasaki Y and Nagase T: Epithelial expression of YAP and TAZ is sequentially required in lung development. Am J Respir Cell Mol Biol. 62:256–266. 2020. View Article : Google Scholar | |
Fernandez-L A, Northcott PA, Dalton J, Fraga C, Ellison D, Angers S, Taylor MD and Kenney AM: YAP1 is amplified and up-regulated in hedgehog-associated medulloblastomas and mediates Sonic hedgehog-driven neural precursor proliferation. Genes Dev. 23:2729–2741. 2009. View Article : Google Scholar : PubMed/NCBI | |
Tang C, Wang J, Yao M, Ji X, Shi W, Xu C, Zeng LH and Wu X: Hippo signaling activates hedgehog signaling by Taz-driven Gli3 processing. Cell Regen. 12:32023. View Article : Google Scholar : PubMed/NCBI | |
Tariki M, Dhanyamraju PK, Fendrich V, Borggrefe T, Feldmann G and Lauth M: The yes-associated protein controls the cell density regulation of Hedgehog signaling. Oncogenesis. 3:e1122014. View Article : Google Scholar : PubMed/NCBI | |
Lin YT, Ding JY, Li MY, Yeh TS, Wang TW and Yu JY: YAP regulates neuronal differentiation through Sonic hedgehog signaling pathway. Exp Cell Res. 318:1877–1888. 2012. View Article : Google Scholar : PubMed/NCBI | |
Swiderska-Syn M, Xie G, Michelotti GA, Jewell ML, Premont RT, Syn WK and Diehl AM: Hedgehog regulates yes-associated protein 1 in regenerating mouse liver. Hepatology. 64:232–244. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kim Y and Jho EH: Regulation of the Hippo signaling pathway by ubiquitin modification. BMB Rep. 51:143–150. 2018. View Article : Google Scholar : PubMed/NCBI | |
Meng Z, Moroishi T and Guan KL: Mechanisms of Hippo pathway regulation. Genes Dev. 30:1–17. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tang Y, Geng Y, Luo J, Shen W, Zhu W, Meng C, Li M, Zhou X, Zhang S and Cao J: Downregulation of ubiquitin inhibits the proliferation and radioresistance of non-small cell lung cancer cells in vitro and in vivo. Sci Rep. 5:94762015. View Article : Google Scholar : PubMed/NCBI | |
Deng L, Meng T, Chen L, Wei W and Wang P: The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct Target Ther. 5:112020. View Article : Google Scholar : PubMed/NCBI | |
Hintelmann K, Kriegs M, Rothkamm K and Rieckmann T: Improving the efficacy of tumor radiosensitization through combined molecular targeting. Front Oncol. 10:12602020. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Wang L, Huang Q, Jiang Y, Wang J, Zhang L, Tian Y and Yang H: Radiosensitization of non-small cell lung cancer cells by inhibition of TGF-β1 signaling with SB431542 is dependent on p53 status. Oncol Res. 24:1–7. 2016. View Article : Google Scholar | |
Van den Bossche J, Domen A, Peeters M, Deben C, De Pauw I, Jacobs J, De Bruycker S, Specenier P, Pauwels P, Vermorken JB, et al: Radiosensitization of non-small cell lung cancer cells by the Plk1 inhibitor volasertib is dependent on the p53 status. Cancers (Basel). 11:18932019. View Article : Google Scholar : PubMed/NCBI | |
Gill SJ, Wijnhoven PWG, Fok JHL, Lloyd RL, Cairns J, Armenia J, Nikkilä J, Lau A, Bakkenist CJ, Galbraith SM, et al: Radiopotentiation profiling of multiple inhibitors of the DNA damage response for early clinical development. Mol Cancer Ther. 20:1614–1626. 2021. View Article : Google Scholar : PubMed/NCBI | |
Dukaew N, Konishi T, Chairatvit K, Autsavapromporn N, Soonthornchareonnon N and Wongnoppavich A: Enhancement of radiosensitivity by eurycomalactone in human NSCLC cells through G2/M Cell cycle arrest and delayed DNA double-strand break repair. Oncol Res. 28:161–175. 2020. View Article : Google Scholar | |
Ryu H, Kim HJ, Song JY, Hwang SG, Kim JS, Kim J, Bui THN, Choi HK and Ahn J: A small compound KJ-28d enhances the sensitivity of non-small cell lung cancer to radio- and chemotherapy. Int J Mol Sci. 20:60262019. View Article : Google Scholar : PubMed/NCBI | |
