Microbial metabolites affect tumor progression, immunity and therapy prediction by reshaping the tumor microenvironment (Review)
- Authors:
- Yuhang Zhou
- Wenjie Han
- Yun Feng
- Yue Wang
- Tao Sun
- Junnan Xu
-
Affiliations: Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China - Published online on: June 6, 2024 https://doi.org/10.3892/ijo.2024.5661
- Article Number: 73
-
Copyright: © Zhou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024. View Article : Google Scholar : PubMed/NCBI | |
Damelin M, Bankovich A, Bernstein J, Lucas J, Chen L, Williams S, Park A, Aguilar J, Ernstoff E, Charati M, et al: A PTK7-targeted antibody-drug conjugate reduces tumor-initiating cells and induces sustained tumor regressions. Sci Transl Med. 9:eaag26112017. View Article : Google Scholar : PubMed/NCBI | |
Kamada T, Togashi Y, Tay C, Ha D, Sasaki A, Nakamura Y, Sato E, Fukuoka S, Tada Y, Tanaka A, et al: PD-1+ regulatory T cells amplified by PD-1 blockade promote hyperprogression of cancer. Proc Natl Acad Sci USA. 116:9999–10008. 2019. View Article : Google Scholar : | |
Srivastava S, Furlan SN, Jaeger-Ruckstuhl CA, Sarvothama M, Berger C, Smythe KS, Garrison SM, Specht JM, Lee SM, Amezquita RA, et al: Immunogenic chemotherapy enhances recruitment of CAR-T cells to lung tumors and improves antitumor efficacy when combined with checkpoint blockade. Cancer Cell. 39:193–208.e10. 2021. View Article : Google Scholar | |
Zhao Y, Li ZX, Zhu YJ, Fu J, Zhao XF, Zhang YN, Wang S, Wu JM, Wang KT, Wu R, et al: Single-Cell transcriptome analysis uncovers intratumoral heterogeneity and underlying mechanisms for drug resistance in hepatobiliary tumor organoids. Adv Sci (Weinh). 8:e20038972021. View Article : Google Scholar : PubMed/NCBI | |
He X, Smith SE, Chen S, Li H, Wu D, Meneses-Giles PI, Wang Y, Hembree M, Yi K, Zhao X, et al: Tumor-initiating stem cell shapes its microenvironment into an immunosuppressive barrier and pro-tumorigenic niche. Cell Rep. 36:1096742021. View Article : Google Scholar : PubMed/NCBI | |
Lam KC, Araya RE, Huang A, Chen Q, Di Modica M, Rodrigues RR, Lopès A, Johnson SB, Schwarz B, Bohrnsen E, et al: Microbiota triggers STING-type I IFN-dependent monocyte reprogramming of the tumor microenvironment. Cell. 184:5338–5356.e21. 2021. View Article : Google Scholar : PubMed/NCBI | |
Routy B, Lenehan JG, Miller WH Jr, Jamal R, Messaoudene M, Daisley BA, Hes C, Al KF, Martinez-Gili L, Punčochář M, et al: Fecal microbiota transplantation plus anti-PD-1 immunotherapy in advanced melanoma: A phase I trial. Nat Med. 29:2121–2132. 2023. View Article : Google Scholar : PubMed/NCBI | |
Schneider KM, Mohs A, Gui W, Galvez EJC, Candels LS, Hoenicke L, Muthukumarasamy U, Holland CH, Elfers C, Kilic K, et al: Imbalanced gut microbiota fuels hepatocellular carcinoma development by shaping the hepatic inflammatory microenvironment. Nat Commun. 13:39642022. View Article : Google Scholar : PubMed/NCBI | |
Peng R, Liu S, You W, Huang Y, Hu C, Gao Y, Jia X, Li G, Xu Z and Chen Y: Gastric microbiome alterations are associated with decreased CD8+ Tissue-Resident Memory T cells in the tumor microenvironment of gastric cancer. Cancer Immunol Res. 10:1224–1240. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhu Y, Shi T, Lu X, Xu Z, Qu J, Zhang Z, Shi G, Shen S, Hou Y, Chen Y and Wang T: Fungal-induced glycolysis in macrophages promotes colon cancer by enhancing innate lymphoid cell secretion of IL-22. EMBO J. 40:e1053202021. View Article : Google Scholar : PubMed/NCBI | |
Protopsaltis NJ, Liang W, Nudleman E and Ferrara N: Interleukin-22 promotes tumor angiogenesis. Angiogenesis. 22:311–323. 2019. View Article : Google Scholar | |
Briukhovetska D, Suarez-Gosalvez J, Voigt C, Markota A, Giannou AD, Schübel M, Jobst J, Zhang T, Dörr J, Märkl F, et al: T cell-derived interleukin-22 drives the expression of CD155 by cancer cells to suppress NK cell function and promote metastasis. Immunity. 56:143–161.e11. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Song X, Wei W, Zhong H, Dai J, Lan Z, Li F, Yu X, Feng Q, Wang Z, et al: The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases. Nat Commun. 8:8752017. View Article : Google Scholar : PubMed/NCBI | |
Flemer B, Warren RD, Barrett MP, Cisek K, Das A, Jeffery IB, Hurley E, O'Riordain M, Shanahan F and O'Toole PW: The oral microbiota in colorectal cancer is distinctive and predictive. Gut. 67:1454–1463. 2018. View Article : Google Scholar | |
Soto-Pantoja DR, Gaber M, Arnone AA, Bronson SM, Cruz-Diaz N, Wilson AS, Clear KYJ, Ramirez MU, Kucera GL, Levine EA, et al: Diet alters entero-mammary signaling to regulate the breast microbiome and tumorigenesis. Cancer Res. 81:3890–3904. 2021. View Article : Google Scholar : PubMed/NCBI | |
