Drug resistance and tumor immune microenvironment: An overview of current understandings (Review)
- Authors:
- Yan Liu
- Jun Liang
- Yanping Zhang
- Qie Guo
-
Affiliations: Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China, Department of Radiology, Qingdao Haici Hospital, Qingdao, Shandong 266000, P.R. China - Published online on: August 30, 2024 https://doi.org/10.3892/ijo.2024.5684
- Article Number: 96
-
Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Maia A, Schöllhorn A, Schuhmacher J and Gouttefangeas C: CAF-immune cell crosstalk and its impact in immunotherapy. Semin Immunopathol. 45:203–214. 2023. View Article : Google Scholar : | |
Yan CY, Zhao ML, Wei YN and Zhao XH: Mechanisms of drug resistance in breast cancer liver metastases: Dilemmas and opportunities. Mol Ther Oncolytics. 28:212–229. 2023. View Article : Google Scholar : PubMed/NCBI | |
Vesely MD, Zhang T and Chen L: Resistance mechanisms to Anti-PD cancer immunotherapy. Annu Rev Immunol. 40:45–74. 2022. View Article : Google Scholar : PubMed/NCBI | |
Fu T, Dai LJ, Wu SY, Xiao Y, Ma D, Jiang YZ and Shao ZM: Spatial architecture of the immune microenvironment orchestrates tumor immunity and therapeutic response. J Hematol Oncol. 14:982021. View Article : Google Scholar : PubMed/NCBI | |
Tang Y, Zang H, Wen Q and Fan S: AXL in cancer: A modulator of drug resistance and therapeutic target. J Exp Clin Cancer Res. 42:1482023. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Zhang H, Wang J, Liu Y, Luo T and Hua H: Targeting extracellular matrix stiffness and mechanotransducers to improve cancer therapy. J Hematol Oncol. 15:342022. View Article : Google Scholar : PubMed/NCBI | |
La Rocca A, De Gregorio V, Lagreca E, Vecchione R, Netti PA and Imparato G: Colorectal cancer bioengineered microtissues as a model to replicate Tumor-ECM crosstalk and assess drug delivery systems in vitro. Int J Mol Sci. 24:56782023. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y and Brekken RA: Direct and indirect regulation of the tumor immune microenvironment by VEGF. J Leukoc Biol. 111:1269–1286. 2022. View Article : Google Scholar : PubMed/NCBI | |
Dong W, Xie Y and Huang H: Prognostic value of Cancer-associated fibroblast-related gene signatures in hepatocellular carcinoma. Front Endocrinol (Lausanne). 13:8847772022. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Liu Y, Qi Y, Huang Y, Hu F, Dong F, Shu K and Lei T: Signal pathways involved in the interaction between tumor-associated macrophages/TAMs and Glioblastoma cells. Front Oncol. 12:8220852022. View Article : Google Scholar : PubMed/NCBI | |
Larmonier N, Marron M, Zeng Y, Cantrell J, Romanoski A, Sepassi M, Thompson S, Chen X, Andreansky S and Katsanis E: Tumor-derived CD4(+)CD25(+) regulatory T cell suppression of dendritic cell function involves TGF-beta and IL-10. Cancer Immunol Immunother. 56:48–59. 2007. View Article : Google Scholar | |
Haque A, Banik NL and Ray SK: Emerging role of combination of all-trans retinoic acid and interferon-gamma as chemoimmunotherapy in the management of human glioblastoma. Neurochem Res. 32:2203–2209. 2007. View Article : Google Scholar : PubMed/NCBI | |
Downs-Canner SM, Meier J, Vincent BG and Serody JS: B cell function in the tumor microenvironment. Annu Rev Immunol. 40:169–193. 2022. View Article : Google Scholar : PubMed/NCBI | |
Rabinovich GA, Gabrilovich D and Sotomayor EM: Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol. 25:267–296. 2007. View Article : Google Scholar | |
Zulfiqar B, Mahroo A, Nasir K, Farooq RK, Jalal N, Rashid MU and Asghar K: Nanomedicine and cancer immunotherapy: Focus on indoleamine 2, 3-dioxygenase inhibitors. Onco Targets Ther. 10:463–476. 2017. View Article : Google Scholar : | |
Makkouk A and Weiner GJ: Cancer immunotherapy and breaking immune tolerance: new approaches to an old challenge. Cancer Res. 75:5–10. 2015. View Article : Google Scholar | |
Vimalraj S: A concise review of VEGF, PDGF, FGF, Notch, angiopoietin, and HGF signalling in tumor angiogenesis with a focus on alternative approaches and future directions. Int J Biol Macromol. 221:1428–1438. 2022. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Zhang L, Wan D, Zhou L, Zheng S, Lin S and Qiao Y: Extracellular matrix and its therapeutic potential for cancer treatment. Signal Transduct Target Ther. 6:1532021. View Article : Google Scholar : PubMed/NCBI | |
Bigos KJ, Quiles CG, Lunj S, Smith DJ, Krause M, Troost EG, West CM, Hoskin P and Choudhury A: Tumour response to hypoxia: Understanding the hypoxic tumour microenvironment to improve treatment outcome in solid tumours. Front Oncol. 14:13313552024. View Article : Google Scholar : PubMed/NCBI | |
Rømer AMA, Thorseth ML and Madsen DH: Immune modulatory properties of collagen in cancer. Front Immunol. 12:7914532021. View Article : Google Scholar : PubMed/NCBI | |
Govaere O, Wouters J, Petz M, Vandewynckel YP, Van den Eynde K, Van den Broeck A, Verhulst S, Dollé L, Gremeaux L, Ceulemans A, et al: Laminin-332 sustains chemoresistance and quiescence as part of the human hepatic cancer stem cell niche. J Hepatol. 64:609–617. 2016. View Article : Google Scholar | |
Fukazawa S, Shinto E, Tsuda H, Ueno H, Shikina A, Kajiwara Y, Yamamoto J and Hase K: Laminin β3 expression as a prognostic factor and a predictive marker of chemoresistance in colorectal cancer. Jpn J Clin Oncol. 45:533–540. 2015.PubMed/NCBI | |
Di Martino JS, Nobre AR, Mondal C, Taha I, Farias EF, Fertig EJ, Naba A, Aguirre-Ghiso JA and Bravo-Cordero JJ: A tumor-derived type III collagen-rich ECM niche regulates tumor cell dormancy. Nat Cancer. 3:90–107. 2022. View Article : Google Scholar : PubMed/NCBI | |
Puttock EH, Tyler EJ, Manni M, Maniati E, Butterworth C, Burger Ramos M, Peerani E, Hirani P, Gauthier V, Liu Y, et al: Extracellular matrix educates an immunoregulatory tumor macrophage phenotype found in ovarian cancer metastasis. Nat Commun. 14:25142023. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Li C, Wang J, Yang G, Lv Y, Fu B, Jian L, Ma J, Yu J, Yang Z, et al: Transformable ECM deprivation system effectively suppresses renal cell carcinoma by reversing anoikis resistance and increasing chemotherapy sensitivity. Adv Mater. 34:e22035182022. View Article : Google Scholar : PubMed/NCBI | |
Tie Y, Tang F, Wei YQ and Wei XW: Immunosuppressive cells in cancer: Mechanisms and potential therapeutic targets. J Hematol Oncol. 15:612022. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Li C, Lu Y, Liu C and Yang W: Tumor microenvironment-mediated immune tolerance in development and treatment of gastric cancer. Front Immunol. 13:10168172022. View Article : Google Scholar : PubMed/NCBI | |
