Tumor‑associated macrophages activated in the tumor environment of hepatocellular carcinoma: Characterization and treatment (Review)
- Authors:
- Mingkai Yu
- Haixia Yu
- Hongmei Wang
- Xiaoya Xu
- Zhaoqing Sun
- Wenshuai Chen
- Miaomiao Yu
- Chunhua Liu
- Mingchun Jiang
- Xiaowei Zhang
-
Affiliations: School of Clinical Medicine and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China, Pharmacy College, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China, Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China, Department of Physiology and Neurobiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China, Department of Gastroenterology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong 271000, P.R. China - Published online on: September 5, 2024 https://doi.org/10.3892/ijo.2024.5688
- Article Number: 100
-
Copyright: © Yu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Jin HR, Wang J, Wang ZJ, Xi MJ, Xia BH, Deng K and Yang JL: Lipid metabolic reprogramming in tumor microenvironment: From mechanisms to therapeutics. J Hematol Oncol. 16:1032023. View Article : Google Scholar : PubMed/NCBI | |
Xue R, Zhang Q, Cao Q, Kong R, Xiang X, Liu H, Feng M, Wang F, Cheng J, Li Z, et al: Liver tumour immune microenvironment subtypes and neutrophil heterogeneity. Nature. 612:141–147. 2022. View Article : Google Scholar : PubMed/NCBI | |
Cheng K, Cai N, Zhu J, Yang X, Liang H and Zhang W: Tumor-associated macrophages in liver cancer: From mechanisms to therapy. Cancer Commun (Lond). 42:1112–1140. 2022. View Article : Google Scholar : PubMed/NCBI | |
Bilotta MT, Antignani A and Fitzgerald DJ: Managing the TME to improve the efficacy of cancer therapy. Front Immunol. 13:9549922022. View Article : Google Scholar : PubMed/NCBI | |
Tacke F: Targeting hepatic macrophages to treat liver diseases. J Hepatol. 66:1300–1312. 2017. View Article : Google Scholar : PubMed/NCBI | |
Minciuna I, Taru MG, Procopet B and Stefanescu H: The inter-play between liver sinusoidal endothelial cells, platelets, and neutrophil extracellular traps in the development and progression of metabolic dysfunction-associated steatotic liver disease. J Clin Med. 13:14062024. View Article : Google Scholar | |
McQuiston TJ and Williamson PR: Paradoxical roles of alveolar macrophages in the host response to Cryptococcus neoformans. J Infect Chemother. 18:1–9. 2012. View Article : Google Scholar | |
Yao Z, Bai R, Liu W, Liu Y, Zhou W, Xu Z and Sheng J: Activation of angiogenin expression in macrophages by lipopolysaccharide via the TLR4/NF-κB pathway in colitis. Acta Biochim Biophys Sin (Shanghai). 56:857–865. 2024.PubMed/NCBI | |
Murray PJ: Macrophage Polarization. Annu Rev Physiol. 79:541–566. 2017. View Article : Google Scholar | |
Mehla K and Singh PK: metabolic regulation of macrophage polarization in cancer. Trends Cancer. 5:822–834. 2019. View Article : Google Scholar : PubMed/NCBI | |
Locati M, Curtale G and Mantovani A: Diversity, mechanisms, and significance of macrophage plasticity. Annu Rev Pathol. 15:123–147. 2020. View Article : Google Scholar | |
Boutilier AJ and Elsawa SF: Macrophage polarization states in the tumor microenvironment. Int J Mol Sci. 22:69952021. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Li Y, Wang X, Wang P, Essandoh K, Cui S, Huang W, Mu X, Liu Z, Wang Y, et al: GDF3 protects mice against sepsis-induced cardiac dysfunction and mortality by suppression of macrophage pro-inflammatory phenotype. Cells. 9:1202020. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Stokes JV, Tan W and Pruett SB: An optimized flow cytometry panel for classifying macrophage polarization. J Immunol Methods. 511:1133782022. View Article : Google Scholar : PubMed/NCBI | |
Domschke G and Gleissner CA: CXCL4-induced macrophages in human atherosclerosis. Cytokine. 122:1541412019. View Article : Google Scholar | |
Kadl A, Meher AK, Sharma PR, Lee MY, Doran AC, Johnstone SR, Elliott MR, Gruber F, Han J, Chen W, et al: Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2. Circ Res. 107:737–746. 2010. View Article : Google Scholar : PubMed/NCBI | |
Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A and Locati M: The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25:677–686. 2004. View Article : Google Scholar : PubMed/NCBI | |
Lu Y, Sun Q, Guan Q, Zhang Z, He Q, He J, Ji Z, Tian W, Xu X, Liu Y, et al: The XOR-IDH3α axis controls macrophage polarization in hepatocellular carcinoma. J Hepatol. 79:1172–1184. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chen S, Morine Y, Tokuda K, Yamada S, Saito Y, Nishi M, Ikemoto T and Shimada M: Cancer-associated fibroblast-induced M2-polarized macrophages promote hepatocellular carcinoma progression via the plasminogen activator inhibitor-1 pathway. Int J Oncol. 59:592021. View Article : Google Scholar : | |
Gao Y, Yuan Y, Wen S, Chen Y, Zhang Z, Feng Y, Jiang B, Ma S, Hu R, Fang C, et al: Dual role of ANGPTL8 in promoting tumor cell proliferation and immune escape during hepatocarcinogenesis. Oncogenesis. 12:262023. View Article : Google Scholar : PubMed/NCBI | |
Hao X, Zheng Z, Liu H, Zhang Y, Kang J, Kong X, Rong D, Sun G, Sun G, Liu L, et al: Inhibition of APOC1 promotes the transformation of M2 into M1 macrophages via the ferroptosis pathway and enhances anti-PD1 immunotherapy in hepatocellular carcinoma based on single-cell RNA sequencing. Redox Biol. 56:1024632022. View Article : Google Scholar : PubMed/NCBI | |
Zhao S, Mi Y, Guan B, Zheng B, Wei P, Gu Y, Zhang Z, Cai S, Xu Y, Li X, et al: Tumor-derived exosomal miR-934 induces macrophage M2 polarization to promote liver metastasis of colorectal cancer. J Hematol Oncol. 13:1562020. View Article : Google Scholar : PubMed/NCBI | |
Kuo CC, Hanzelmann S, Senturk Cetin N, Frank S, Zajzon B, Derks JP, Akhade VS, Ahuja G, Kanduri C, Grummt I, et al: Detection of RNA-DNA binding sites in long noncoding RNAs. Nucleic Acids Res. 47:e322019. View Article : Google Scholar : PubMed/NCBI | |
Li P, He J, Yang Z, Ge S, Zhang H, Zhong Q and Fan X: ZNNT1 long noncoding RNA induces autophagy to inhibit tumorigenesis of uveal melanoma by regulating key autophagy gene expression. Autophagy. 16:1186–1199. 2020. View Article : Google Scholar : | |
Wang H, Liu Y, Tang A and Zhang X: Molecular subtypes of clear cell renal carcinoma based on PCD-related long non-coding RNAs expression: Insights into the underlying mechanisms and therapeutic strategies. Eur J Med Res. 29:2922024. View Article : Google Scholar : PubMed/NCBI | |