O'Dwyer DN, Ashley SL, Gurczynski SJ, Xia M, Wilke C, Falkowski NR, Norman KC, Arnold KB, Huffnagle GB, Salisbury ML, et al: Lung microbiota contribute to pulmonary inflammation and disease progression in pulmonary fibrosis. Am J Respir Crit Care Med. 199:1127–1138. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sipos A, Ujlaki G, Mikó E, Maka E, Szabó J, Uray K, Krasznai Z and Bai P: The role of the microbiome in ovarian cancer: Mechanistic insights into oncobiosis and to bacterial metabolite signaling. Mol Med. 27:332021. View Article : Google Scholar : PubMed/NCBI | |
Ma C, Han M, Heinrich B, Fu Q, Zhang Q, Sandhu M, Agdashian D, Terabe M, Berzofsky JA, Fako V, et al: Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science. 360:eaan59312018. View Article : Google Scholar : PubMed/NCBI | |
Imai S, Ooki T, Murata-Kamiya N, Komura D, Tahmina K, Wu W, Takahashi-Kanemitsu A, Knight CT, Kunita A, Suzuki N, et al: Helicobacter pylori CagA elicits BRCAness to induce genome instability that may underlie bacterial gastric carcinogenesis. Cell Host Microbe. 29:941–958.e10. 2021. View Article : Google Scholar : PubMed/NCBI | |
Bell HN, Rebernick RJ, Goyert J, Singhal R, Kuljanin M, Kerk SA, Huang W, Das NK, Andren A, Solanki S, et al: Reuterin in the healthy gut microbiome suppresses colorectal cancer growth through altering redox balance. Cancer Cell. 40:185–200.e6. 2022. View Article : Google Scholar : | |
Zhu X, Li K, Liu G, Wu R, Zhang Y, Wang S, Xu M, Lu L and Li P: Microbial metabolite butyrate promotes anti-PD-1 antitumor efficacy by modulating T cell receptor signaling of cytotoxic CD8 T cell. Gut Microbes. 15:22491432023. View Article : Google Scholar : PubMed/NCBI | |
Jiang SS, Xie YL, Xiao XY, Kang ZR, Lin XL, Zhang L, Li CS, Qian Y, Xu PP, Leng XX, et al: Fusobacterium nucleatum-derived succinic acid induces tumor resistance to immunotherapy in colorectal cancer. Cell Host Microbe. 31:781–797.e9. 2023. View Article : Google Scholar : PubMed/NCBI | |
Behary J, Amorim N, Jiang XT, Raposo A, Gong L, McGovern E, Ibrahim R, Chu F, Stephens C, Jebeili H, et al: Gut microbiota impact on the peripheral immune response in non-alcoholic fatty liver disease related hepatocellular carcinoma. Nat Commun. 12:1872021. View Article : Google Scholar : PubMed/NCBI | |
Høgh RI, Møller SH, Jepsen SD, Mellergaard M, Lund A, Pejtersen M, Fitzner E, Andresen L and Skov S: Metabolism of short-chain fatty acid propionate induces surface expression of NKG2D ligands on cancer cells. FASEB J. 34:15531–15546. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sun K, Xu R, Ma F, Yang N, Li Y, Sun X, Jin P, Kang W, Jia L, Xiong J, et al: scRNA-seq of gastric tumor shows complex intercellular interaction with an alternative T cell exhaustion trajectory. Nat Commun. 13:49432022. View Article : Google Scholar : PubMed/NCBI | |
Leader AM, Grout JA, Maier BB, Nabet BY, Park MD, Tabachnikova A, Chang C, Walker L, Lansky A, Le Berichel J, et al: Single-cell analysis of human non-small cell lung cancer lesions refines tumor classification and patient stratification. Cancer Cell. 39:1594–1609.e12. 2021. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Lee HY, Zhao X, Han J, Su Y, Sun Q, Shao J, Ge J, Zhao Y, Bai X, et al: Interleukin-17D regulates group 3 innate lymphoid cell function through its receptor CD93. Immunity. 54:673–686.e4. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wu L, Jin Y, Zhao X, Tang K, Zhao Y, Tong L, Yu X, Xiong K, Luo C, Zhu J, et al: Tumor aerobic glycolysis confers immune evasion through modulating sensitivity to T cell-mediated bystander killing via TNF-α. Cell Metab. 35:1580–1596.e9. 2023. View Article : Google Scholar | |
Brown TP and Ganapathy V: Lactate/GPR81 signaling and proton motive force in cancer: Role in angiogenesis, immune escape, nutrition, and Warburg phenomenon. Pharmacol Ther. 206:1074512020. View Article : Google Scholar | |
Tang T, Huang X, Lu M, Zhang G, Han X and Liang T: Transcriptional control of pancreatic cancer immunosuppression by metabolic enzyme CD73 in a tumor-autonomous and -autocrine manner. Nat Commun. 14:33642023. View Article : Google Scholar : PubMed/NCBI | |
Bell HN, Huber AK, Singhal R, Korimerla N, Rebernick RJ, Kumar R, El-Derany MO, Sajjakulnukit P, Das NK, Kerk SA, et al: Microenvironmental ammonia enhances T cell exhaustion in colorectal cancer. Cell Metab. 35:134–149.e6. 2023. View Article : Google Scholar : | |
Shi Q, Wang J, Zhou M, Zheng R, Zhang X and Liu B: Gut Lactobacillus contribute to the progression of breast cancer by affecting the antitumor activities of immune cells in the TME of tumor-bearing mice. Int Immunopharmacol. 124(Pt B): 1110392023. View Article : Google Scholar : PubMed/NCBI | |
Nejman D, Livyatan I, Fuks G, Gavert N, Zwang Y, Geller LT, Rotter-Maskowitz A, Weiser R, Mallel G, Gigi E, et al: The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science. 368:973–980. 2020. View Article : Google Scholar : PubMed/NCBI | |