Labani-Motlagh A, Ashja-Mahdavi M and Loskog A: The tumor microenvironment: A milieu hindering and obstructing antitumor immune responses. Front Immunol. 11:9402020. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Tian T and Zhang J: Tumor-associated macrophages (TAMs) in colorectal cancer (CRC): From mechanism to therapy and prognosis. Int J Mol Sci. 22:84702021. View Article : Google Scholar : PubMed/NCBI | |
Xiao M, He J, Yin L, Chen X, Zu X and Shen Y: Tumor-associated macrophages: Critical players in drug resistance of breast cancer. Front Immunol. 12:7994282021. View Article : Google Scholar | |
Zaghdoudi S, Decaup E, Belhabib I, Samain R, Cassant-Sourdy S, Rochotte J, Brunel A, Schlaepfer D, Cros J, Neuzillet C, et al: FAK activity in cancer-associated fibroblasts is a prognostic marker and a druggable key metastatic player in pancreatic cancer. EMBO Mol Med. 12:e120102020. View Article : Google Scholar : PubMed/NCBI | |
Yin Y, Yao S, Hu Y, Feng Y, Li M, Bian Z, Zhang J, Qin Y, Qi X, Zhou L, et al: The Immune-microenvironment Confers Chemoresistance of colorectal cancer through macrophage-derived IL6. Clin Cancer Res. 23:7375–7387. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li J, He K, Liu P and Xu LX: Iron participated in breast cancer chemoresistance by reinforcing IL-6 paracrine loop. Biochem Biophys Res Commun. 475:154–160. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Dai Z, Wu W, Wang Z, Zhang N, Zhang L, Zeng WJ, Liu Z and Cheng Q: Regulatory mechanisms of immune checkpoints PD-L1 and CTLA-4 in cancer. J Exp Clin Cancer Res. 40:1842021. View Article : Google Scholar : PubMed/NCBI | |
Chen S, Wang M, Lu T, Liu Y, Hong W, He X, Cheng Y, Liu J, Wei Y and Wei X: JMJD6 in tumor-associated macrophage regulates macrophage polarization and cancer progression via STAT3/IL-10 axis. Oncogene. 42:2737–2750. 2023. View Article : Google Scholar : PubMed/NCBI | |
Tang B, Zhu J, Wang Y, Chen W, Fang S, Mao W, Xu Z, Yang Y, Weng Q, Zhao Z, et al: Targeted xCT-mediated Ferroptosis and Protumoral polarization of macrophages is effective against HCC and enhances the efficacy of the Anti-PD-1/L1 response. Adv Sci (Weinh). 10:e22039732023. View Article : Google Scholar | |
Li Y, Shen Z, Chai Z, Zhan Y, Zhang Y, Liu Z, Liu Y, Li Z, Lin M, Zhang Z, et al: Targeting MS4A4A on tumour-associated macrophages restores CD8+ T-cell-mediated antitumour immunity. Gut. 72:2307–2320. 2023. View Article : Google Scholar : PubMed/NCBI | |
Tanei T, Leonard F, Liu X, Alexander JF, Saito Y, Ferrari M, Godin B and Yokoi K: Redirecting transport of nanoparticle albumin-bound paclitaxel to macrophages enhances therapeutic efficacy against liver metastases. Cancer Res. 76:429–439. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rodell CB, Arlauckas SP, Cuccarese MF, Garris CS, Li R, Ahmed MS, Kohler RH, Pittet MJ and Weissleder R: TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat Biomed Eng. 2:578–588. 2018. View Article : Google Scholar : | |
Andersen MN, Etzerodt A, Graversen JH, Holthof LC, Moestrup SK, Hokland M and Møller HJ: STAT3 inhibition specifically in human monocytes and macrophages by CD163-targeted corosolic acid-containing liposomes. Cancer Immunol Immunother. 68:489–502. 2019. View Article : Google Scholar : PubMed/NCBI | |
Candido JB, Morton JP, Bailey P, Campbell AD, Karim SA, Jamieson T, Lapienyte L, Gopinathan A, Clark W, McGhee EJ, et al: CSF1R+ macrophages sustain pancreatic tumor growth through T cell suppression and maintenance of key gene programs that define the squamous subtype. Cell Rep. 23:1448–1460. 2018. View Article : Google Scholar : PubMed/NCBI | |
Larionova I, Cherdyntseva N, Liu T, Patysheva M, Rakina M and Kzhyshkowska J: Interaction of tumor-associated macrophages and cancer chemotherapy. Oncoimmunology. 8:15960042019. View Article : Google Scholar : PubMed/NCBI | |
Xia C, Yin S, To KKW and Fu L: CD39/CD73/A2AR pathway and cancer immunotherapy. Mol Cancer. 22:442023. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Dou X, Zheng Z, Ye C, Lu TX, Liang HL, Wang L, Weichselbaum RR and He C: YTHDF2/m6 A/NF-κB axis controls anti-tumor immunity by regulating intratumoral Tregs. EMBO J. 42:e1131262023. View Article : Google Scholar | |
Wen Z, Liu T, Zhang Y, Yue Q, Meng H, He Y, Yang Y, Li M, Zheng J and Lin W: Salidroside regulates tumor microenvironment of non-small cell lung cancer via Hsp70/Stub1/Foxp3 pathway in Tregs. BMC Cancer. 23:7172023. View Article : Google Scholar : PubMed/NCBI | |
Shiri AM, Zhang T, Bedke T, Zazara DE, Zhao L, Lücke J, Sabihi M, Fazio A, Zhang S, Tauriello DVF, et al: IL-10 dampens antitumor immunity and promotes liver metastasis via PD-L1 induction. J Hepatol. 80:634–644. 2024. View Article : Google Scholar : PubMed/NCBI | |
Hume DA and MacDonald KP: Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling. Blood. 119:1810–1820. 2012. View Article : Google Scholar | |
Lee C, Jeong H, Bae Y, Shin K, Kang S, Kim H, Oh J and Bae H: Targeting of M2-like tumor-associated macrophages with a melittin-based pro-apoptotic peptide. J Immunother Cancer. 7:1472019. View Article : Google Scholar : PubMed/NCBI | |
Huang H, Zepp M, Georges RB, Jarahian M, Kazemi M, Eyol E and Berger MR: The CCR5 antagonist maraviroc causes remission of pancreatic cancer liver metastasis in nude rats based on cell cycle inhibition and apoptosis induction. Cancer Lett. 474:82–93. 2020. View Article : Google Scholar : PubMed/NCBI | |
Aldinucci D and Casagrande N: Inhibition of the CCL5/CCR5 Axis against the Progression of Gastric Cancer. Int J Mol Sci. 19:14772018. View Article : Google Scholar : PubMed/NCBI | |
Hu Q, Wang R, Zhang J, Xue Q and Ding B: Tumor-associated neutrophils upregulate PANoptosis to foster an immunosuppressive microenvironment of non-small cell lung cancer. Cancer Immunol Immunother. 72:4293–4308. 2023. View Article : Google Scholar : PubMed/NCBI | |
Sheng Y, Peng W, Huang Y, Cheng L, Meng Y, Kwantwi LB, Yang J, Xu J, Xiao H, Kzhyshkowska J, et al: Tumor-activated neutrophils promote metastasis in breast cancer via the G-CSF-RLN2-MMP-9 axis. J Leukoc Biol. 113:383–399. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chan YT, Tan HY, Lu Y, Zhang C, Cheng CS, Wu J, Wang N and Feng Y: Pancreatic melatonin enhances anti-tumor immunity in pancreatic adenocarcinoma through regulating tumor-associated neutrophils infiltration and NETosis. Acta Pharm Sin B. 13:1554–1567. 2023. View Article : Google Scholar : PubMed/NCBI | |