Wei H, Li W, Yang M, Fang Q, Nian J, Huang Y, Wei Q, Huang Z, Liu G, Xu Z, et al: METTL3/16-mediated m(6)A modification of ZNNT1 promotes hepatocellular carcinoma progression by activating ZNNT1/osteopontin/S100A9 positive feedback loop-mediated crosstalk between macrophages and tumour cells. Clin Immunol. 261:1099242024. View Article : Google Scholar : PubMed/NCBI | |
Huang X, Wu W, Jing D, Yang L, Guo H, Wang L, Zhang W, Pu F and Shao Z: Engineered exosome as targeted lncRNA MEG3 delivery vehicles for osteosarcoma therapy. J Control Release. 343:107–117. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Lin Z, Gao Y and Yao T: Downregulation of long noncoding RNA MEG3 is associated with poor prognosis and promoter hypermethylation in cervical cancer. J Exp Clin Cancer Res. 36:52017. View Article : Google Scholar : PubMed/NCBI | |
Wu X and Xu L: The RNA-binding protein HuR in human cancer: A friend or foe? Adv Drug Deliv Rev. 184:1141792022. View Article : Google Scholar : PubMed/NCBI | |
Majumder M, Chakraborty P, Mohan S, Mehrotra S and Palanisamy V: HuR as a molecular target for cancer therapeutics and immune-related disorders. Adv Drug Deliv Rev. 188:1144422022. View Article : Google Scholar : PubMed/NCBI | |
Brauss TF, Winslow S, Lampe S, Scholz A, Weigert A, Dehne N, von Stedingk K, Schmid T and Brüne B: The RNA-binding protein HuR inhibits expression of CCL5 and limits recruitment of macrophages into tumors. Mol Carcinog. 56:2620–2629. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wei H, Wu X, Huang L, Long C, Lu Q, Huang Z, Huang Y, Li W and Pu J: LncRNA MEG3 reduces the ratio of M2/M1 Macrophages Through the HuR/CCL5 axis in hepatocellular carcinoma. J Hepatocell Carcinoma. 11:543–562. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wei Q, Liu G, Huang Z, Huang Y, Huang L, Huang Z, Wu X, Wei H and Pu J: LncRNA MEG3 inhibits tumor progression by modulating macrophage phenotypic polarization via miR-145-5p/DAB2 axis in hepatocellular carcinoma. J Hepatocell Carcinoma. 10:1019–1035. 2023. View Article : Google Scholar : PubMed/NCBI | |
Su T, Zhang N, Wang T, Zeng J, Li W, Han L and Yang M: Super Enhancer-Regulated LncRNA LINC01089 induces alternative splicing of DIAPH3 to drive hepatocellular carcinoma metastasis. Cancer Res. 83:4080–4094. 2023. View Article : Google Scholar : PubMed/NCBI | |
Peng Y, Yin D, Li X, Wang K, Li W, Huang Y, Liu X, Ren Z, Yang X, Zhang Z, et al: Integration of transcriptomics and metabolomics reveals a novel gene signature guided by FN1 associated with immune response in oral squamous cell carcinoma tumorigenesis. J Cancer Res Clin Oncol. 149:6097–6113. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ma L, Jiang J, Si Q, Chen C and Duan Z: IGF2BP3 enhances the growth of hepatocellular carcinoma tumors by regulating the properties of macrophages and CD8(+) T cells in the tumor microenvironment. J Clin Transl Hepatol. 11:1308–1320. 2023.PubMed/NCBI | |
Yang M, Yu T and Han L: Hsa_circ_0010882 facilitates hepatocellular carcinoma progression by modulating M1/M2 macrophage polarization. J Viral Hepat. 31:189–196. 2024. View Article : Google Scholar : PubMed/NCBI | |
Hu Z, You L, Hu S, Yu L, Gao Y, Li L and Zhang S: Hepatocellular carcinoma cell-derived exosomal miR-21-5p promotes the polarization of tumor-related macrophages (TAMs) through SP1/XBP1 and affects the progression of hepatocellular carcinoma. Int Immunopharmacol. 126:1111492024. View Article : Google Scholar | |
Bian Z, Xu C, Wang X, Zhang B, Xiao Y, Liu L, Zhao S, Huang N, Yang F, Zhang Y, et al: TRIM65/NF2/YAP1 signaling coordinately orchestrates metabolic and immune advantages in hepatocellular carcinoma. Adv Sci (Weinh). Jul 15–2024.Epub ahead of print. View Article : Google Scholar | |
Zhu Y, Chen M, Xu D, Li TE, Zhang Z, Li JH, Wang XY, Yang X, Lu L, Jia HL, et al: The combination of PD-1 blockade with interferon-α has a synergistic effect on hepatocellular carcinoma. Cell Mol Immunol. 19:726–737. 2022. View Article : Google Scholar : PubMed/NCBI | |
Jiang M, Wang D, Su N, Lou W, Chen Y, Yang H, Chen C, Xi F, Chen Y, Deng L and Tang X: TRIM65 knockout inhibits the development of HCC by polarization tumor-associated macrophages towards M1 phenotype via JAK1/STAT1 signaling pathway. Int Immunopharmacol. 128:1114942024. View Article : Google Scholar : PubMed/NCBI | |
Tan S, Wang Z, Li N, Guo X, Zhang Y, Ma H, Peng X, Zhao Y, Li C, Gao L, et al: Transcription factor Zhx2 is a checkpoint that programs macrophage polarization and antitumor response. Cell Death Differ. 30:2104–2119. 2023. View Article : Google Scholar : PubMed/NCBI | |
Dai Z, Wang Y, Sun N and Zhang C: Characterizing ligand-receptor interactions and unveiling the pro-tumorigenic role of CCL16-CCR1 axis in the microenvironment of hepatocellular carcinoma. Front Immunol. 14:12999532024. View Article : Google Scholar : PubMed/NCBI | |
Wu XM, Liao YW, Wang HY, Ji KQ, Li GF and Zang B: Integrin alphavbeta6 is involved in measles protein-induced airway immune suppression. Cytokine. 59:59–64. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hu WM, Liu SQ, Zhu KF, Li W, Yang ZJ, Yang Q, Zhu ZC and Chang J: The ALOX5 inhibitor Zileuton regulates tumor-associated macrophage M2 polarization by JAK/STAT and inhibits pancreatic cancer invasion and metastasis. Int Immunopharmacol. 121:1105052023. View Article : Google Scholar : PubMed/NCBI | |
Yu C, Zhu Q, Ma C, Luo C, Nie L, Cai H, Wang Q, Wang F, Ren H, Yan H, et al: Major vault protein regulates tumor-associated macrophage polarization through interaction with signal transducer and activator of transcription 6. Front Immunol. 14:12897952024. View Article : Google Scholar : PubMed/NCBI | |
Tang B, Zhu J, Wang Y, Chen W, Fang S, Mao W, Xu Z, Yang Y, Weng Q, Zhao Z, et al: Targeted xCT-mediated ferroptosis and protumoral polarization of macrophages is effective against HCC and enhances the efficacy of the Anti-PD-1/L1 Response. Adv Sci (Weinh). 10:e22039732023. View Article : Google Scholar | |
Savchenko VL: Regulation of NADPH oxidase gene expression with PKA and cytokine IL-4 in neurons and microglia. Neurotox Res. 23:201–213. 2013. View Article : Google Scholar | |
Liu Y, Chen H, Yan X and Zhang J, Deng Z, Huang M, Gu J and Zhang J: MyD88 in myofibroblasts enhances nonalcoholic fatty liver disease-related hepatocarcinogenesis via promoting macrophage M2 polarization. Cell Commun Signal. 22:862024. View Article : Google Scholar : PubMed/NCBI | |