Majd NK, Yap TA, Koul D, Balasubramaniyan V, Li X, Khan S, Gandy KS, Yung WKA and de Groot JF: The promise of DNA damage response inhibitors for the treatment of glioblastoma. Neurooncol Adv. 3:vdab0152021.PubMed/NCBI | |
La Verde G, Artiola V, Pugliese M, La Commara M, Arrichiello C, Muto P, Netti PA, Fusco S and Panzetta V: Radiation therapy affects YAP expression and intracellular localization by modulating lamin A/C levels in breast cancer. Front Bioeng Biotechnol. 10:9690042022. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Wang Y, Zhou D, Wang K, Wang X, Wang X, Jiang Y, Zhao M, Yu R and Zhou X: Radiation-induced YAP activation confers glioma radioresistance via promoting FGF2 transcription and DNA damage repair. Oncogene. 40:4580–4591. 2021. View Article : Google Scholar : PubMed/NCBI | |
Barrette AM, Ronk H, Joshi T, Mussa Z, Mehrotra M, Bouras A, Nudelman G, Jesu Raj JG, Bozec D, Lam W, et al: Anti-invasive efficacy and survival benefit of the YAP-TEAD inhibitor verteporfin in preclinical glioblastoma models. Neuro Oncol. 24:694–707. 2022. View Article : Google Scholar : | |
Amidon BS, Sanchez-Martin M, Bartolini W, Syed S, McGovern K, Xu L, Ecsedy J, Zhang XM, Constan A and Castro AC: Abstract 2156: IK-930 is a novel TEAD inhibitor for the treatment of cancers harboring mutations in the Hippo signal transduction pathway. Cancer Res. 82(12 Suppl): S21562022. View Article : Google Scholar | |
Tang TT, Konradi AW, Feng Y, Peng X, Ma M, Li J, Yu FX, Guan KL and Post L: Small molecule inhibitors of TEAD auto-palmitoylation selectively inhibit proliferation and tumor growth of NF2-deficient mesothelioma. Mol Cancer Ther. 20:986–998. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Hu L, Tao Z, Jarugumilli GK, Erb H, Singh A, Li Q, Cotton JL, Greninger P, Egan RK, et al: Pharmacological blockade of TEAD-YAP reveals its therapeutic limitation in cancer cells. Nat Commun. 13:67442022. View Article : Google Scholar : PubMed/NCBI | |
Siegel RL, Miller KD and Jemal A: Cancer statistics, 2020. CA Cancer J Clin. 70:7–30. 2020. View Article : Google Scholar : PubMed/NCBI | |
Levallet G, Creveuil C, Bekaert L, Péres E, Planchard G, Lecot-Cotigny S, Guillamo JS, Emery E, Zalcman G and Lechapt-Zalcman E: Promoter hypermethylation of genes encoding for RASSF/Hippo pathway members reveals specific alteration pattern in diffuse gliomas. J Mol Diagn. 21:695–704. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wei C, Wang Y and Li X: The role of Hippo signal pathway in breast cancer metastasis. Onco Targets Ther. 11:2185–2193. 2018. View Article : Google Scholar : PubMed/NCBI | |
Maille E, Brosseau S, Hanoux V, Creveuil C, Danel C, Bergot E, Scherpereel A, Mazières J, Margery J, Greillier L, et al: MST1/Hippo promoter gene methylation predicts poor survival in patients with malignant pleural mesothelioma in the IFCT-GFPC-0701 MAPS phase 3 trial. Br J Cancer. 120:387–397. 2019. View Article : Google Scholar : PubMed/NCBI | |
Spugnardi M, Tommasi S, Dammann R, Pfeifer GP and Hoon DSB: Epigenetic inactivation of RAS association domain family protein 1 (RASSF1A) in malignant cutaneous melanoma. Cancer Res. 63:1639–1643. 2003.PubMed/NCBI | |
Riffet M, Eid Y, Faisant M, Fohlen A, Menahem B, Alves A, Dubois F, Levallet G and Bazille C: Deciphering promoter hypermethylation of genes encoding for RASSF/Hippo pathway reveals the poor prognostic factor of RASSF2 gene silencing in colon cancers. Cancers (Basel). 13:59572021. View Article : Google Scholar : PubMed/NCBI | |
Thurneysen C, Opitz I, Kurtz S, Weder W, Stahel RA and Felley-Bosco E: Functional inactivation of NF2/merlin in human mesothelioma. Lung Cancer. 64:140–147. 2009. View Article : Google Scholar | |
Noorbakhsh N, Hayatmoghadam B, Jamali M, Golmohammadi M and Kavianpour M: The Hippo signaling pathway in leukemia: function, interaction, and carcinogenesis. Cancer cell international. 21:7052021. View Article : Google Scholar : PubMed/NCBI |