Lv B, Wang Y, Ma D, Cheng W, Liu J, Yong T, Chen H and Wang C: Immunotherapy: Reshape the tumor immune microenvironment. Front Immunol. 13:8441422022. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Li S, Li C, Li T and Huang Y: Remodeling tumor microenvironment with natural products to overcome drug resistance. Front Immunol. 13:10519982022. View Article : Google Scholar : PubMed/NCBI | |
Halama N, Zoernig I, Berthel A, Kahlert C, Klupp F, Suarez-Carmona M, Suetterlin T, Brand K, Krauss J, Lasitschka F, et al: Tumoral immune cell exploitation in colorectal cancer metastases can be targeted effectively by Anti-CCR5 therapy in cancer patients. Cancer Cell. 29:587–601. 2016. View Article : Google Scholar : PubMed/NCBI | |
Joyce JA and Fearon DT: T cell exclusion, immune privilege, and the tumor microenvironment. Science. 348:74–80. 2015. View Article : Google Scholar : PubMed/NCBI | |
DeNardo DG, Brennan DJ, Rexhepaj E, Ruffell B, Shiao SL, Madden SF, Gallagher WM, Wadhwani N, Keil SD, Junaid SA, et al: Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov. 1:54–67. 2011. View Article : Google Scholar : PubMed/NCBI | |
Baghdadi M, Wada H, Nakanishi S, Abe H, Han N, Putra WE, Endo D, Watari H, Sakuragi N, Hida Y, et al: Chemotherapy-Induced IL34 enhances immunosuppression by tumor-associated macrophages and mediates survival of Chemoresistant lung cancer cells. Cancer Res. 76:6030–6042. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yang C, He L, He P, Liu Y, Wang W, He Y, Du Y and Gao F: Increased drug resistance in breast cancer by tumor-associated macrophages through IL-10/STAT3/bcl-2 signaling pathway. Med Oncol. 32:3522015. View Article : Google Scholar : PubMed/NCBI | |
Zhang R, Dong M, Tu J, Li F, Deng Q, Xu J, He X, Ding J, Xia J, Sheng D, et al: PMN-MDSCs modulated by CCL20 from cancer cells promoted breast cancer cell stemness through CXCL2-CXCR2 pathway. Signal Transduct Target Ther. 8:972023. View Article : Google Scholar : PubMed/NCBI | |
Mei Y, Zhu Y, Yong KSM, Hanafi ZB, Gong H, Liu Y, Teo HY, Hussain M, Song Y, Chen Q, et al: IL-37 dampens immunosuppressive functions of MDSCs via metabolic reprogramming in the tumor microenvironment. Cell Rep. 43:1138352024. View Article : Google Scholar : PubMed/NCBI | |
Wei C, Yang C, Wang S, Shi D, Zhang C, Lin X and Xiong B: M2 macrophages confer resistance to 5-fluorouracil in colorectal cancer through the activation of CCL22/PI3K/AKT signaling. Onco Targets Ther. 12:3051–3063. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yu S, Li Q, Yu Y, Cui Y, Li W, Liu T and Liu F: Activated HIF1α of tumor cells promotes chemoresistance development via recruiting GDF15-producing tumor-associated macrophages in gastric cancer. Cancer Immunol Immunother. 69:1973–1987. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kullberg M, Martinson H, Mann K and Anchordoquy TJ: Complement C3 mediated targeting of liposomes to granulocytic myeloid derived suppressor cells. Nanomedicine. 11:1355–1363. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ostrand-Rosenberg S, Lamb TJ and Pawelec G: Here, There, and everywhere: Myeloid-derived suppressor cells in immunology. J Immunol. 210:1183–1197. 2023. View Article : Google Scholar : PubMed/NCBI | |
Plesca I, Müller L, Böttcher JP, Medyouf H, Wehner R and Schmitz M: Tumor-associated human dendritic cell subsets: Phenotype, functional orientation, and clinical relevance. Eur J Immunol. 52:1750–1758. 2022. View Article : Google Scholar : PubMed/NCBI | |
Dong Y, Chen J, Chen Y and Liu S: Targeting the STAT3 oncogenic pathway: Cancer immunotherapy and drug repurposing. Biomed Pharmacother. 167:1155132023. View Article : Google Scholar : PubMed/NCBI | |
Anderson NM and Simon MC: The tumor microenvironment. Curr Biol. 30:R921–R925. 2020. View Article : Google Scholar : PubMed/NCBI | |
Arner EN and Rathmell JC: Metabolic programming and immune suppression in the tumor microenvironment. Cancer Cell. 41:421–433. 2023. View Article : Google Scholar : PubMed/NCBI | |
Jing X, Yang F, Shao C, Wei K, Xie M, Shen H and Shu Y: Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer. 18:1572019. View Article : Google Scholar : PubMed/NCBI | |
Wu Q, You L, Nepovimova E, Heger Z, Wu W, Kuca K and Adam V: Hypoxia-inducible factors: Master regulators of hypoxic tumor immune escape. J Hematol Oncol. 15:772022. View Article : Google Scholar : PubMed/NCBI | |
Lian X, Yang K, Li R, Li M, Zuo J, Zheng B, Wang W, Wang P and Zhou S: Immunometabolic rewiring in tumorigenesis and anti-tumor immunotherapy. Mol Cancer. 21:272022. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Zou H, Dang Q, Xu H, Liu L, Zhang Y, Lv J, Li H, Zhou Z and Han X: Biological and pharmacological roles of m6A modifications in cancer drug resistance. Mol Cancer. 21:2202022. View Article : Google Scholar | |
Xu H, Jiao D, Liu A and Wu K: Tumor organoids: Applications in cancer modeling and potentials in precision medicine. J Hematol Oncol. 15:582022. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Dong Y, Li Y, Wang D, Liu S, Wang D, Gao Q, Ji S, Chen X, Lei Q, et al: IL-10 derived from M2 macrophage promotes cancer stemness via JAK1/STAT1/NF-κB/Notch1 pathway in non-small cell lung cancer. Int J Cancer. 145:1099–1110. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yang D, Liu J, Qian H and Zhuang Q: Cancer-associated fibroblasts: From basic science to anticancer therapy. Exp Mol Med. 55:1322–1332. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhao Z, Mei Y, Wang Z and He W: The effect of oxidative phosphorylation on cancer drug resistance. Cancers (Basel). 15:622022. View Article : Google Scholar | |
Zhang H, Yue X, Chen Z, Liu C, Wu W, Zhang N, Liu Z, Yang L, Jiang Q, Cheng Q, et al: Define cancer-associated fibroblasts (CAFs) in the tumor microenvironment: New opportunities in cancer immunotherapy and advances in clinical trials. Mol Cancer. 22:1592023. View Article : Google Scholar : PubMed/NCBI | |
Dey P, Kimmelman AC and DePinho RA: Metabolic Codependencies in the tumor microenvironment. Cancer Discov. 11:1067–1081. 2021. View Article : Google Scholar : PubMed/NCBI | |
Seebacher NA, Krchniakova M, Stacy AE, Skoda J and Jansson PJ: Tumour microenvironment stress promotes the development of drug resistance. Antioxidants (Basel). 10:18012021. View Article : Google Scholar : PubMed/NCBI | |
Shigeta K, Hasegawa M, Hishiki T, Naito Y, Baba Y, Mikami S, Matsumoto K, Mizuno R, Miyajima A, Kikuchi E, et al: IDH2 stabilizes HIF-1α-induced metabolic reprogramming and promotes chemoresistance in urothelial cancer. EMBO J. 42:e1106202023. View Article : Google Scholar | |
Li YQ, Sun FZ, Li CX, Mo HN, Zhou YT, Lv D, Zhai JT, Qian HL and Ma F: RARRES2 regulates lipid metabolic reprogramming to mediate the development of brain metastasis in triple negative breast cancer. Mil Med Res. 10:342023.PubMed/NCBI | |