Ravindran C, Cheng YC and Liang SM: CpG-ODNs induces up-regulated expression of chemokine CCL9 in mouse macrophages and microglia. Cell Immunol. 260:113–118. 2010. View Article : Google Scholar | |
Chen S, Wang M, Lu T, Liu Y, Hong W, He X, Cheng Y, Liu J, Wei Y and Wei X: JMJD6 in tumor-associated macrophage regulates macrophage polarization and cancer progression via STAT3/IL-10 axis. Oncogene. 42:2737–2750. 2023. View Article : Google Scholar : PubMed/NCBI | |
Silswal N, Reis J, Qureshi AA, Papasian C and Qureshi N: Of mice and men: Proteasome's Role in LPS-Induced inflammation and tolerance. Shock. 47:445–454. 2017. View Article : Google Scholar | |
Lu F, Zhou J, Chen Q, Zhu J, Zheng X, Fang N and Qiao L: PSMA5 contributes to progression of lung adenocarcinoma in association with the JAK/STAT pathway. Carcinogenesis. 43:624–634. 2022. View Article : Google Scholar : PubMed/NCBI | |
Xie S, Li X, Yan J, Yu H, Chen S and Chen K: Knockdown of liver cancer cell-secreted exosomal PSMA5 controls macrophage polarization to restrain cancer progression by blocking JAK2/STAT3 signaling. Immun Inflamm Dis. 12:e11462024. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Tang Y, Jiang H, Zhang X, Chen X, Guo J, Jin C and Wu M: Exosome-Related FTCD Facilitates M1 macrophage polarization and impacts the prognosis of hepatocellular carcinoma. Biomolecules. 14:412023. View Article : Google Scholar | |
Liu L, Zhang W, Liu T, Tan Y, Chen C, Zhao J, Geng H and Ma C: The physiological metabolite α-ketoglutarate ameliorates osteoarthritis by regulating mitophagy and oxidative stress. Redox Biol. 62:1026632023. View Article : Google Scholar | |
Zhang D, Wang Y, Shi Z, Liu J, Sun P, Hou X, Zhang J, Zhao S, Zhou BP and Mi J: Metabolic reprogramming of cancer-associated fibroblasts by IDH3α downregulation. Cell Rep. 10:1335–1348. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Chen C, Hu W, Tao L and Chen J: Revealing the role of necroptosis microenvironment: FCGBP + tumor-associated macrophages drive primary liver cancer differentiation towards cHCC-CCA or iCCA. Apoptosis. 29:460–481. 2024. View Article : Google Scholar | |
Mai Y, Su J, Yang C, Xia C and Fu L: The strategies to cure cancer patients by eradicating cancer stem-like cells. Mol Cancer. 22:1712023. View Article : Google Scholar : PubMed/NCBI | |
Zhao Q, Zong H, Zhu P, Su C, Tang W, Chen Z and Jin S: Crosstalk between colorectal CSCs and immune cells in tumorigenesis, and strategies for targeting colorectal CSCs. Exp Hematol Oncol. 13:62024. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Ye Y, Zhu L, Xiao X, Zhou B, Gu Y, Si H, Liang H, Liu M, Li J, et al: Niche stiffness sustains cancer stemness via TAZ and NANOG phase separation. Nat Commun. 14:2382023. View Article : Google Scholar : PubMed/NCBI | |
Liang T, Tao T, Wu K, Liu L, Xu W, Zhou D, Fang H, Ding Q, Huang G and Wu S: Cancer-Associated fibroblast-induced remodeling of tumor microenvironment in recurrent bladder cancer. Adv Sci (Weinh). 10:e23032302023. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Zhang L, Zhao L, Shao S, Ning Q, Jing X, Zhang Y, Zhao F, Liu X, Gu S, et al: VEGFA/NRP-1/GAPVD1 axis promotes progression and cancer stemness of triple-negative breast cancer by enhancing tumor cell-macrophage crosstalk. Int J Biol Sci. 20:446–463. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q, Tsui YM, Zhang VX, Lu AJ, Lee JM, Lee E, Cheung GC, Li PM, Cheung ET, Chia NH, et al: Reciprocal interactions between malignant cells and macrophages enhance cancer stemness and M2 polarization in HBV-associated hepatocellular carcinoma. Theranostics. 14:892–910. 2024. View Article : Google Scholar : PubMed/NCBI | |
Qi Y, Zhao T, Li R and Han M: Macrophage-Secreted S100A4 supports breast cancer metastasis by remodeling the extracellular matrix in the premetastatic niche. Biomed Res Int. 2022:98955042022. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Wang J, Song K, Liu S, Zhang H, Wang F, Ni C, Zhai W, Liang J, Qin Z and Zhang J: S100A4 promotes hepatocellular carcinogenesis by intensifying fibrosis-associated cancer cell stemness. Oncoimmunology. 9:17253552020. View Article : Google Scholar : PubMed/NCBI | |
Huang A, Lv B, Zhang Y, Yang J, Li J, Li C, Yu Z and Xia J: Construction of a tumor immune infiltration macrophage signature for predicting prognosis and immunotherapy response in liver cancer. Front Mol Biosci. 9:9838402022. View Article : Google Scholar : PubMed/NCBI | |
Wei R, Zhu WW, Yu GY, Wang X, Gao C, Zhou X, Lin ZF, Shao WQ, Wang SH, Lu M and Qin LX: S100 calcium-binding protein A9 from tumor-associated macrophage enhances cancer stem cell-like properties of hepatocellular carcinoma. Int J Cancer. 148:1233–1244. 2021. View Article : Google Scholar | |
Chen Y, Wen H, Zhou C, Su Q, Lin Y, Xie Y, Huang Y, Qiu Q, Lin J, Huang X, et al: TNF-alpha derived from M2 tumor-associated macrophages promotes epithelial-mesenchymal transition and cancer stemness through the Wnt/beta-catenin pathway in SMMC-7721 hepatocellular carcinoma cells. Exp Cell Res. 378:41–50. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Feng W, Sun M, Huang W, Wang G, Chen X, Yin Y, Chen X, Zhang B, Nie Y, et al: TGF-β1-Induced SOX18 elevation promotes hepatocellular carcinoma progression and metastasis through transcriptionally upregulating PD-L1 and CXCL12. Gastroenterology. 167:264–280. 2024. View Article : Google Scholar : PubMed/NCBI | |
Ye S, Huang H, Xiao Y, Han X, Shi F, Luo W, Chen J, Ye Y, Zhao X, Huang W, et al: Macrophage Dectin-1 mediates Ang II renal injury through neutrophil migration and TGF-β1 secretion. Cell Mol Life Sci. 80:1842023. View Article : Google Scholar | |
Yao Y, Chen R, Wang G, Zhang Y and Liu F: Exosomes derived from mesenchymal stem cells reverse EMT via TGF-β1/Smad pathway and promote repair of damaged endometrium. Stem Cell Res Ther. 10:2252019. View Article : Google Scholar | |
Liu X, Xu J, Shen B, Xu J and Jiang J: USP33 promotes pancreatic cancer malignant phenotype through the regulation of TGFBR2/TGFβ signaling pathway. Cell Death Dis. 14:3622023. View Article : Google Scholar | |
Ye Y, Guo J, Xiao P, Ning J, Zhang R, Liu P, Yu W, Xu L, Zhao Y and Yu J: Macrophages-induced long noncoding RNA H19 up-regulation triggers and activates the miR-193b/MAPK1 axis and promotes cell aggressiveness in hepatocellular carcinoma. Cancer Lett. 469:310–322. 2020. View Article : Google Scholar | |