Song W, Tiruthani K, Wang Y, Shen L, Hu M, Dorosheva O, Qiu K, Kinghorn KA, Liu R and Huang L: Trapping of lipopolysaccharide to promote immunotherapy against colorectal cancer and attenuate liver metastasis. Adv Mater. 30:e18050072018. View Article : Google Scholar : PubMed/NCBI | |
Liu CH, Chen Z, Chen K, Liao FT, Chung CE, Liu X, Lin YC, Keohavong P, Leikauf GD and Di YP: Lipopolysaccharide-Mediated chronic inflammation promotes tobacco carcinogen-induced lung cancer and determines the efficacy of immunotherapy. Cancer Res. 81:144–157. 2021. View Article : Google Scholar : | |
Zhong W, Wu K, Long Z, Zhou X, Zhong C, Wang S, Lai H, Guo Y, Lv D, Lu J and Mao X: Gut dysbiosis promotes prostate cancer progression and docetaxel resistance via activating NF-κB-IL6-STAT3 axis. Microbiome. 10:942022. View Article : Google Scholar | |
Zhu G, Huang Q, Huang Y, Zheng W, Hua J, Yang S, Zhuang J, Wang J and Ye J: Lipopolysaccharide increases the release of VEGF-C that enhances cell motility and promotes lymphangiogenesis and lymphatic metastasis through the TLR4-NF-κB/JNK pathways in colorectal cancer. Oncotarget. 7:73711–73724. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Yao Z, Wang J, Zhang W, Yang Y, Zhang Y, Qu X, Zhu Y, Zou J, Peng S, et al: Macrophage-derived CCL5 facilitates immune escape of colorectal cancer cells via the p65/STAT3-CSN5-PD-L1 pathway. Cell Death Differ. 27:1765–1781. 2020. View Article : Google Scholar : | |
Feitelson MA, Arzumanyan A, Medhat A and Spector I: Short-chain fatty acids in cancer pathogenesis. Cancer Metastasis Rev. 42:677–698. 2023. View Article : Google Scholar : PubMed/NCBI | |
Brennan CA, Clay SL, Lavoie SL, Bae S, Lang JK, Fonseca-Pereira D, Rosinski KG, Ou N, Glickman JN and Garrett WS: Fusobacterium nucleatum drives a pro-inflammatory intestinal microenvironment through metabolite receptor-dependent modulation of IL-17 expression. Gut Microbes. 13:19877802021. View Article : Google Scholar : PubMed/NCBI | |
Matsushita M, Fujita K, Hayashi T, Kayama H, Motooka D, Hase H, Jingushi K, Yamamichi G, Yumiba S, Tomiyama E, et al: Gut microbiota-derived short-chain fatty acids promote prostate cancer growth via IGF1 signaling. Cancer Res. 81:4014–4026. 2021. View Article : Google Scholar : PubMed/NCBI | |
Meiser J, Schuster A, Pietzke M, Vande Voorde J, Athineos D, Oizel K, Burgos-Barragan G, Wit N, Dhayade S, Morton JP, et al: Increased formate overflow is a hallmark of oxidative cancer. Nat Commun. 9:13682018. View Article : Google Scholar : PubMed/NCBI | |
Hennequart M, Pilley SE, Labuschagne CF, Coomes J, Mervant L, Driscoll PC, Legrave NM, Lee Y, Kreuzaler P, Macintyre B, et al: ALDH1L2 regulation of formate, formyl-methionine, and ROS controls cancer cell migration and metastasis. Cell Rep. 42:1125622023. View Article : Google Scholar : PubMed/NCBI | |
Ternes D, Tsenkova M, Pozdeev VI, Meyers M, Koncina E, Atatri S, Schmitz M, Karta J, Schmoetten M, Heinken A, et al: The gut microbial metabolite formate exacerbates colorectal cancer progression. Nat Metab. 4:458–475. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kim M, Vogtmann E, Ahlquist DA, Devens ME, Kisiel JB, Taylor WR, White BA, Hale VL, Sung J, Chia N, et al: Fecal metabolomic signatures in colorectal adenoma patients are associated with gut microbiota and early events of colorectal cancer pathogenesis. mBio. 11:e03186–19. 2020. View Article : Google Scholar : PubMed/NCBI | |
Petrick JL, Florio AA, Koshiol J, Pfeiffer RM, Yang B, Yu K, Chen CJ, Yang HI, Lee MH and McGlynn KA: Prediagnostic concentrations of circulating bile acids and hepatocellular carcinoma risk: REVEAL-HBV and HCV studies. Int J Cancer. 147:2743–2753. 2020. View Article : Google Scholar : PubMed/NCBI | |
Funabashi M, Grove TL, Wang M, Varma Y, McFadden ME, Brown LC, Guo C, Higginbottom S, Almo SC and Fischbach MA: A metabolic pathway for bile acid dehydroxylation by the gut microbiome. Nature. 582:566–570. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sun L, Zhang Y, Cai J, Rimal B, Rocha ER, Coleman JP, Zhang C, Nichols RG, Luo Y, Kim B, et al: Bile salt hydrolase in non-enterotoxigenic Bacteroides potentiates colorectal cancer. Nat Commun. 14:7552023. View Article : Google Scholar : PubMed/NCBI | |
Song X, An Y, Chen D, Zhang W, Wu X, Li C, Wang S, Dong W, Wang B, Liu T, et al: Microbial metabolite deoxycholic acid promotes vasculogenic mimicry formation in intestinal carcinogenesis. Cancer Sci. 113:459–477. 2022. View Article : Google Scholar : | |
Nguyen TT, Lian S, Ung TT, Xia Y, Han JY and Jung YD: Lithocholic acid stimulates IL-8 expression in human colorectal cancer cells via activation of Erk1/2 MAPK and suppression of STAT3 activity. J Cell Biochem. 118:2958–2967. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lee YS, Choi I, Ning Y, Kim NY, Khatchadourian V, Yang D, Chung HK, Choi D, LaBonte MJ, Ladner RD, et al: Interleukin-8 and its receptor CXCR2 in the tumour microenvironment promote colon cancer growth, progression and metastasis. Br J Cancer. 106:1833–1841. 2012. View Article : Google Scholar : PubMed/NCBI | |