Gu J, Zhou J, Chen Q, Xu X, Gao J, Li X, Shao Q, Zhou B, Zhou H, Wei S, et al: Tumor metabolite lactate promotes tumorigenesis by modulating MOESIN lactylation and enhancing TGF-β signaling in regulatory T cells. Cell Rep. 39:1109862022. View Article : Google Scholar | |
Linares JF, Cid-Diaz T, Duran A, Osrodek M, Martinez-Ordoñez A, Reina-Campos M, Kuo HH, Elemento O, Martin ML, Cordes T, et al: The lactate-NAD+ axis activates cancer-associated fibroblasts by downregulating p62. Cell Rep. 39:1107922022. View Article : Google Scholar : | |
Mazurkiewicz J, Simiczyjew A, Dratkiewicz E, Pietraszek-Gremplewicz K, Majkowski M, Kot M, Ziętek M, Matkowski R and Nowak D: Melanoma cells with diverse invasive potential differentially induce the activation of normal human fibroblasts. Cell Commun Signal. 20:632022. View Article : Google Scholar : PubMed/NCBI | |
Ren J, Ding L, Zhang D, Shi G, Xu Q, Shen S, Wang Y, Wang T and Hou Y: Carcinoma-associated fibroblasts promote the stemness and chemoresistance of colorectal cancer by transferring exosomal lncRNA H19. Theranostics. 8:3932–3948. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li W, Zhou C, Yu L, Hou Z, Liu H, Kong L, Xu Y, He J, Lan J, Ou Q, et al: Tumor-derived lactate promotes resistance to bevacizumab treatment by facilitating autophagy enhancer protein RUBCNL expression through histone H3 lysine 18 lactylation (H3K18la) in colorectal cancer. Autophagy. 20:114–130. 2024. View Article : Google Scholar : | |
Wang L, Li S, Luo H, Lu Q and Yu S: PCSK9 promotes the progression and metastasis of colon cancer cells through regulation of EMT and PI3K/AKT signaling in tumor cells and phenotypic polarization of macrophages. J Exp Clin Cancer Res. 41:3032022. View Article : Google Scholar : PubMed/NCBI | |
Ivey JW, Bonakdar M, Kanitkar A, Davalos RV and Verbridge SS: Improving cancer therapies by targeting the physical and chemical hallmarks of the tumor microenvironment. Cancer Lett. 380:330–339. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wu P, Gao W, Su M, Nice EC, Zhang W, Lin J and Xie N: Adaptive mechanisms of tumor therapy resistance driven by tumor microenvironment. Front Cell Dev Biol. 9:6414692021. View Article : Google Scholar : PubMed/NCBI | |
Cheng J, Yan J, Liu Y, Shi J, Wang H, Zhou H, Zhou Y, Zhang T, Zhao L, Meng X, et al: Cancer-cell-derived fumarate suppresses the anti-tumor capacity of CD8+ T cells in the tumor microenvironment. Cell Metab. 35:961–978.e10. 2023. View Article : Google Scholar | |
Rahmanian M, Seyfoori A, Ghasemi M, Shamsi M, Kolahchi AR, Modarres HP, Sanati-Nezhad A and Majidzadeh-A K: In-vitro tumor microenvironment models containing physical and biological barriers for modelling multidrug resistance mechanisms and multidrug delivery strategies. J Control Release. 334:164–177. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tajaldini M, Poorkhani A, Amiriani T, Amiriani A, Javid H, Aref P, Ahmadi F, Sadani S and Khori V: Strategy of targeting the tumor microenvironment via inhibition of fibroblast/fibrosis remodeling new era to cancer chemo-immunotherapy resistance. Eur J Pharmacol. 957:1759912023. View Article : Google Scholar : PubMed/NCBI | |
Lopez-Crapez E, Costa L, Tosato G, Ramos J, Mazard T, Guiramand J, Thierry A, Colinge J, Milhiet PE and Bénistant C: Mechanical signatures of human colon cancers. Sci Rep. 12:124752022. View Article : Google Scholar : PubMed/NCBI | |
Zhao Q, Chen J, Zhang Z, Xiao C, Zeng H, Xu C, Yang X and Li Z: Modulating tumor mechanics with nanomedicine for cancer therapy. Biomater Sci. 11:4471–4489. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zanotelli MR and Reinhart-King CA: Mechanical forces in tumor angiogenesis. Adv Exp Med Biol. 1092:91–112. 2018. View Article : Google Scholar : PubMed/NCBI | |
Nicolas-Boluda A, Silva AKA, Fournel S and Gazeau F: Physical oncology: New targets for nanomedicine. Biomaterials. 150:87–99. 2018. View Article : Google Scholar | |
Arora I, Li S, Crowley MR, Li Y and Tollefsbol TO: Genome-wide analysis on transcriptome and methylome in prevention of mammary tumor induced by early life combined botanicals. Cells. 12:142022. View Article : Google Scholar | |
Wang EJ, Chen IH, Kuo BY, Yu CC, Lai MT, Lin JT, Lin LY, Chen CM, Hwang T and Sheu JJ: Alterations of cytoskeleton networks in cell fate determination and cancer development. Biomolecules. 12:18622022. View Article : Google Scholar : PubMed/NCBI | |
Geiger B, Bershadsky A, Pankov R and Yamada KM: Transmembrane crosstalk between the extracellular matrix-cytoskeleton crosstalk. Nat Rev Mol Cell Biol. 2:793–805. 2001. View Article : Google Scholar : PubMed/NCBI | |
Park JS, Burckhardt CJ, Lazcano R, Solis LM, Isogai T, Li L, Chen CS, Gao B, Minna JD, Bachoo R, et al: Mechanical regulation of glycolysis via cytoskeleton architecture. Nature. 578:621–626. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yu S, Li Q, Wang Y, Cui Y, Yu Y, Li W, Liu F and Liu T: Tumor-derived LIF promotes chemoresistance via activating tumor-associated macrophages in gastric cancers. Exp Cell Res. 406:1127342021. View Article : Google Scholar : PubMed/NCBI | |
Li J, Wang S, Wang N, Zheng Y, Yang B, Wang X, Zhang J, Pan B and Wang Z: Aiduqing formula inhibits breast cancer metastasis by suppressing TAM/CXCL1-induced Treg differentiation and infiltration. Cell Commun Signal. 19:892021. View Article : Google Scholar : PubMed/NCBI | |
Gao D, Cazares LH and Fish EN: CCL5-CCR5 interactions modulate metabolic events during tumor onset to promote tumorigenesis. BMC Cancer. 17:8342017. View Article : Google Scholar : PubMed/NCBI | |
Yuan MX, Ji CY, Gao HQ, Sheng XY, Xie WX and Yin Q: lncRNA TUG1 regulates angiogenesis via the miR-204-5p/JAK2/STAT3 axis in hepatoblastoma. Mol Med Rep. 24:5532021. View Article : Google Scholar | |
Nywening TM, Belt BA, Cullinan DR, Panni RZ, Han BJ, Sanford DE, Jacobs RC, Ye J, Patel AA, Gillanders WE, et al: Targeting both tumour-associated CXCR2+ neutrophils and CCR2+ macrophages disrupts myeloid recruitment and improves chemotherapeutic responses in pancreatic ductal adenocarcinoma. Gut. 67:1112–1123. 2018. View Article : Google Scholar | |
Inoue C, Miki Y, Saito R, Hata S, Abe J, Sato I, Okada Y and Sasano H: PD-L1 induction by cancer-associated fibroblast-derived factors in lung adenocarcinoma cells. Cancers (Basel). 11:12572019. View Article : Google Scholar : PubMed/NCBI | |
Harryvan TJ, Visser M, de Bruin L, Plug L, Griffioen L, Mulder A, van Veelen PA, van der Heden van Noort GJ, Jongsma ML, Meeuwsen MH, et al: Enhanced antigen cross-presentation in human colorectal cancer-associated fibroblasts through upregulation of the lysosomal protease cathepsin S. J Immunother Cancer. 10:e0035912022. View Article : Google Scholar : PubMed/NCBI | |