Chang CH, Chang YT, Tseng TH and Wang CJ: Mulberry leaf extract inhibit hepatocellular carcinoma cell proliferation via depressing IL-6 and TNF-α derived from adipocyte. J Food Drug Anal. 26:1024–1032. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yang H, Kang B, Ha Y, Lee SH, Kim I, Kim H, Lee WS, Kim G, Jung S, Rha SY, et al: High serum IL-6 correlates with reduced clinical benefit of atezolizumab and bevacizumab in unresectable hepatocellular carcinoma. JHEP Rep. 5:1006722023. View Article : Google Scholar : PubMed/NCBI | |
Wan S, Zhao E, Kryczek I, Vatan L, Sadovskaya A, Ludema G, Simeone DM, Zou W and Welling TH: Tumor-associated macrophages produce interleukin 6 and signal via STAT3 to promote expansion of human hepatocellular carcinoma stem cells. Gastroenterology. 147:1393–1404. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wen JH, Li DY, Liang S, Yang C, Tang JX and Liu HF: Macrophage autophagy in macrophage polarization, chronic inflammation and organ fibrosis. Front Immunol. 13:9468322022. View Article : Google Scholar : PubMed/NCBI | |
Ma L, Zhang R, Li D, Qiao T and Guo X: Fluoride regulates chondrocyte proliferation and autophagy via PI3K/AKT/mTOR signaling pathway. Chem Biol Interact. 349:1096592021. View Article : Google Scholar : PubMed/NCBI | |
Bi S, Zhang Y, Zhou J, Yao Y, Wang J, Fang M, Li B, Wu C and Ren C: miR-210 promotes hepatocellular carcinoma progression by modulating macrophage autophagy through PI3K/AKT/mTOR signaling. Biochem Biophys Res Commun. 662:47–57. 2023. View Article : Google Scholar : PubMed/NCBI | |
Cai J, Qian X, Qi Q, Han J, Zhu X, Zhang Q and Xia R: Extracellular ubiquitin inhibits the apoptosis of hepatoma cells via the involvement of macrophages. Transl Cancer Res. 9:2855–2864. 2020. View Article : Google Scholar : PubMed/NCBI | |
She G, Du JC, Wu W, Pu TT, Zhang Y, Bai RY, Zhang Y, Pang ZD, Wang HF, Ren YJ, et al: Hippo pathway activation mediates chemotherapy-induced anti-cancer effect and cardiomyopathy through causing mitochondrial damage and dysfunction. Theranostics. 13:560–577. 2023. View Article : Google Scholar : PubMed/NCBI | |
Fang S, Wan X, Zou X, Sun S, Hao X, Liang C, Zhang Z, Zhang F, Sun B, Li H and Yu B: Arsenic trioxide induces macrophage autophagy and atheroprotection by regulating ROS-dependent TFEB nuclear translocation and AKT/mTOR pathway. Cell Death Dis. 12:882021. View Article : Google Scholar : PubMed/NCBI | |
Ai JH, Wen YZ, Dai SJ, Zhang LD, Huang ZJ and Shi J: Exosomal lncRNA HEIH, an essential communicator for hepatocellular carcinoma cells and macrophage M2 polarization through the miR-98-5p/STAT3 axis. J Biochem Mol Toxicol. 38:e236862024. View Article : Google Scholar : PubMed/NCBI | |
Keawvilai P, Kueanjinda P, Klomsing J and Palaga T: Coculturing liver cancer cells and monocytes in spheroids conditions monocytes to adopt tumor-associated macrophage phenotypes that favor tumor growth via cholesterol metabolism. J Leukoc Biol. 115:344–357. 2024. View Article : Google Scholar | |
Zhang L, Zhang J, Li P, Li T, Zhou Z and Wu H: Exosomal hsa_circ_0004658 derived from RBPJ overexpressed-macrophages inhibits hepatocellular carcinoma progression via miR-499b-5p/JAM3. Cell Death Dis. 13:322022. View Article : Google Scholar : PubMed/NCBI | |
Wu H, Zhang X, Han D, Cao J and Tian J: Tumour-associated macrophages mediate the invasion and metastasis of bladder cancer cells through CXCL8. PeerJ. 8:e87212020. View Article : Google Scholar : PubMed/NCBI | |
Zou S, Chen S, Rao G, Zhang G, Ma M, Peng B, Du X, Huang W, Lin W, Tian Y and Fu X: Extrachromosomal circular MiR-17-92 amplicon promotes HCC. Hepatology. 79:79–95. 2024. View Article : Google Scholar | |
Yu S, Su S, Wang P, Li J, Chen C, Xin H, Gong Y, Wang H, Ye X, Mao L, et al: Tumor-associated macrophage-induced circMRCK-alpha encodes a peptide to promote glycolysis and progression in hepatocellular carcinoma. Cancer Lett. 591:2168722024. View Article : Google Scholar | |
Qu W, Qiao S, Liu L, Chen Y, Peng C, Hou Y, Xu Z, Lv M and Wang T: Dectin3 protects against hepatocellular carcinoma by regulating glycolysis of macrophages. Int Immunopharmacol. 113(Pt A): 1093842022. View Article : Google Scholar : PubMed/NCBI | |
Ji W, Bai J and Ke Y: Exosomal ZFPM2-AS1 contributes to tumorigenesis, metastasis, stemness, macrophage polarization, and infiltration in hepatocellular carcinoma through PKM mediated glycolysis. Environ Toxicol. 38:1332–1346. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Yi X, Xiao X, Zheng Q, Ma L and Li B: Exosomal miR-628-5p from M1 polarized macrophages hinders m6A modification of circFUT8 to suppress hepatocellular carcinoma progression. Cell Mol Biol Lett. 27:1062022. View Article : Google Scholar : PubMed/NCBI | |
Xie Q, Zeng Y, Zhang X and Yu F: The significance of lipid metabolism reprogramming of tumor-associated macrophages in hepatocellular carcinoma. Cancer Immunol Immunother. 73:1712024. View Article : Google Scholar : PubMed/NCBI | |
Xie M, Lin Z, Ji X, Luo X, Zhang Z, Sun M, Chen X, Zhang B, Liang H, Liu D, et al: FGF19/FGFR4-mediated elevation of ETV4 facilitates hepatocellular carcinoma metastasis by upregulating PD-L1 and CCL2. J Hepatol. 79:109–125. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yeung OW, Lo CM, Ling CC, Qi X, Geng W, Li CX, Ng KT, Forbes SJ, Guan XY, Poon RT, et al: Alternatively activated (M2) macrophages promote tumour growth and invasiveness in hepatocellular carcinoma. J Hepatol. 62:607–616. 2015. View Article : Google Scholar | |
Chen J, Zhao D, Zhang L, Zhang J, Xiao Y, Wu Q, Wang Y and Zhan Q: Tumor-associated macrophage (TAM)-derived CCL22 induces FAK addiction in esophageal squamous cell carcinoma (ESCC). Cell Mol Immunol. 19:1054–1066. 2022. View Article : Google Scholar : PubMed/NCBI | |
Jiang Q, Zeng Y, Xu Y, Xiao X, Liu H, Zhou B, Kong Y, Saw PE and Luo B: Ultrasound molecular imaging as a potential non-invasive diagnosis to detect the margin of hepatocarcinoma via CSF-1R Targeting. Front Bioeng Biotechnol. 8:7832020. View Article : Google Scholar : PubMed/NCBI | |
Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF, Olson OC, Quick ML, Huse JT, Teijeiro V, et al: CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med. 19:1264–1272. 2013. View Article : Google Scholar : PubMed/NCBI | |