Fang ZZ, Zhang D, Cao YF, Xie C, Lu D, Sun DX, Tanaka N, Jiang C, Chen Q, Chen Y, et al: Irinotecan (CPT-11)-induced elevation of bile acids potentiates suppression of IL-10 expression. Toxicol Appl Pharmacol. 291:21–27. 2016. View Article : Google Scholar : | |
Liu Q, Yang C, Wang S, Shi D, Wei C, Song J, Lin X, Dou R, Bai J, Xiang Z, et al: Wnt5a-induced M2 polarization of tumor-associated macrophages via IL-10 promotes colorectal cancer progression. Cell Commun Signal. 18:512020. View Article : Google Scholar : PubMed/NCBI | |
Hang S, Paik D, Yao L, Kim E, Trinath J, Lu J, Ha S, Nelson BN, Kelly SP, Wu L, et al: Bile acid metabolites control TH17 and Treg cell differentiation. Nature. 576:143–148. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang N, Yang J, Han W, Han M, Liu X, Jiang L, Cao H, Jing M, Sun T and Xu J: Identifying distinctive tissue and fecal microbial signatures and the tumor-promoting effects of deoxycholic acid on breast cancer. Front Cell Infect Microbiol. 12:10299052022. View Article : Google Scholar : PubMed/NCBI | |
Riquelme E, Zhang Y, Zhang L, Montiel M, Zoltan M, Dong W, Quesada P, Sahin I, Chandra V, San Lucas A, et al: Tumor microbiome diversity and composition influence pancreatic cancer outcomes. Cell. 178:795–806.e12. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, Prieto PA, Vicente D, Hoffman K, Wei SC, et al: Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 359:97–103. 2018. View Article : Google Scholar | |
Huang J, Zheng X, Kang W, Hao H, Mao Y, Zhang H, Chen Y, Tan Y, He Y, Zhao W and Yin Y: Metagenomic and metabolomic analyses reveal synergistic effects of fecal microbiota transplantation and anti-PD-1 therapy on treating colorectal cancer. Front Immunol. 13:8749222022. View Article : Google Scholar : PubMed/NCBI | |
Davar D, Dzutsev AK, McCulloch JA, Rodrigues RR, Chauvin JM, Morrison RM, Deblasio RN, Menna C, Ding Q, Pagliano O, et al: Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science. 371:595–602. 2021. View Article : Google Scholar : PubMed/NCBI | |
Joachim L, Göttert S, Sax A, Steiger K, Neuhaus K, Heinrich P, Fan K, Orberg ET, Kleigrewe K, Ruland J, et al: The microbial metabolite desaminotyrosine enhances T-cell priming and cancer immunotherapy with immune checkpoint inhibitors. EBioMedicine. 97:1048342023. View Article : Google Scholar : PubMed/NCBI | |
Green BL, Myojin Y, Ma C, Ruf B, Ma L, Zhang Q, Rosato U, Qi J, Revsine M, Wabitsch S and Bauer K: Immunosuppressive CD29+ Treg accumulation in the liver in mice on checkpoint inhibitor therapy. Gut. 73:509–520. 2024. | |
Klement JD, Paschall AV, Redd PS, Ibrahim ML, Lu C, Yang D, Celis E, Abrams SI, Ozato K and Liu K: An osteopontin/CD44 immune checkpoint controls CD8+ T cell activation and tumor immune evasion. J Clin Invest. 128:5549–5560. 2018. View Article : Google Scholar : PubMed/NCBI | |
Thomas MS and Fernandez ML: Trimethylamine N-Oxide (TMAO), diet and cardiovascular disease. Curr Atheroscler Rep. 23:122021. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Rong X, Pan M, Wang T, Yang H, Chen X, Xiao Z and Zhao C: Integrated analysis reveals the gut microbial metabolite TMAO promotes inflammatory hepatocellular carcinoma by upregulating POSTN. Front Cell Dev Biol. 10:8401712022. View Article : Google Scholar : PubMed/NCBI | |
Mirji G, Worth A, Bhat SA, El Sayed M, Kannan T, Goldman AR, Tang HY, Liu Q, Auslander N, Dang CV, et al: The microbiome-derived metabolite TMAO drives immune activation and boosts responses to immune checkpoint blockade in pancreatic cancer. Sci Immunol. 7:eabn07042022. View Article : Google Scholar : PubMed/NCBI | |
Jalandra R, Dalal N, Yadav AK, Verma D, Sharma M, Singh R, Khosla A, Kumar A and Solanki PR: Emerging role of trimethylamine-N-oxide (TMAO) in colorectal cancer. Appl Microbiol Biotechnol. 105:7651–7660. 2021. View Article : Google Scholar : PubMed/NCBI | |
Luo Z, Yu X, Wang C, Zhao H, Wang X and Guan X: Trimethylamine N-oxide promotes oxidative stress and lipid accumulation in macrophage foam cells via the Nrf2/ABCA1 pathway. J Physiol Biochem. 80:67–79. 2024. View Article : Google Scholar | |
Baldominos P, Barbera-Mourelle A, Barreiro O, Huang Y, Wight A, Cho JW, Zhao X, Estivill G, Adam I, Sanchez X, et al: Quiescent cancer cells resist T cell attack by forming an immunosuppressive niche. Cell. 185:1694–1708.e19. 2022. View Article : Google Scholar | |
Wang H, Rong X, Zhao G, Zhou Y, Xiao Y, Ma D, Jin X, Wu Y, Yan Y, Yang H, et al: The microbial metabolite trimethylamine N-oxide promotes antitumor immunity in triple-negative breast cancer. Cell Metab. 34:581–594.e8. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yang S, Dai H, Lu Y, Li R, Gao C and Pan S: Trimethylamine N-Oxide promotes cell proliferation and angiogenesis in colorectal cancer. J Immunol Res. 2022:70438562022. View Article : Google Scholar : PubMed/NCBI | |