Souza-Fonseca-Guimaraes F, Rossi GR, Dagley LF, Foroutan M, McCulloch TR, Yousef J, Park HY, Gunter JH, Beavis PA, Lin CY, et al: TGFβ and CIS inhibition overcomes NK-cell suppression to restore antitumor immunity. Cancer Immunol Res. 10:1047–1054. 2022. View Article : Google Scholar : PubMed/NCBI | |
Francescone R, Barbosa Vendramini-Costa D, Franco-Barraza J, Wagner J, Muir A, Lau AN, Gabitova L, Pazina T, Gupta S, Luong T, et al: Netrin G1 promotes pancreatic tumorigenesis through cancer-associated fibroblast-driven nutritional support and immunosuppression. Cancer Discov. 11:446–479. 2021. View Article : Google Scholar | |
Huang KF, Zhang GD, Huang YQ and Diao Y: Wogonin induces apoptosis and down-regulates survivin in human breast cancer MCF-7 cells by modulating PI3K-AKT pathway. Int Immunopharmacol. 12:334–41. 2012. View Article : Google Scholar | |
Ali SR, Jordan M, Nagarajan P and Amit M: Nerve density and neuronal biomarkers in cancer. Cancers (Basel). 14:48172022. View Article : Google Scholar : PubMed/NCBI | |
Mhaidly R and Mechta-Grigoriou F: Role of cancer-associated fibroblast subpopulations in immune infiltration, as a new means of treatment in cancer. Immunol Rev. 302:259–272. 2021. View Article : Google Scholar : PubMed/NCBI | |
Timosenko E, Hadjinicolaou AV and Cerundolo V: Modulation of cancer-specific immune responses by amino acid degrading enzymes. Immunotherapy. 9:83–97. 2017. View Article : Google Scholar | |
Stockmann C, Doedens A, Weidemann A, Zhang N, Takeda N, Greenberg JI, Cheresh DA and Johnson RS: Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis. Nature. 456:814–818. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Liu G, Li Y and Pan Y: Metabolic reprogramming induces macrophage polarization in the tumor microenvironment. Front Immunol. 13:8400292022. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Zhang H, Tang F, Wang Y, Mo Z, Lei X and Tang S: Doxorubicin resistance mediated by cytoplasmic macrophage colony-stimulating factor is associated with switch from apoptosis to autophagic cell death in MCF-7 breast cancer cells. Exp Biol Med (Maywood). 241:2086–2093. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mehta AK, Kadel S, Townsend MG, Oliwa M and Guerriero JL: Macrophage biology and mechanisms of immune suppression in breast cancer. Front Immunol. 12:6437712021. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Weng Y, Zhong L, Chong H, Chen S, Sun Y, Li W and Shi Q: VEGFR3 inhibition chemosensitizes lung adenocarcinoma A549 cells in the tumor-associated macrophage microenvironment through upregulation of p53 and PTEN. Oncol Rep. 38:2761–2773. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dalton HJ, Pradeep S, McGuire M, Hailemichael Y, Ma S, Lyons Y, Armaiz-Pena GN, Previs RA, Hansen JM, Rupaimoole R, et al: Macrophages facilitate resistance to Anti-VEGF therapy by Altered VEGFR expression. Clin Cancer Res. 23:7034–7046. 2017. View Article : Google Scholar : PubMed/NCBI | |
Vahidian F, Duijf PHG, Safarzadeh E, Derakhshani A, Baghbanzadeh A and Baradaran B: Interactions between cancer stem cells, immune system and some environmental components: Friends or foes? Immunol Lett. 208:19–29. 2019. View Article : Google Scholar : PubMed/NCBI | |
Pu Y and Ji Q: Tumor-associated macrophages regulate PD-1/PD-L1 immunosuppression. Front Immunol. 13:8745892022. View Article : Google Scholar : PubMed/NCBI | |
Binnewies M, Pollack JL, Rudolph J, Dash S, Abushawish M, Lee T, Jahchan NS, Canaday P, Lu E, Norng M, et al: Targeting TREM2 on tumor-associated macrophages enhances immunotherapy. Cell Rep. 37:1098442021. View Article : Google Scholar : PubMed/NCBI | |
Chen D, Zhang X, Li Z and Zhu B: Metabolic regulatory crosstalk between tumor microenvironment and tumor-associated macrophages. Theranostics. 11:1016–1030. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cassetta L and Pollard JW: A timeline of tumour-associated macrophage biology. Nat Rev Cancer. 23:238–257. 2023. View Article : Google Scholar : PubMed/NCBI | |
Pan Y, Yu Y, Wang X and Zhang T: Tumor-associated macrophages in tumor immunity. Front Immunol. 11:5830842020. View Article : Google Scholar : PubMed/NCBI | |
Gao J, Liang Y and Wang L: Shaping polarization of tumor-associated macrophages in cancer immunotherapy. Front Immunol. 13:8887132022. View Article : Google Scholar : PubMed/NCBI | |
Li C, Xu X, Wei S, Jiang P, Xue L and Wang J: Tumor-associated macrophages: Potential therapeutic strategies and future prospects in cancer. J Immunother Cancer. 9:e0013412021. View Article : Google Scholar : PubMed/NCBI | |
Basak U, Sarkar T, Mukherjee S, Chakraborty S, Dutta A, Dutta S, Nayak D, Kaushik S, Das T and Sa G: Tumor-associated macrophages: An effective player of the tumor microenvironment. Front Immunol. 14:12952572023. View Article : Google Scholar : PubMed/NCBI | |
Munir MT, Kay MK, Kang MH, Rahman MM, Al-Harrasi A, Choudhury M, Moustaid-Moussa N, Hussain F and Rahman SM: Tumor-associated macrophages as multifaceted regulators of breast tumor growth. Int J Mol Sci. 22:65262021. View Article : Google Scholar : PubMed/NCBI | |
Céspedes MV, Guillén MJ, López-Casas PP, Sarno F, Gallardo A, Álamo P, Cuevas C, Hidalgo M, Galmarini CM, Allavena P, et al: Lurbinectedin induces depletion of tumor-associated macrophages, an essential component of its in vivo synergism with gemcitabine, in pancreatic adenocarcinoma mouse models. Dis Model Mech. 9:1461–1471. 2016.PubMed/NCBI | |
Ayoub M, Shinde-Jadhav S, Mansure JJ, Alvarez F, Connell T, Seuntjens J, Piccirillo CA and Kassouf W: The immune mediated role of extracellular HMGB1 in a heterotopic model of bladder cancer radioresistance. Sci Rep. 9:63482019. View Article : Google Scholar : PubMed/NCBI | |
Hong L, Wang X, Zheng L, Wang S and Zhu G: Tumor-associated macrophages promote cisplatin resistance in ovarian cancer cells by enhancing WTAP-mediated N6-methyladenosine RNA methylation via the CXCL16/CXCR6 axis. Cancer Chemother Pharmacol. 92:71–81. 2023. View Article : Google Scholar : PubMed/NCBI | |
Kobayashi H, Gieniec KA, Lannagan TRM, Wang T, Asai N, Mizutani Y, Iida T, Ando R, Thomas EM, Sakai A, et al: The origin and contribution of cancer-associated fibroblasts in colorectal carcinogenesis. Gastroenterology. 162:890–906. 2022. View Article : Google Scholar | |
Hosomi S, Grootjans J, Huang YH, Kaser A and Blumberg RS: New insights into the regulation of natural-killer group 2 Member D (NKG2D) and NKG2D-ligands: Endoplasmic reticulum stress and CEA-related cell adhesion molecule 1. Front Immunol. 9:13242018. View Article : Google Scholar : PubMed/NCBI | |