Peng S, Chen Y, Gong Y, Li Z, Xie R, Lin Y, Zou B, Li J and Zeng L: Predictive value of intratumour inflammatory cytokine mRNA levels of hepatocellular carcinoma patients and activation of two distinct pathways govern IL-8 induced epithelial-mesenchymal transition in human hepatic cancer cell lines. Cytokine. 119:81–89. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yan W, Liu X, Ma H, Zhang H, Song X, Gao L, Liang X and Ma C: Tim-3 fosters HCC development by enhancing TGF-β-mediated alternative activation of macrophages. Gut. 64:1593–1604. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ganjalikhani Hakemi M, Jafarinia M, Azizi M, Rezaeepoor M, Isayev O and Bazhin AV: The Role of TIM-3 in hepatocellular carcinoma: A promising target for immunotherapy? Front Oncol. 10:6016612020. View Article : Google Scholar | |
Sun G, Liu H, Zhao J, Zhang J, Huang T, Sun G, Zhao S, Zhang Z, Cao H, Rong D, et al: Macrophage GSK3β-deficiency inhibits the progression of hepatocellular carcinoma and enhances the sensitivity of anti-PD1 immunotherapy. J Immunother Cancer. 10:e0056552022. View Article : Google Scholar | |
Liu D, Luo X, Xie M, Zhang T, Chen X, Zhang B, Sun M, Wang Y, Feng Y, Ji X, et al: HNRNPC downregulation inhibits IL-6/STAT3-mediated HCC metastasis by decreasing HIF1A expression. Cancer Sci. 113:3347–3361. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhou Z, Wang P, Sun R, Li J, Hu Z, Xin H, Luo C, Zhou J, Fan J and Zhou S: Tumor-associated neutrophils and macrophages interaction contributes to intrahepatic cholangiocarcinoma progression by activating STAT3. J Immunother Cancer. 9:e0019462021. View Article : Google Scholar : PubMed/NCBI | |
Johnson DE, O'Keefe RA and Grandis JR: Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol. 15:234–248. 2018. View Article : Google Scholar : PubMed/NCBI | |
Dong S, Yang Z, Xu P, Zheng W, Zhang B, Fu F, Mao Z, Yuan J, Chen H and Yu W: Mutually exclusive epigenetic modification on SIX6 with hypermethylation for precancerous stage and metastasis emergence tracing. Signal Transduct Target Ther. 7:2082022. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Yao Z, Wang J, Zhang W, Yang Y, Zhang Y, Qu X, Zhu Y, Zou J, Peng S, et al: Macrophage-derived CCL5 facilitates immune escape of colorectal cancer cells via the p65/STAT3-CSN5-PD-L1 pathway. Cell Death Differ. 27:1765–1781. 2020. View Article : Google Scholar : | |
Chang M and Nguyen TT: Strategy for treatment of infected diabetic foot ulcers. Acc Chem Res. 54:1080–1093. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yao RR, Li JH, Zhang R, Chen RX and Wang YH: M2-polarized tumor-associated macrophages facilitated migration and epithelial-mesenchymal transition of HCC cells via the TLR4/STAT3 signaling pathway. World J Surg Oncol. 16:92018. View Article : Google Scholar : PubMed/NCBI | |
Lin A, Wang G, Zhao H, Zhang Y, Han Q, Zhang C, Tian Z and Zhang J: TLR4 signaling promotes a COX-2/PGE(2)/STAT3 positive feedback loop in hepatocellular carcinoma (HCC) cells. Oncoimmunology. 5:e10743762016. View Article : Google Scholar : PubMed/NCBI | |
Xu M, Zhou C, Weng J, Chen Z, Zhou Q, Gao J, Shi G, Ke A, Ren N, Sun H and Shen Y: Tumor associated macrophages-derived exosomes facilitate hepatocellular carcinoma malignance by transferring lncMMPA to tumor cells and activating glycolysis pathway. J Exp Clin Cancer Res. 41:2532022. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Liu M, Sun H, Feng Y, Xu L, Chan AWH, Tong JH, Wong J, Chong CCN, Lai PBS, et al: Hepatoma-intrinsic CCRK inhibition diminishes myeloid-derived suppressor cell immunosuppression and enhances immune-checkpoint blockade efficacy. Gut. 67:931–944. 2018. View Article : Google Scholar | |
Wu J, Gao W, Tang Q, Yu Y, You W, Wu Z, Fan Y, Zhang L, Wu C, Han G, et al: M2 macrophage-derived exosomes facilitate HCC metastasis by transferring αM β2 Integrin to Tumor Cells. Hepatology. 73:1365–1380. 2021. View Article : Google Scholar | |
Lu Y, Han G, Zhang Y, Zhang L, Li Z, Wang Q, Chen Z, Wang X and Wu J: M2 macrophage-secreted exosomes promote metastasis and increase vascular permeability in hepatocellular carcinoma. Cell Commun Signal. 21:2992023. View Article : Google Scholar : PubMed/NCBI | |
Bai ZZ, Li HY, Li CH, Sheng CL and Zhao XN: Retraction Note: M1 Macrophage-Derived Exosomal MicroRNA-326 Suppresses Hepatocellular Carcinoma Cell Progression Via Mediating NF-κB Signaling Pathway. Nanoscale Res Lett. 17:1222022. View Article : Google Scholar | |
Luo HL, Luo T, Liu JJ, Wu FX, Bai T, Ou C, Chen J, Li LQ and Zhong JH: Macrophage polarization-associated lnc-Ma301 interacts with caprin-1 to inhibit hepatocellular carcinoma metastasis through the Akt/Erk1 pathway. Cancer Cell Int. 21:4222021. View Article : Google Scholar : PubMed/NCBI | |
Sun D, Luo T, Dong P, Zhang N, Chen J and Zhang S, Dong L, Janssen HLA and Zhang S: M2-polarized tumor-associated macrophages promote epithelial-mesenchymal transition via activation of the AKT3/PRAS40 signaling pathway in intrahepatic cholangiocarcinoma. J Cell Biochem. 121:2828–2838. 2020. View Article : Google Scholar | |
Baeriswyl V and Christofori G: The angiogenic switch in carcinogenesis. Semin Cancer Biol. 19:329–337. 2009. View Article : Google Scholar : PubMed/NCBI | |
Dong S, Guo X, Han F, He Z and Wang Y: Emerging role of natural products in cancer immunotherapy. Acta Pharm Sin B. 12:1163–1185. 2022. View Article : Google Scholar : PubMed/NCBI | |
Pollard JW: Trophic macrophages in development and disease. Nat Rev Immunol. 9:259–270. 2009. View Article : Google Scholar : PubMed/NCBI | |
Palazon A, Tyrakis PA, Macias D, Veliça P, Rundqvist H, Fitzpatrick S, Vojnovic N, Phan AT, Loman N, Hedenfalk I, et al: An HIF-1α/VEGF-A Axis in Cytotoxic T Cells regulates tumor progression. Cancer Cell. 32:669–683 e5. 2017. View Article : Google Scholar | |
Xu K, Wu CL, Wang ZX, Wang HJ, Yin FJ, Li WD, Liu CC and Fan HN: VEGF family gene expression as prognostic biomarkers for Alzheimer's disease and primary liver cancer. Comput Math Methods Med. 2021:34223932021. View Article : Google Scholar : PubMed/NCBI | |
Simons M, Gordon E and Claesson-Welsh L: Mechanisms and regulation of endothelial VEGF receptor signalling. Nat Rev Mol Cell Biol. 17:611–625. 2016. View Article : Google Scholar : PubMed/NCBI | |
Apte RS, Chen DS and Ferrara N: VEGF in signaling and disease: Beyond discovery and development. Cell. 176:1248–1264. 2019. View Article : Google Scholar : PubMed/NCBI | |