Roberts AB, Gu X, Buffa JA, Hurd AG, Wang Z, Zhu W, Gupta N, Skye SM, Cody DB, Levison BS, et al: Development of a gut microbe-targeted nonlethal therapeutic to inhibit thrombosis potential. Nat Med. 24:1407–1417. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhu W, Gregory JC, Org E, Buffa JA, Gupta N, Wang Z, Li L, Fu X, Wu Y, Mehrabian M, et al: Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell. 165:111–124. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Wu Z, Yan J, Liu H, Liu Q, Deng Y, Ou C and Chen M: Gut microbe-derived metabolite trimethylamine N-oxide induces cardiac hypertrophy and fibrosis. Lab Invest. 99:346–357. 2019. View Article : Google Scholar | |
Peng L, Li ZR, Green RS, Holzman IR and Lin J: Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J Nutr. 139:1619–1625. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhang SL, Mao YQ, Zhang ZY, Li ZM, Kong CY, Chen HL, Cai PR, Han B, Ye T and Wang LS: Pectin supplement significantly enhanced the anti-PD-1 efficacy in tumor-bearing mice humanized with gut microbiota from patients with colorectal cancer. Theranostics. 11:4155–4170. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yao Y, Cai X, Fei W, Ye Y, Zhao M and Zheng C: The role of short-chain fatty acids in immunity, inflammation and metabolism. Crit Rev Food Sci Nutr. 62:1–12. 2022. View Article : Google Scholar | |
Song Q, Zhang X, Liu W, Wei H, Liang W, Zhou Y, Ding Y, Ji F, Ho-Kwan Cheung A, Wong N and Yu J: Bifidobacterium pseudolongum-generated acetate suppresses non-alcoholic fatty liver disease-associated hepatocellular carcinoma. J Hepatol. 79:1352–1365. 2023. View Article : Google Scholar : PubMed/NCBI | |
Bindels LB, Porporato P, Dewulf EM, Verrax J, Neyrinck AM, Martin JC, Scott KP, Buc Calderon P, Feron O, Muccioli GG, et al: Gut microbiota-derived propionate reduces cancer cell proliferation in the liver. Br J Cancer. 107:1337–1344. 2012. View Article : Google Scholar : PubMed/NCBI | |
Thirunavukkarasan M, Wang C, Rao A, Hind T, Teo YR, Siddiquee AA, Goghari MAI, Kumar AP and Herr DR: Short-chain fatty acid receptors inhibit invasive phenotypes in breast cancer cells. PLoS One. 12:e01863342017. View Article : Google Scholar : PubMed/NCBI | |
Singh N, Gurav A, Sivaprakasam S, Brady E, Padia R, Shi H, Thangaraju M, Prasad PD, Manicassamy S, Munn DH, et al: Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity. 40:128–139. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lavoie S, Chun E, Bae S, Brennan CA, Gallini Comeau CA, Lang JK, Michaud M, Hoveyda HR, Fraser GL, Fuller MH, et al: Expression of free fatty acid receptor 2 by dendritic cells prevents their expression of interleukin 27 and is required for maintenance of mucosal barrier and immune response against colorectal tumors in mice. Gastroenterology. 158:1359–1372.e9. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ramaiah MJ, Tangutur AD and Manyam RR: Epigenetic modulation and understanding of HDAC inhibitors in cancer therapy. Life Sci. 277:1195042021. View Article : Google Scholar : PubMed/NCBI | |
Shanmugam G, Rakshit S and Sarkar K: HDAC inhibitors: Targets for tumor therapy, immune modulation and lung diseases. Transl Oncol. 16:1013122022. View Article : Google Scholar | |
Li X, Su X, Liu R, Pan Y, Fang J, Cao L, Feng C, Shang Q, Chen Y, Shao C and Shi Y: HDAC inhibition potentiates antitumor activity of macrophages and enhances anti-PD-L1-mediated tumor suppression. Oncogene. 40:1836–1850. 2021. View Article : Google Scholar : PubMed/NCBI | |
Luu M, Riester Z, Baldrich A, Reichardt N, Yuille S, Busetti A, Klein M, Wempe A, Leister H, Raifer H, et al: Microbial short-chain fatty acids modulate CD8+ T cell responses and improve adoptive immunotherapy for cancer. Nat Commun. 12:40772021. View Article : Google Scholar : | |
Dupraz L, Magniez A, Rolhion N, Richard ML, Da Costa G, Touch S, Mayeur C, Planchais J, Agus A, Danne C, et al: Gut microbiota-derived short-chain fatty acids regulate IL-17 production by mouse and human intestinal γδ T cells. Cell Rep. 36:1093322021. View Article : Google Scholar | |
Zhang H, Du M, Yang Q and Zhu MJ: Butyrate suppresses murine mast cell proliferation and cytokine production through inhibiting histone deacetylase. J Nutr Biochem. 27:299–306. 2016. View Article : Google Scholar | |
Qiao P, Zhang C, Yu J, Shao S, Zhang J, Fang H, Chen J, Luo Y, Zhi D, Li Q, et al: Quinolinic acid, a tryptophan metabolite of the skin microbiota, negatively regulates NLRP3 inflammasome through AhR in psoriasis. J Invest Dermatol. 142:2184–2193.e6. 2022. View Article : Google Scholar : PubMed/NCBI | |
Fang Z, Pan T, Li L, Wang H, Zhu J, Zhang H, Zhao J, Chen W and Lu W: Bifidobacterium longum mediated tryptophan metabolism to improve atopic dermatitis via the gut-skin axis. Gut Microbes. 14:20447232022. View Article : Google Scholar : PubMed/NCBI | |