Comito G, Iscaro A, Bacci M, Morandi A, Ippolito L, Parri M, Montagnani I, Raspollini MR, Serni S, Simeoni L, et al: Lactate modulates CD4+ T-cell polarization and induces an immunosuppressive environment, which sustains prostate carcinoma progression via TLR8/miR21 axis. Oncogene. 38:3681–3695. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liang L, Li W, Li X, Jin X, Liao Q, Li Y and Zhou Y: 'Reverse Warburg effect' of cancer associated fibroblasts (Review). Int J Oncol. 60:672022. View Article : Google Scholar | |
Zhao Q, Huang L, Qin G, Qiao Y, Ren F, Shen C, Wang S, Liu S, Lian J, Wang D, et al: Cancer-associated fibroblasts induce monocytic myeloid-derived suppressor cell generation via IL-6/exosomal miR-21-activated STAT3 signaling to promote cisplatin resistance in esophageal squamous cell carcinoma. Cancer Lett. 518:35–48. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xiang H, Ramil CP, Hai J, Zhang C, Wang H, Watkins AA, Afshar R, Georgiev P, Sze MA, Song XS, et al: Cancer-associated fibroblasts promote immunosuppression by inducing ROS-generating monocytic MDSCs in lung squamous cell carcinoma. Cancer Immunol Res. 8:436–450. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lin SC, Liao YC, Chen PM, Yang YY, Wang YH, Tung SL, Chuang CM, Sung YW, Jang TH, Chuang SE, et al: Periostin promotes ovarian cancer metastasis by enhancing M2 macrophages and cancer-associated fibroblasts via integrin-mediated NF-κB and TGF-β2 signaling. J Biomed Sci. 29:1092022. View Article : Google Scholar | |
Chen X, Zhang W, Yang W, Zhou M and Liu F: Acquired resistance for immune checkpoint inhibitors in cancer immunotherapy: Challenges and prospects. Aging (Albany NY). 14:1048–1064. 2022. View Article : Google Scholar : PubMed/NCBI | |
Baik AH: Hypoxia signaling and oxygen metabolism in cardio-oncology. J Mol Cell Cardiol. 165:64–75. 2022. View Article : Google Scholar : PubMed/NCBI | |
Dzobo K, Senthebane DA and Dandara C: The tumor microenvironment in tumorigenesis and therapy resistance revisited. Cancers (Basel). 15:3762023. View Article : Google Scholar : PubMed/NCBI | |
Harris B, Saleem S, Cook N and Searle E: Targeting hypoxia in solid and haematological malignancies. J Exp Clin Cancer Res. 41:3182022. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Deng T, Liu R, Ning T, Yang H, Liu D, Zhang Q, Lin D, Ge S, Bai M, et al: CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer. Mol Cancer. 19:432020. View Article : Google Scholar : PubMed/NCBI | |
Hu JL, Wang W, Lan XL, Zeng ZC, Liang YS, Yan YR, Song FY, Wang FF, Zhu XH, Liao WJ, et al: CAFs secreted exosomes promote metastasis and chemotherapy resistance by enhancing cell stemness and epithelial-mesenchymal transition in colorectal cancer. Mol Cancer. 18:912019. View Article : Google Scholar : PubMed/NCBI | |
Liu T, Han C, Fang P, Ma Z, Wang X, Chen H, Wang S, Meng F, Wang C, Zhang E, et al: Cancer-associated fibroblast-specific lncRNA LINC01614 enhances glutamine uptake in lung adenocarcinoma. J Hematol Oncol. 15:1412022. View Article : Google Scholar : PubMed/NCBI | |
Patil N, Allgayer H and Leupold JH: MicroRNAs in the tumor microenvironment. Adv Exp Med Biol. 1277:1–31. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhu S, Mao J, Zhang X, Wang P, Zhou Y, Tong J, Peng H, Yang B and Fu Q: CAF-derived exosomal lncRNA FAL1 promotes chemoresistance to oxaliplatin by regulating autophagy in colorectal cancer. Dig Liver Dis. 56:330–342. 2024. View Article : Google Scholar | |
Meng Q, Deng Y, Lu Y, Wu C and Tang S: Tumor-derived miRNAs as tumor microenvironment regulators for synergistic therapeutic options. J Cancer Res Clin Oncol. 149:423–439. 2023. View Article : Google Scholar | |
Zhang P, Wang Q, Lu W, Zhang F, Wu D and Sun J: NNT-AS1 in CAFs-derived exosomes promotes progression and glucose metabolism through miR-889-3p/HIF-1α in pancreatic adenocarcinoma. Sci Rep. 14:69792024. View Article : Google Scholar | |
Wang WZ, Cao X, Bian L, Gao Y, Yu M, Li YT, Xu JG, Wang YH, Yang HF, You DY, et al: Analysis of mRNA-miRNA interaction network reveals the role of CAFs-derived exosomes in the immune regulation of oral squamous cell carcinoma. BMC Cancer. 23:5912023. View Article : Google Scholar : PubMed/NCBI | |
Miaomiao S, Xiaoqian W, Yuwei S, Chao C, Chenbo Y, Yinghao L, Yichen H, Jiao S and Kuisheng C: Cancer-associated fibroblast-derived exosome microRNA-21 promotes angiogenesis in multiple myeloma. Sci Rep. 13:96712023. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Shang J, Yang Q, Dai Z, Liang Y, Lai C, Feng T, Zhong D, Zou H, Sun L, et al: Exosomes derived from human adipose mesenchymal stem cells ameliorate hepatic fibrosis by inhibiting PI3K/Akt/mTOR pathway and remodeling choline metabolism. J Nanobiotechnology. 21:292023. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Yin C, Wei C, Xia S, Qiao Z, Zhang XW, Yu B, Zhou J and Wang R: Exosomal miR-625-3p secreted by cancer-associated fibroblasts in colorectal cancer promotes EMT and chemotherapeutic resistance by blocking the CELF2/WWOX pathway. Pharmacol Res. 186:1065342022. View Article : Google Scholar : PubMed/NCBI | |
Huang H, Wang Z, Zhang Y, Pradhan RN, Ganguly D, Chandra R, Murimwa G, Wright S, Gu X, Maddipati R, et al: Mesothelial cell-derived antigen-presenting cancer-associated fibroblasts induce expansion of regulatory T cells in pancreatic cancer. Cancer Cell. 40:656–673.e7. 2022. View Article : Google Scholar : | |
Cheng Y, Li H, Deng Y, Tai Y, Zeng K, Zhang Y, Liu W, Zhang Q and Yang Y: Cancer-associated fibroblasts induce PDL1+ neutrophils through the IL6-STAT3 pathway that foster immune suppression in hepatocellular carcinoma. Cell Death Dis. 9:4222018. View Article : Google Scholar : PubMed/NCBI | |
Song M, He J, Pan QZ, Yang J, Zhao J, Zhang YJ, Huang Y, Tang Y, Wang Q, He J, et al: Cancer-associated fibroblast-mediated cellular crosstalk supports hepatocellular carcinoma progression. Hepatology. 73:1717–1735. 2021. View Article : Google Scholar : PubMed/NCBI | |
Najafi M, Farhood B and Mortezaee K: Extracellular matrix (ECM) stiffness and degradation as cancer drivers. J Cell Biochem. 120:2782–2790. 2019. View Article : Google Scholar | |
Henke E, Nandigama R and Ergün S: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Front Mol Biosci. 6:1602020. View Article : Google Scholar : PubMed/NCBI | |