Pu J, Li W, Wang A, Zhang Y, Qin Z, Xu Z, Wang J, Lu Y, Tang Q and Wei H: Long non-coding RNA HOMER3-AS1 drives hepatocellular carcinoma progression via modulating the behaviors of both tumor cells and macrophages. Cell Death Dis. 12:11032021. View Article : Google Scholar : PubMed/NCBI | |
Cheng N, Bei Y, Song Y, Zhang W, Xu L, Zhang W, Yang N, Bai X, Shu Y and Shen P: B7-H3 augments the pro-angiogenic function of tumor-associated macrophages and acts as a novel adjuvant target for triple-negative breast cancer therapy. Biochem Pharmacol. 183:1142982021. View Article : Google Scholar | |
Mabeta P and Steenkamp V: The VEGF/VEGFR axis revisited: Implications for cancer therapy. Int J Mol Sci. 23:155852022. View Article : Google Scholar : PubMed/NCBI | |
Grillet B, Pereira RVS, Van Damme J, Abu El-Asrar A, Proost P and Opdenakker G: Matrix metalloproteinases in arthritis: Towards precision medicine. Nat Rev Rheumatol. 19:363–377. 2023. View Article : Google Scholar : PubMed/NCBI | |
Riabov V, Gudima A, Wang N, Mickley A, Orekhov A and Kzhyshkowska J: Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis. Front Physiol. 5:752014. View Article : Google Scholar : PubMed/NCBI | |
Peacock JW, Takeuchi A, Hayashi N, Liu L, Tam KJ, Al Nakouzi N, Khazamipour N, Tombe T, Dejima T, Lee KC, et al: SEMA3C drives cancer growth by transactivating multiple receptor tyrosine kinases via Plexin B1. EMBO Mol Med. 10:219–238. 2018. View Article : Google Scholar : PubMed/NCBI | |
Korbecki J, Siminska D, Gassowska-Dobrowolska M, Listos J, Gutowska I, Chlubek D and Baranowska-Bosiacka I: Chronic and cycling hypoxia: Drivers of cancer chronic inflammation through HIF-1 and NF-kappaB Activation: A review of the molecular mechanisms. Int J Mol Sci. 22:107012021. View Article : Google Scholar | |
He H, Chen S, Fan Z, Dong Y, Wang Y, Li S, Sun X, Song Y, Yang J, Cao Q, et al: Multi-dimensional single-cell characterization revealed suppressive immune microenvironment in AFP-positive hepatocellular carcinoma. Cell Discov. 9:602023. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Zha Y, Yang Y, Ma T, Li H and Liang J: S100 proteins in cardiovascular diseases. Mol Med. 29:682023. View Article : Google Scholar : PubMed/NCBI | |
Casazza A, Laoui D, Wenes M, Rizzolio S, Bassani N, Mambretti M, Deschoemaeker S, Van Ginderachter JA, Tamagnone L and Mazzone M: Impeding macrophage entry into hypoxic tumor areas by Sema3A/Nrp1 signaling blockade inhibits angiogenesis and restores antitumor immunity. Cancer Cell. 24:695–709. 2013. View Article : Google Scholar : PubMed/NCBI | |
Shao R: YKL-40 acts as an angiogenic factor to promote tumor angiogenesis. Front Physiol. 4:1222013. View Article : Google Scholar : PubMed/NCBI | |
Qi M, Zhou Y, Liu J, Ou X, Li M, Long X, Ye J and Yu G: AngII induces HepG2 cells to activate epithelial-mesenchymal transition. Exp Ther Med. 16:3471–3477. 2018.PubMed/NCBI | |
Duran CL, Borriello L, Karagiannis GS, Entenberg D, Oktay MH and Condeelis JS: Targeting Tie2 in the tumor microenvironment: From angiogenesis to dissemination. Cancers (Basel). 13:57302021. View Article : Google Scholar : PubMed/NCBI | |
Bartneck M, Schrammen PL, Mockel D, Govaere O, Liepelt A, Krenkel O, Ergen C, McCain MV, Eulberg D, Luedde T, et al: The CCR2(+) macrophage subset promotes pathogenic angiogenesis for tumor vascularization in fibrotic livers. Cell Mol Gastroenterol Hepatol. 7:371–390. 2019. View Article : Google Scholar : PubMed/NCBI | |
Xiang X, Pathak JL, Wu W, Li J, Huang W, Wu Q, Xin M, Wu Y, Huang Y, Ge L and Zeng S: Human serum-derived exosomes modulate macrophage inflammation to promote VCAM1-mediated angiogenesis and bone regeneration. J Cell Mol Med. 27:1131–1143. 2023. View Article : Google Scholar : PubMed/NCBI | |
Rabinowitz JD and White E: Autophagy and metabolism. Science. 330:1344–1348. 2010. View Article : Google Scholar : PubMed/NCBI | |
Liu Q, Yan X, Li R, Yuan Y, Wang J, Zhao Y, Fu J and Su J: Polyamine Signal through HCC Microenvironment: A key regulator of mitochondrial preservation and turnover in TAMs. Int J Mol Sci. 25:9962024. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Zhang Q, Liang Y, Xiong S, Cai Y, Cao J, Xu Y, Xu X, Wu Y, Lu Q, et al: Nanoparticles (NPs)-mediated Siglec15 silencing and macrophage repolarization for enhanced cancer immunotherapy. Acta Pharm Sin B. 13:5048–5059. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Wei Z, Yong T, Li S, Bie N, Li J, Li X, Liu H, Xu H, Yan Y, et al: Cell microparticles loaded with tumor antigen and resiquimod reprogram tumor-associated macrophages and promote stem-like CD8(+) T cells to boost anti-PD-1 therapy. Nat Commun. 14:56532023. View Article : Google Scholar : PubMed/NCBI | |
Fang W, Zhou T, Shi H, Yao M, Zhang D, Qian H, Zeng Q, Wang Y, Jin F, Chai C and Chen T: Progranulin induces immune escape in breast cancer via up-regulating PD-L1 expression on tumor-associated macrophages (TAMs) and promoting CD8(+) T cell exclusion. J Exp Clin Cancer Res. 40:42021. View Article : Google Scholar : PubMed/NCBI | |
Caraban BM, Matei E, Cozaru GC, Aşchie M, Deacu M, Enciu M, Bălţătescu GI, Chisoi A, Dobrin N, Petcu L, et al: PD-L1, CD4+, and CD8+ Tumor-Infiltrating Lymphocytes (TILs) expression profiles in melanoma tumor microenvironment cells. J Pers Med. 13:2212023. View Article : Google Scholar : PubMed/NCBI | |
Yuan L, Tatineni J, Mahoney KM and Freeman GJ: VISTA: A mediator of quiescence and a promising target in cancer immunotherapy. Trends Immunol. 42:209–227. 2021. View Article : Google Scholar : PubMed/NCBI | |
Shiri AM, Zhang T, Bedke T, Zazara DE, Zhao L, Lücke J, Sabihi M, Fazio A, Zhang S, Tauriello DVF, et al: IL-10 dampens antitumor immunity and promotes liver metastasis via PD-L1 induction. J Hepatol. 80:634–644. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wen J, Yang S, Yan G, Lei J, Liu X, Zhang N, Zhang J, Deng H, Wu L and Li Y: Increased OIT3 in macrophages promotes PD-L1 expression and hepatocellular carcinogenesis via NF-κB signaling. Exp Cell Res. 428:1136512023. View Article : Google Scholar | |
Wang J, Zhang X, Ma X, Chen D, Cai M, Xiao L, Li J, Huang Z, Huang Y and Lian Y: Blockage of CacyBP inhibits macrophage recruitment and improves anti-PD-1 therapy in hepatocellular carcinoma. J Exp Clin Cancer Res. 42:3032023. View Article : Google Scholar : PubMed/NCBI | |
Ruf B, Bruhns M, Babaei S, Kedei N, Ma L, Revsine M, Benmebarek MR, Ma C, Heinrich B, Subramanyam V, et al: Tumor-associated macrophages trigger MAIT cell dysfunction at the HCC invasive margin. Cell. 186:3686–3705 e32. 2023. View Article : Google Scholar : PubMed/NCBI | |