Sehgal R, Ilha M, Vaittinen M, Kaminska D, Männistö V, Kärjä V, Tuomainen M, Hanhineva K, Romeo S, Pajukanta P, et al: Indole-3-Propionic acid, a Gut-Derived tryptophan metabolite, associates with hepatic fibrosis. Nutrients. 13:35092021. View Article : Google Scholar : PubMed/NCBI | |
Cheng Y, Jin UH, Allred CD, Jayaraman A, Chapkin RS and Safe S: Aryl hydrocarbon receptor activity of tryptophan metabolites in young adult mouse colonocytes. Drug Metab Dispos. 43:1536–1543. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bender MJ, McPherson AC, Phelps CM, Pandey SP, Laughlin CR, Shapira JH, Medina Sanchez L, Rana M, Richie TG, Mims TS, et al: Dietary tryptophan metabolite released by intratumoral Lactobacillus reuteri facilitates immune checkpoint inhibitor treatment. Cell. 186:1846–1862.e26. 2023. View Article : Google Scholar : PubMed/NCBI | |
Hezaveh K, Shinde RS, Klötgen A, Halaby MJ, Lamorte S, Ciudad MT, Quevedo R, Neufeld L, Liu ZQ, Jin R, et al: Tryptophan-derived microbial metabolites activate the aryl hydrocarbon receptor in tumor-associated macrophages to suppress antitumor immunity. Immunity. 55:324–340.e8. 2022. View Article : Google Scholar | |
Zhang Q, Zhao Q, Li T, Lu L, Wang F, Zhang H, Liu Z, Ma H, Zhu Q, Wang J, et al: Lactobacillus plantarum-derived indole-3-lactic acid ameliorates colorectal tumorigenesis via epigenetic regulation of CD8+ T cell immunity. Cell Metab. 35:943–960.e9. 2023. View Article : Google Scholar | |
Garris CS, Arlauckas SP, Kohler RH, Trefny MP, Garren S, Piot C, Engblom C, Pfirschke C, Siwicki M, Gungabeesoon J, et al: Successful Anti-PD-1 cancer immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFN-γ and IL-12. Immunity. 49:1148–1161.e7. 2018. View Article : Google Scholar | |
Sári Z, Mikó E, Kovács T, Boratkó A, Ujlaki G, Jankó L, Kiss B, Uray K and Bai P: Indoxylsulfate, a metabolite of the microbiome, has cytostatic effects in breast cancer via activation of AHR and PXR receptors and induction of oxidative stress. Cancers (Basel). 12:29152020. View Article : Google Scholar : PubMed/NCBI | |
Sharma MD, Pacholczyk R, Shi H, Berrong ZJ, Zakharia Y, Greco A, Chang CS, Eathiraj S, Kennedy E, Cash T, et al: Inhibition of the BTK-IDO-mTOR axis promotes differentiation of monocyte-lineage dendritic cells and enhances antitumor T cell immunity. Immunity. 54:2354–2371.e8. 2021. View Article : Google Scholar | |
Campesato LF, Budhu S, Tchaicha J, Weng CH, Gigoux M, Cohen IJ, Redmond D, Mangarin L, Pourpe S, Liu C, et al: Blockade of the AHR restricts a Treg-macrophage suppressive axis induced by L-Kynurenine. Nat Commun. 11:40112020. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Xu X, Wang J, Wang W, Ma C, Sun T and Shao Q: Clinical study on different doses and fractionated radiotherapies for multiple brain metastases of non-EGFR mutant lung adenocarcinoma. Ann Palliat Med. 9:2003–2012. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Huang L, Wang H, Shi Z, Huang Y, Liang L, Wang R and Hu K: Predicting nomogram for severe oral mucositis in patients with nasopharyngeal carcinoma during intensity-modulated radiation therapy: A retrospective cohort study. Curr Oncol. 30:219–232. 2022. View Article : Google Scholar | |
Guo H, Chou WC, Lai Y, Liang K, Tam JW, Brickey WJ, Chen L, Montgomery ND, Li X, Bohannon LM, et al: Multi-omics analyses of radiation survivors identify radioprotective microbes and metabolites. Science. 370:eaay90972020. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Yan T, Mo W, Song B, Zhang Y, Geng F, Hu Z, Yu D and Zhang S: Altered bile acid metabolism in skin tissues in response to ionizing radiation: deoxycholic acid (DCA) as a novel treatment for radiogenic skin injury. Int J Radiat Biol. 100:87–98. 2024. View Article : Google Scholar | |
Han JX, Tao ZH, Wang JL, Zhang L, Yu CY, Kang ZR, Xie Y, Li J, Lu S, Cui Y, et al: Microbiota-derived tryptophan catabolites mediate the chemopreventive effects of statins on colorectal cancer. Nat Microbiol. 8:919–933. 2023. View Article : Google Scholar : PubMed/NCBI | |
Deng B, Yang B, Chen J, Wang S, Zhang W, Guo Y, Han Y, Li H, Dang Y, Yuan Y, et al: Gallic acid induces T-helper-1-like Treg cells and strengthens immune checkpoint blockade efficacy. J Immunother Cancer. 10:e0040372022. View Article : Google Scholar : | |
Li K, Xiao Y, Bian J, Han L, He C, El-Omar E, Gong L and Wang M: Ameliorative effects of gut microbial metabolite urolithin a on pancreatic diseases. Nutrients. 14:25492022. View Article : Google Scholar : PubMed/NCBI | |