Timperi E, Gueguen P, Molgora M, Magagna I, Kieffer Y, Lopez-Lastra S, Sirven P, Baudrin LG, Baulande S, Nicolas A, et al: Lipid-associated macrophages are induced by cancer-associated fibroblasts and mediate immune suppression in breast cancer. Cancer Res. 82:3291–3306. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li D, Xia L, Huang P, Wang Z, Guo Q, Huang C, Leng W and Qin S: Cancer-associated fibroblast-secreted IGFBP7 promotes gastric cancer by enhancing tumor associated macrophage infiltration via FGF2/FGFR1/PI3K/AKT axis. Cell Death Discov. 9:172023. View Article : Google Scholar : PubMed/NCBI | |
Ueshima E, Fujimori M, Kodama H, Felsen D, Chen J, Durack JC, Solomon SB, Coleman JA and Srimathveeravalli G: Macrophage-secreted TGF-β1 contributes to fibroblast activation and ureteral stricture after ablation injury. Am J Physiol Renal Physiol. 317:F52–F64. 2019. View Article : Google Scholar | |
Deng Y, Cheng J, Fu B, Liu W, Chen G, Zhang Q and Yang Y: Hepatic carcinoma-associated fibroblasts enhance immune suppression by facilitating the generation of myeloid-derived suppressor cells. Oncogene. 36:1090–1101. 2017. View Article : Google Scholar | |
Zhou Y, Tang W, Zhuo H, Zhu D, Rong D, Sun J and Song J: Cancer-associated fibroblast exosomes promote chemoresistance to cisplatin in hepatocellular carcinoma through circZFR targeting signal transducers and activators of transcription (STAT3)/nuclear factor-kappa B (NF-κB) pathway. Bioengineered. 13:4786–4797. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, McAndrews KM and Kalluri R: Clinical and therapeutic relevance of cancer-associated fibroblasts. Nat Rev Clin Oncol. 18:792–804. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Hu M, Wang S, Wang Q, Lu H, Wang F, Wang L, Peng D and Chen W: Nano-delivery of salvianolic acid B induces the quiescence of tumor-associated fibroblasts via interfering with TGF-β1/Smad signaling to facilitate chemo- and immunotherapy in desmoplastic tumor. Int J Pharm. 623:1219532022. View Article : Google Scholar | |
Xiang H, Ramil CP, Hai J, Zhang C, Wang H, Watkins AA, Afshar R, Georgiev P, Sze MA, Song XS, et al: Cancer-associated fibroblasts promote immunosuppression by inducing ROS-generating monocytic MDSCs in lung squamous cell carcinoma. Cancer Immunol Res. 8:436–450. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bai XF, Liu J, Li O, Zheng P and Liu Y: Antigenic drift as a mechanism for tumor evasion of destruction by cytolytic T lymphocytes. J Clin Invest. 111:1487–1496. 2003. View Article : Google Scholar : PubMed/NCBI | |
Cheng C, Qu QX, Shen Y, Lv YT, Zhu YB, Zhang XG and Huang JA: Overexpression of B7-H4 in tumor infiltrated dendritic cells. J Immunoassay Immunochem. 32:353–364. 2011. View Article : Google Scholar : PubMed/NCBI | |
Blank C, Kuball J, Voelkl S, Wiendl H, Becker B, Walter B, Majdic O, Gajewski TF, Theobald M, Andreesen R, et al: Blockade of PD-L1 (B7-H1) augments human tumor-specific T cell responses in vitro. Int J Cancer. 119:317–327. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zheng Y, Tang L, Mabardi L, Kumari S and Irvine DJ: Enhancing adoptive cell therapy of cancer through targeted delivery of small-molecule immunomodulators to internalizing or noninternalizing receptors. ACS Nano. 11:3089–3100. 2017. View Article : Google Scholar : PubMed/NCBI | |
Farhood B, Najafi M and Mortezaee K: CD8+ cytotoxic T lymphocytes in cancer immunotherapy: A review. J Cell Physiol. 234:8509–8521. 2019. View Article : Google Scholar | |
Inoue T, Adachi K, Kawana K, Taguchi A, Nagamatsu T, Fujimoto A, Tomio K, Yamashita A, Eguchi S, Nishida H, et al: Cancer-associated fibroblast suppresses killing activity of natural killer cells through downregulation of poliovirus receptor (PVR/CD155), a ligand of activating NK receptor. Int J Oncol. 49:1297–1304. 2016. View Article : Google Scholar : PubMed/NCBI | |
Van den Eynde A, Gehrcken L, Verhezen T, Lau HW, Hermans C, Lambrechts H, Flieswasser T, Quatannens D, Roex G, Zwaenepoel K, et al: IL-15-secreting CAR natural killer cells directed toward the pan-cancer target CD70 eliminate both cancer cells and cancer-associated fibroblasts. J Hematol Oncol. 17:82024. View Article : Google Scholar : PubMed/NCBI | |
Wu F, Yang J, Liu J, Wang Y, Mu J, Zeng Q, Deng S and Zhou H: Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer. Signal Transduct Target Ther. 6:2182021. View Article : Google Scholar : PubMed/NCBI | |
Yu W, Lei Q, Yang L, Qin G, Liu S, Wang D, Ping Y and Zhang Y: Contradictory roles of lipid metabolism in immune response within the tumor microenvironment. J Hematol Oncol. 14:1872021. View Article : Google Scholar : PubMed/NCBI | |
Kennel KB, Bozlar M, De Valk AF and Greten FR: Cancer-associated fibroblasts in inflammation and antitumor immunity. Clin Cancer Res. 29:1009–1016. 2023. View Article : Google Scholar : | |
Li X, Sun Z, Peng G, Xiao Y, Guo J, Wu B, Li X, Zhou W, Li J, Li Z, et al: Single-cell RNA sequencing reveals a pro-invasive cancer-associated fibroblast subgroup associated with poor clinical outcomes in patients with gastric cancer. Theranostics. 12:620–638. 2022. View Article : Google Scholar : PubMed/NCBI | |
Galbo PM Jr, Zang X and Zheng D: Molecular features of Cancer-associated fibroblast subtypes and their implication on cancer pathogenesis, prognosis, and immunotherapy resistance. Clin Cancer Res. 27:2636–2647. 2021. View Article : Google Scholar : PubMed/NCBI | |
Glabman RA, Choyke PL and Sato N: Cancer-associated fibroblasts: Tumorigenicity and targeting for cancer therapy. Cancers (Basel). 14:39062022. View Article : Google Scholar : PubMed/NCBI | |
Bhattacharjee S, Hamberger F, Ravichandra A, Miller M, Nair A, Affo S, Filliol A, Chin L, Savage TM, Yin D, et al: Tumor restriction by type I collagen opposes tumor-promoting effects of cancer-associated fibroblasts. J Clin Invest. 131:e1469872021. View Article : Google Scholar : PubMed/NCBI | |
Dong D, Yao Y, Song J, Sun L and Zhang G: Cancer-associated fibroblasts regulate bladder cancer invasion and metabolic phenotypes through autophagy. Dis Markers. 2021:66452202021. View Article : Google Scholar : PubMed/NCBI | |
Strickaert A, Corbet C, Spinette SA, Craciun L, Dom G, Andry G, Larsimont D, Wattiez R, Dumont JE, Feron O, et al: Reprogramming of energy metabolism: Increased expression and roles of pyruvate carboxylase in papillary thyroid cancer. Thyroid. 29:845–857. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhu Y, Li X, Wang L, Hong X and Yang J: Metabolic reprogramming and crosstalk of cancer-related fibroblasts and immune cells in the tumor microenvironment. Front Endocrinol (Lausanne). 13:9882952022. View Article : Google Scholar : PubMed/NCBI | |