Saadey AA, Yousif A, Osborne N, Shahinfar R, Chen YL, Laster B, Rajeev M, Bauman P, Webb A and Ghoneim HE: Rebalancing TGFβ1/BMP signals in exhausted T cells unlocks responsiveness to immune checkpoint blockade therapy. Nat Immunol. 24:280–294. 2023. View Article : Google Scholar | |
Wang J, Zhou J, Zhou Q, Qi Y, Zhang P, Yan C and Ren X: Dysregulated Th1 cells in lung squamous cell carcinoma. J Leukoc Biol. 112:1567–1576. 2022. View Article : Google Scholar : PubMed/NCBI | |
Xun X, Zhang C, Wang S, Hu S, Xiang X, Cheng Q, Li Z, Wang Y and Zhu J: Cyclooxygenase-2 expressed hepatocellular carcinoma induces cytotoxic T lymphocytes exhaustion through M2 macrophage polarization. Am J Transl Res. 13:4360–4375. 2021.PubMed/NCBI | |
Vignali PDA, DePeaux K, Watson MJ, Ye C, Ford BR, Lontos K, McGaa NK, Scharping NE, Menk AV, Robson SC, et al: Hypoxia drives CD39-dependent suppressor function in exhausted T cells to limit antitumor immunity. Nat Immunol. 24:267–279. 2023. View Article : Google Scholar | |
Lu JC, Zhang PF, Huang XY, Guo XJ, Gao C, Zeng HY, Zheng YM, Wang SW, Cai JB, Sun QM, et al: Amplification of spatially isolated adenosine pathway by tumor-macrophage interaction induces anti-PD1 resistance in hepatocellular carcinoma. J Hematol Oncol. 14:2002021. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Zhang L, Kang D, Yang D and Tang Y: Activation of PGE2/EP2 and PGE2/EP4 signaling pathways positively regulate the level of PD-1 in infiltrating CD8(+) T cells in patients with lung cancer. Oncol Lett. 15:552–558. 2018. | |
Szefel J, Danielak A and Kruszewski WJ: Metabolic pathways of L-arginine and therapeutic consequences in tumors. Adv Med Sci. 64:104–110. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kumari A, Syeda S, Rawat K, Kumari R and Shrivastava A: Melatonin modulates L-arginine metabolism in tumor-associated macrophages by targeting arginase 1 in lymphoma. Naunyn Schmiedebergs Arch Pharmacol. 397:1163–1179. 2024. View Article : Google Scholar | |
Wang X, Ye X, Chen Y and Lin J: Mechanism of M2 type macrophage-derived extracellular vesicles regulating PD-L1 expression via the MISP/IQGAP1 axis in hepatocellular carcinoma immunotherapy resistance. Int Immunopharmacol. 124(Pt A): 1108482023. View Article : Google Scholar : PubMed/NCBI | |
Goswami KK, Bose A and Baral R: Macrophages in tumor: An inflammatory perspective. Clin Immunol. 232:1088752021. View Article : Google Scholar : PubMed/NCBI | |
Moreno Ayala MA, Campbell TF, Zhang C, Dahan N, Bockman A, Prakash V, Feng L, Sher T and DuPage M: CXCR3 expression in regulatory T cells drives interactions with type I dendritic cells in tumors to restrict CD8(+) T cell antitumor immunity. Immunity. 56:1613–1630 e5. 2023. View Article : Google Scholar | |
Liu Y, Zhang Q, Xing B, Luo N, Gao R, Yu K, Hu X, Bu Z, Peng J, Ren X and Zhang Z: Immune phenotypic linkage between colorectal cancer and liver metastasis. Cancer Cell. 40:424–437 e5. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wu K, Lin K, Li X, Yuan X, Xu P, Ni P and Xu D: Redefining tumor-associated macrophage subpopulations and functions in the tumor microenvironment. Front Immunol. 11:17312020. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Tian T and Zhang J: Tumor-Associated Macrophages (TAMs) in Colorectal Cancer (CRC): From mechanism to therapy and prognosis. Int J Mol Sci. 22:84702021. View Article : Google Scholar : PubMed/NCBI | |
Pan Y, Yu Y, Wang X and Zhang T: Tumor-Associated macrophages in tumor immunity. Front Immunol. 11:5830842020. View Article : Google Scholar : PubMed/NCBI | |
Nowak M and Klink M: The role of tumor-associated macrophages in the progression and chemoresistance of ovarian cancer. Cells. 9:12992020. View Article : Google Scholar : PubMed/NCBI | |
Li C, Xu X, Wei S, Jiang P, Xue L and Wang J: Senior Correspondence; Tumor-associated macrophages: Potential therapeutic strategies and future prospects in cancer. J Immunother Cancer. 9:e0013412021. View Article : Google Scholar | |
Zheng H, Peng X, Yang S, Li X, Huang M, Wei S, Zhang S, He G, Liu J, Fan Q, et al: Targeting tumor-associated macrophages in hepatocellular carcinoma: biology, strategy, and immunotherapy. Cell Death Discov. 9:652023. View Article : Google Scholar | |
Li Z, Wu T, Zheng B and Chen L: Individualized precision treatment: Targeting TAM in HCC. Cancer Lett. 458:86–91. 2019. View Article : Google Scholar | |
Argentiero A, Delvecchio A, Fasano R, Andriano A, Caradonna IC, Memeo R and Desantis V: The complexity of the tumor microenvironment in hepatocellular carcinoma and emerging therapeutic developments. J Clin Med. 12:74692023. View Article : Google Scholar | |
Agirre-Lizaso A, Huici-Izagirre M, Urretabizkaia-Garmendia J, Rodrigues PM, Banales JM and Perugorria MJ: Targeting the heterogeneous tumour-associated macrophages in hepatocellular carcinoma. Cancers (Basel). 15:49772023. View Article : Google Scholar | |
Mantovani A, Marchesi F, Malesci A, Laghi L and Allavena P: Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol. 14:399–416. 2017. View Article : Google Scholar | |
Cassetta L, Fragkogianni S, Sims AH, Swierczak A, Forrester LM, Zhang H, Soong DYH, Cotechini T, Anur P, Lin EY, et al: Human tumor-associated macrophage and monocyte transcriptional landscapes reveal cancer-specific reprogramming, biomarkers, and therapeutic targets. Cancer Cell. 35:588–602 e10. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wen J, Wang S, Guo R and Liu D: CSF1R inhibitors are emerging immunotherapeutic drugs for cancer treatment. Eur J Med Chem. 245(Pt 1): 1148842023. View Article : Google Scholar | |
Tkach M, Thalmensi J, Timperi E, Gueguen P, Névo N, Grisard E, Sirven P, Cocozza F, Gouronnec A, Martin-Jaular L, et al: Extracellular vesicles from triple negative breast cancer promote pro-inflammatory macrophages associated with better clinical outcome. Proc Natl Acad Sci USA. 119:e21073941192022. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Zhu XD, Sun HC, Xiong YQ, Zhuang PY, Xu HX, Kong LQ, Wang L, Wu WZ and Tang ZY: Depletion of tumor-associated macrophages enhances the effect of sorafenib in metastatic liver cancer models by antimetastatic and antiangiogenic effects. Clin Cancer Res. 16:3420–3430. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jo H, Loison F and Luo HR: Microtubule dynamics regulates Akt signaling via dynactin p150. Cell Signal. 26:1707–1716. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Ma J, Lu S, He P and Dong W: USP25 promotes hepatocellular carcinoma progression by interacting with TRIM21 via the Wnt/β-catenin signaling pathway. Chin Med J (Engl). 136:2229–2242. 2023. View Article : Google Scholar : PubMed/NCBI | |