González-Sarrías A, Miguel V, Merino G, Lucas R, Morales JC, Tomás-Barberán F, Alvarez AI and Espín JC: The gut microbiota ellagic acid-derived metabolite urolithin A and its sulfate conjugate are substrates for the drug efflux transporter breast cancer resistance protein (ABCG2/BCRP). J Agric Food Chem. 61:4352–4359. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ghosh S, Singh R, Vanwinkle ZM, Guo H, Vemula PK, Goel A, Haribabu B and Jala VR: Microbial metabolite restricts 5-fluorouracil-resistant colonic tumor progression by sensitizing drug transporters via regulation of FOXO3-FOXM1 axis. Theranostics. 12:5574–5595. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Jiang L, Su P, Yu T, Ma Z, Liu Y and Yu J: Urolithin A suppresses tumor progression and induces autophagy in gastric cancer via the PI3K/Akt/mTOR pathway. Drug Dev Res. 84:172–184. 2023. View Article : Google Scholar | |
Blouin JM, Penot G, Collinet M, Nacfer M, Forest C, Laurent-Puig P, Coumoul X, Barouki R, Benelli C and Bortoli S: Butyrate elicits a metabolic switch in human colon cancer cells by targeting the pyruvate dehydrogenase complex. Int J Cancer. 128:2591–2601. 2011. View Article : Google Scholar | |
Yuksel B, Deveci Ozkan A, Aydın D and Betts Z: Evaluation of the antioxidative and genotoxic effects of sodium butyrate on breast cancer cells. Saudi J Biol Sci. 29:1394–1401. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhao ZH, Wang ZX, Zhou D, Han Y, Ma F, Hu Z, Xin FZ, Liu XL, Ren TY, Zhang F, et al: Sodium butyrate supplementation inhibits hepatic steatosis by stimulating liver kinase B1 and insulin-induced gene. Cell Mol Gastroenterol Hepatol. 12:857–871. 2021. View Article : Google Scholar : PubMed/NCBI | |
Encarnação JC, Pires AS, Amaral RA, Gonçalves TJ, Laranjo M, Casalta-Lopes JE, Gonçalves AC, Sarmento-Ribeiro AB, Abrantes AM and Botelho MF: Butyrate, a dietary fiber derivative that improves irinotecan effect in colon cancer cells. J Nutr Biochem. 56:183–192. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shuwen H, Yangyanqiu W, Jian C, Boyang H, Gong C and Jing Z: Synergistic effect of sodium butyrate and oxaliplatin on colorectal cancer. Transl Oncol. 27:1015982023. View Article : Google Scholar | |
Yu T, Guo F, Yu Y, Sun T, Ma D, Han J, Qian Y, Kryczek I, Sun D, Nagarsheth N, et al: Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell. 170:548–563.e16. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Zhao R, Kang Z, Cao Z, Liu N, Shen J, Wang C, Pan F, Zhou X, Liu Z, et al: Delivery of short chain fatty acid butyrate to overcome Fusobacterium nucleatum-induced chemoresistance. J Control Release. 363:43–56. 2023. View Article : Google Scholar : PubMed/NCBI | |
Tintelnot J, Xu Y, Lesker TR, Schönlein M, Konczalla L, Giannou A D, Pelcza r P, Kylies D, Puelles VG, Bielecka AA, et al: Microbiota-derived 3-IAA influences chemotherapy efficacy in pancreatic cancer. Nature. 615:168–174. 2023. View Article : Google Scholar : PubMed/NCBI | |
Colbert LE, El Alam MB, Wang R, Karpinets T, Lo D, Lynn EJ, Harris TA, Elnaggar JH, Yoshida-Court K, Tomasic K, et al: Tumor-resident Lactobacillus iners confer chemoradiation resistance through lactate-induced metabolic rewiring. Cancer Cell. 41:1945–1962.e11. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chang TK, Yin TC, Su WC, Tsai HL, Huang CW, Chen YC, Li CC, Chen PJ, Ma CJ, Chuang KH, et al: A Pilot Study of Silymarin as Supplementation to reduce toxicities in metastatic colorectal cancer patients treated with first-line FOLFIRI Plus Bevacizumab. Oncol Res. 28:801–809. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yang W, Chang L, Guo Q, Chen J, Yu W and Zhang W: Programmed cell death protein-1 inhibitors in the treatment of digestive system tumors in Chinese population: An observational study of effectiveness and safety. Ann Palliat Med. 10:9015–9024. 2021. View Article : Google Scholar : PubMed/NCBI | |
Renga G, Nunzi E, Pariano M, Puccetti M, Bellet MM, Pieraccini G, D'Onofrio F, Santarelli I, Stincardini C, Aversa F, et al: Optimizing therapeutic outcomes of immune checkpoint blockade by a microbial tryptophan metabolite. J Immunother Cancer. 10:e0037252022. View Article : Google Scholar : PubMed/NCBI | |
Lu C, Liu Z, Klement JD, Yang D, Merting AD, Poschel D, Albers T, Waller JL, Shi H and Liu K: WDR5-H3K4me3 epigenetic axis regulates OPN expression to compensate PD-L1 function to promote pancreatic cancer immune escape. J Immunother Cancer. 9:e0026242021. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Ge J, Wang Y, Xiong F, Guo J, Jiang X, Zhang L, Deng X, Gong Z, Zhang S, et al: EBV miRNAs BART11 and BART17-3p promote immune escape through the enhancer-mediated transcription of PD-L1. Nat Commun. 13:8662022. View Article : Google Scholar : PubMed/NCBI | |
Lainé A, Labiad O, Hernandez-Vargas H, This S, Sanlaville A, Léon S, Dalle S, Sheppard D, Travis MA, Paidassi H and Marie JC: Regulatory T cells promote cancer immune-escape through integrin αvβ8-mediated TGF-β activation. Nat Commun. 12:62282021. View Article : Google Scholar | |
Peng S, Wang R, Zhang X, Ma Y, Zhong L, Li K, Nishiyama A, Arai S, Yano S and Wang W: EGFR-TKI resistance promotes immune escape in lung cancer via increased PD-L1 expression. Mol Cancer. 18:1652019. View Article : Google Scholar : PubMed/NCBI | |