Xia H, Green DR and Zou W: Autophagy in tumour immunity and therapy. Nat Rev Cancer. 21:281–297. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Liu S, Luo H, Chen C, Zhang X, He L and Tu G: GPR30-mediated HMGB1 upregulation in CAFs induces autophagy and tamoxifen resistance in ERα-positive breast cancer cells. Aging (Albany NY). 13:16178–16197. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zeng Z, Hu P, Tang X, Zhang H, Du Y, Wen S and Liu M: Dectection and analysis of miRNA expression in breast cancer-associated fibroblasts. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 30:1071–1075. 2014.In Chinese. PubMed/NCBI | |
Izumi D, Toden S, Ureta E, Ishimoto T, Baba H and Goel A: TIAM1 promotes chemoresistance and tumor invasiveness in colorectal cancer. Cell Death Dis. 10:2672019. View Article : Google Scholar : PubMed/NCBI | |
Nywening TM, Wang-Gillam A, Sanford DE, Belt BA, Panni RZ, Cusworth BM, Toriola AT, Nieman RK, Worley LA, Yano M, et al: Targeting tumour-associated macrophages with CCR2 inhibition in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer: A single-centre, open-label, dose-finding, non-randomised, phase 1b trial. Lancet Oncol. 17:651–662. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ma J, Song X, Xu X and Mou Y: Cancer-associated fibroblasts promote the Chemo-resistance in gastric cancer through secreting IL-11 targeting JAK/STAT3/Bcl2 pathway. Cancer Res Treat. 51:194–210. 2019. View Article : Google Scholar | |
Wei L, Lin Q, Lu Y, Li G, Huang L, Fu Z, Chen R and Zhou Q: Cancer-associated fibroblasts-mediated ATF4 expression promotes malignancy and gemcitabine resistance in pancreatic cancer via the TGF-β1/SMAD2/3 pathway and ABCC1 transactivation. Cell Death Dis. 12:3342021. View Article : Google Scholar | |
Li Z, Chan K, Qi Y, Lu L, Ning F, Wu M, Wang H, Wang Y, Cai S and Du J: Participation of CCL1 in Snail-positive fibroblasts in colorectal cancer contribute to 5-Fluorouracil/Paclitaxel Chemoresistance. Cancer Res Treat. 50:894–907. 2018. View Article : Google Scholar : | |
Saw PE, Chen J and Song E: Targeting CAFs to overcome anticancer therapeutic resistance. Trends Cancer. 8:527–555. 2022. View Article : Google Scholar : PubMed/NCBI | |
Singh SK, Mishra MK, Eltoum IA, Bae S, Lillard JW Jr and Singh R: CCR5/CCL5 axis interaction promotes migratory and invasiveness of pancreatic cancer cells. Sci Rep. 8:13232018. View Article : Google Scholar : PubMed/NCBI | |
Lee C, Lee H, Cho H, Kim S, Choi I, Hwang YS, Jeong H, Jang H, Pak S, Hwang DS, et al: Combination of anti-PD-L1 antibody with peptide MEL-dKLA targeting M2 tumor-associated macrophages suppresses breast cancer metastasis. Cancer Commun (Lond). 42:345–349. 2022. View Article : Google Scholar : PubMed/NCBI | |
Siewe N and Friedman A: Cancer therapy with immune checkpoint inhibitor and CSF-1 blockade: A mathematical model. J Theor Biol. 556:1112972023. View Article : Google Scholar | |
Rodell CB, Ahmed MS, Garris CS, Pittet MJ and Weissleder R: Development of Adamantane-conjugated TLR7/8 agonists for supramolecular delivery and cancer immunotherapy. Theranostics. 9:8426–8436. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen YJ, Li GN, Li XJ, Wei LX, Fu MJ, Cheng ZL, Yang Z, Zhu GQ, Wang XD, Zhang C, et al: Targeting IRG1 reverses the immunosuppressive function of tumor-associated macrophages and enhances cancer immunotherapy. Sci Adv. 9:eadg06542023. View Article : Google Scholar : PubMed/NCBI | |
Yuan D, Hu J, Ju X, Putz EM, Zheng S, Koda S, Sun G, Deng X, Xu Z, Nie W, et al: NMDAR antagonists suppress tumor progression by regulating tumor-associated macrophages. Proc Natl Acad Sci USA. 120:e23021261202023. View Article : Google Scholar : PubMed/NCBI | |
Li M, Yang Y, Xiong L, Jiang P, Wang J and Li C: Metabolism, metabolites, and macrophages in cancer. J Hematol Oncol. 16:802023. View Article : Google Scholar : PubMed/NCBI | |
Khalaf K, Hana D, Chou JT, Singh C, Mackiewicz A and Kaczmarek M: Aspects of the tumor microenvironment involved in immune resistance and drug resistance. Front Immunol. 12:6563642021. View Article : Google Scholar : PubMed/NCBI | |
Begum A, McMillan RH, Chang YT, Penchev VR, Rajeshkumar NV, Maitra A, Goggins MG, Eshelman JR, Wolfgang CL, Rasheed ZA, et al: Direct interactions with cancer-associated fibroblasts lead to enhanced pancreatic cancer stem cell function. Pancreas. 48:329–334. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ko YC, Lai TY, Hsu SC, Wang FH, Su SY, Chen YL, Tsai ML, Wu CC, Hsiao JR, Chang JY, et al: Index of Cancer-associated fibroblasts is superior to the epithelial-mesenchymal transition score in prognosis prediction. Cancers (Basel). 12:17182020. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Xun Z, Ma K, Liang S, Li X, Zhou S, Sun L, Liu Y, Du Y, Guo X, et al: Identification of a tumour immune barrier in the HCC microenvironment that determines the efficacy of immunotherapy. J Hepatol. 78:770–782. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yamamoto Y, Kasashima H, Fukui Y, Tsujio G, Yashiro M and Maeda K: The heterogeneity of cancer-associated fibroblast subpopulations: Their origins, biomarkers, and roles in the tumor microenvironment. Cancer Sci. 114:16–24. 2023. View Article : Google Scholar | |
Qu X, Liu B, Wang L, Liu L, Zhao W, Liu C, Ding J, Zhao S, Xu B, Yu H, et al: Loss of cancer-associated fibroblast-derived exosomal DACT3-AS1 promotes malignant transformation and ferroptosis-mediated oxaliplatin resistance in gastric cancer. Drug Resist Updat. 68:1009362023. View Article : Google Scholar : PubMed/NCBI | |
Loeffler M, Krüger JA, Niethammer AG and Reisfeld RA: Targeting tumor-associated fibroblasts improves cancer chemotherapy by increasing intratumoral drug uptake. J Clin Invest. 116:1955–1962. 2006. View Article : Google Scholar : PubMed/NCBI | |
Denkert C, von Minckwitz G, Darb-Esfahani S, Lederer B, Heppner BI, Weber KE, Budczies J, Huober J, Klauschen F, Furlanetto J, et al: Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: A pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol. 19:40–50. 2018. View Article : Google Scholar | |
Memon D, Schoenfeld AJ, Ye D, Fromm G, Rizvi H, Zhang X, Keddar MR, Mathew D, Yoo KJ, Qiu J, et al: Clinical and molecular features of acquired resistance to immunotherapy in non-small cell lung cancer. Cancer Cell. 42:209–224.e9. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhu L, Meng D, Wang X and Chen X: Ferroptosis-driven Nanotherapeutics to reverse drug resistance in tumor microenvironment. ACS Appl Bio Mater. 5:2481–2506. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhu Y, Wang A, Zhang S, Kim J, Xia J, Zhang F, Wang D, Wang Q and Wang J: Paclitaxel-loaded ginsenoside Rg3 liposomes for drug-resistant cancer therapy by dual targeting of the tumor microenvironment and cancer cells. J Adv Res. 49:159–173. 2023. View Article : Google Scholar : |