Mehra S, Garrido VT, Dosch AR, Lamichhane P, Srinivasan S, Singh SP, Zhou Z, De Castro Silva I, Joshi C, Ban Y, et al: Remodeling of stromal immune microenvironment by urolithin a improves survival with immune checkpoint blockade in pancreatic cancer. Cancer Res Commun. 3:1224–1236. 2023. View Article : Google Scholar : PubMed/NCBI | |
Coutzac C, Jouniaux JM, Paci A, Schmidt J, Mallardo D, Seck A, Asvatourian V, Cassard L, Saulnier P, Lacroix L, et al: Systemic short chain fatty acids limit antitumor effect of CTLA-4 blockade in hosts with cancer. Nat Commun. 11:21682020. View Article : Google Scholar : PubMed/NCBI | |
Lv B, Wang Y, Ma D, Cheng W, Liu J, Yong T, Chen H and Wang C: Immunotherapy: Reshape the tumor immune microenvironment. Front Immunol. 13:8441422022. View Article : Google Scholar : PubMed/NCBI | |
Mao X, Xu J, Wang W, Liang C, Hua J, Liu J, Zhang B, Meng Q, Yu X and Shi S: Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol Cancer. 20:1312021. View Article : Google Scholar : PubMed/NCBI | |
Korbecki J, Kojder K, Simińska D, Bohatyrewicz R, Gutowska I, Chlubek D and Baranowska-Bosiacka I: CC Chemokines in a Tumor: A Review of Pro-Cancer and Anti-Cancer Properties of the Ligands of Receptors CCR1, CCR2, CCR3, and CCR4. Int J Mol Sci. 21:84122020. View Article : Google Scholar : PubMed/NCBI | |
Hennessy M, Wahba A, Felix K, Cabrera M, Segura MG, Kundra V, Ravoori MK, Stewart J, Kleinerman ES, Jensen VB, et al: Bempegaldesleukin (BEMPEG; NKTR-214) efficacy as a single agent and in combination with checkpoint-inhibitor therapy in mouse models of osteosarcoma. Int J Cancer. 148:1928–1937. 2021. View Article : Google Scholar | |
Rosen DB, Kvarnhammar AM, Laufer B, Knappe T, Karlsson JJ, Hong E, Lee YC, Thakar D, Zúñiga LA, Bang K, et al: TransCon IL-2 β/γ: A novel long-acting prodrug with sustained release of an IL-2Rβ/γ-selective IL-2 variant with improved pharmacokinetics and potent activation of cytotoxic immune cells for the treatment of cancer. J Immunother Cancer. 10:e0049912022. View Article : Google Scholar | |
Naing A, Papadopoulos KP, Autio KA, Ott PA, Patel MR, Wong DJ, Falchook GS, Pant S, Whiteside M, Rasco DR, et al: Safety, antitumor activity, and immune activation of pegylated recombinant human interleukin-10 (AM0010) in patients with advanced solid tumors. J Clin Oncol. 34:3562–3569. 2016. View Article : Google Scholar : PubMed/NCBI | |
Taniguchi Y, Kurokawa Y, Hagi T, Takahashi T, Miyazaki Y, Tanaka K, Makino T, Yamasaki M, Nakajima K, Mori M and Doki Y: Methylprednisolone inhibits tumor growth and peritoneal seeding induced by surgical stress and post-operative complications. Ann Surg Oncol. 26:2831–2838. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hailemichael Y, Johnson DH, Abdel-Wahab N, Foo WC, Bentebibel SE, Daher M, Haymaker C, Wani K, Saberian C, Ogata D, et al: Interleukin-6 blockade abrogates immunotherapy toxicity and promotes tumor immunity. Cancer Cell. 40:509–523.e6. 2022. View Article : Google Scholar : PubMed/NCBI | |
Xue D, Moon B, Liao J, Guo J, Zou Z, Han Y, Cao S, Wang Y, Fu YX and Peng H: A tumor-specific pro-IL-12 activates preexisting cytotoxic T cells to control established tumors. Sci Immunol. 7:eabi68992022. View Article : Google Scholar : PubMed/NCBI | |
Agliardi G, Liuzzi AR, Hotblack A, De Feo D, Núñez N, Stowe CL, Friebel E, Nannini F, Rindlisbacher L, Roberts TA, et al: Intratumoral IL-12 delivery empowers CAR-T cell immunotherapy in a pre-clinical model of glioblastoma. Nat Commun. 12:4442021. View Article : Google Scholar : PubMed/NCBI | |
Chang PV, Hao L, Offermanns S and Medzhitov R: The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci USA. 111:2247–2252. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mager LF, Burkhard R, Pett N, Cooke NCA, Brown K, Ramay H, Paik S, Stagg J, Groves RA, Gallo M, et al: Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science. 369:1481–1489. 2020. View Article : Google Scholar : PubMed/NCBI | |
O'Keefe SJ: Diet, microorganisms and their metabolites, and colon cancer. Nat Rev Gastroenterol Hepatol. 13:691–706. 2016. View Article : Google Scholar : PubMed/NCBI | |
Niekamp P and Kim CH: Microbial metabolite dysbiosis and colorectal cancer. Gut Liver. 17:190–203. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Wu Y, He L, Wu L, Wang X and Liu Z: Effects of the intestinal microbial metabolite butyrate on the development of colorectal cancer. J Cancer. 9:2510–2517. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kaźmierczak-Siedlecka K, Marano L, Merola E, Roviello F and Połom K: Sodium butyrate in both prevention and supportive treatment of colorectal cancer. Front Cell Infect Microbiol. 12:10238062022. View Article : Google Scholar | |
Zhao H, Wang D, Zhang Z, Xian J and Bai X: Effect of gut microbiota-derived metabolites on immune checkpoint inhibitor therapy: Enemy or friend? Molecules. 27:47992022. View Article : Google Scholar : PubMed/NCBI |