Mao J, Wang D, Wang Z, Tian W, Li X, Duan J, Wang Y, Yang H, You L, Cheng Y, et al: Combretastatin A-1 phosphate, a microtubule inhibitor, acts on both hepatocellular carcinoma cells and tumor-associated macrophages by inhibiting the Wnt/β-catenin pathway. Cancer Lett. 380:134–143. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xiang X, Wang J, Lu D and Xu X: Targeting tumor-associated macrophages to synergize tumor immunotherapy. Signal Transduct Target Ther. 6:752021. View Article : Google Scholar : PubMed/NCBI | |
Yao W, Ba Q, Li X, Li H, Zhang S, Yuan Y, Wang F, Duan X, Li J, Zhang W and Wang H: A Natural CCR2 antagonist relieves tumor-associated macrophage-mediated immunosuppression to produce a therapeutic effect for liver cancer. EBioMedicine. 22:58–67. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Chan YT, Lu Y, Feng Z, Yuan H, Xu X, Xu L, Zhang C, Feng Y, Tan HY and Wang N: Genipin-activating PPARgamma impedes CCR2-mediated macrophage infiltration into postoperative liver to suppress recurrence of hepatocellular carcinoma. Int J Biol Sci. 19:5257–5274. 2023. View Article : Google Scholar : | |
Hong M, Lee S, Clayton J, Yake W and Li J: Genipin suppression of growth and metastasis in hepatocellular carcinoma through blocking activation of STAT-3. J Exp Clin Cancer Res. 39:1462020. View Article : Google Scholar : PubMed/NCBI | |
Gallage S, Ali A, Barragan Avila JE, Seymen N, Ramadori P, Joerke V, Zizmare L, Aicher D, Gopalsamy IK, Fong W, et al: A 5:2 intermittent fasting regimen ameliorates NASH and fibrosis and blunts HCC development via hepatic PPARα and PCK1. Cell Metab. 36:1371–1393 e7. 2024. View Article : Google Scholar | |
Ambade A, Lowe P, Kodys K, Catalano D, Gyongyosi B, Cho Y, Iracheta-Vellve A, Adejumo A, Saha B, Calenda C, et al: Pharmacological Inhibition of CCR2/5 signaling prevents and reverses alcohol-induced liver damage, steatosis, and inflammation in mice. Hepatology. 69:1105–1121. 2019. View Article : Google Scholar | |
Pozzi S and Satchi-Fainaro R: The role of CCL2/CCR2 axis in cancer and inflammation: The next frontier in nanomedicine. Adv Drug Deliv Rev. 209:1153182024. View Article : Google Scholar : PubMed/NCBI | |
Sugiyama S, Yumimoto K, Fujinuma S and Nakayama KI: Identification of effective CCR2 inhibitors for cancer therapy using humanized mice. J Biochem. 175:195–204. 2024. View Article : Google Scholar | |
Yuan JM, Grouls M, Carmella SG, Wang R, Heskin A, Jiang Y, Tan YT, Adams-Haduch J, Gao YT, Hecht SS, et al: Prediagnostic levels of urinary 8-epi-prostaglandin F2α and prostaglandin E2 metabolite, biomarkers of oxidative damage and inflammation, and risk of hepatocellular carcinoma. Carcinogenesis. 40:989–997. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wan Z, Huang H, West RE III, Zhang M, Zhang B, Cai X, Zhang Z, Luo Z, Chen Y, Zhang Y, et al: Overcoming pancreatic cancer immune resistance by codelivery of CCR2 antagonist using a STING-activating gemcitabine-based nanocarrier. Mater Today (Kidlington). 62:33–50. 2023. View Article : Google Scholar | |
Sattiraju A, Kang S, Giotti B, Chen Z, Marallano VJ, Brusco C, Ramakrishnan A, Shen L, Tsankov AM, Hambardzumyan D, et al: Hypoxic niches attract and sequester tumor-associated macrophages and cytotoxic T cells and reprogram them for immunosuppression. Immunity. 56:1825–1843 e6. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Ramjiawan RR, Reiberger T, Ng MR, Hato T, Huang Y, Ochiai H, Kitahara S, Unan EC, Reddy TP, et al: CXCR4 inhibition in tumor microenvironment facilitates anti-programmed death receptor-1 immunotherapy in sorafenib-treated hepatocellular carcinoma in mice. Hepatology. 61:1591–1602. 2015. View Article : Google Scholar | |
White CW, Platt S, Kilpatrick LE, Dale N, Abhayawardana RS, Dekkers S, Kindon ND, Kellam B, Stocks MJ, Pfleger KDG and Hill SJ: CXCL17 is an allosteric inhibitor of CXCR4 through a mechanism of action involving glycosaminoglycans. Sci Signal. 17:eabl37582024. View Article : Google Scholar : PubMed/NCBI | |
Klaver D, Gander H, Frena B, Amato M and Thurnher M: Crosstalk between purinergic receptor P2Y11 and chemokine receptor CXCR7 is regulated by CXCR4 in human macrophages. Cell Mol Life Sci. 81:1322024. View Article : Google Scholar | |
Ashrafizadeh M, Zarrabi A, Hashemi F, Zabolian A, Salek i H, Bagher ian M, Azam i N, Bejandi A K, Hushmandi K, Ang HL, et al: Polychemotherapy with curcumin and doxorubicin via biological nanoplatforms: enhancing antitumor activity. Pharmaceutics. 12:10842020. View Article : Google Scholar : PubMed/NCBI | |
Ma X, Yang S, Zhang T, Wang S, Yang Q, Xiao Y, Shi X, Xue P, Kang Y, Liu G, et al: Bioresponsive immune-booster-based prodrug nanogel for cancer immunotherapy. Acta Pharm Sin B. 12:451–466. 2022. View Article : Google Scholar : PubMed/NCBI | |
Jang Y, Cho YS, Kim A, Zhou X, Kim Y, Wan Z, Moon JJ and Park H: CXCR4-Targeted macrophage-derived biomimetic hybrid vesicle nanoplatform for enhanced cancer therapy through codelivery of manganese and doxorubicin. ACS Appl Mater Interfaces. 16:17129–17144. 2024. View Article : Google Scholar : PubMed/NCBI | |
Ries CH, Cannarile MA, Hoves S, Benz J, Wartha K, Runza V, Rey-Giraud F, Pradel LP, Feuerhake F, Klaman I, et al: Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell. 25:846–859. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hashimoto A, Sarker D, Reebye V, Jarvis S, Sodergren MH, Kossenkov A, Sanseviero E, Raulf N, Vasara J, Andrikakou P, et al: Upregulation of C/EBPα inhibits suppressive activity of myeloid cells and potentiates antitumor response in mice and patients with cancer. Clin Cancer Res. 27:5961–5978. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen F, Gong M, Weng D, Jin Z, Han G, Yang Z, Han J and Wang J: Phellinus linteus activates Treg cells via FAK to promote M2 macrophage polarization in hepatocellular carcinoma. Cancer Immunol Immunother. 73:182024. View Article : Google Scholar : PubMed/NCBI | |
Ao JY, Zhu XD, Chai ZT, Cai H, Zhang YY, Zhang KZ, Kong LQ, Zhang N, Ye BG, Ma DN and Sun HC: Colony-Stimulating Factor 1 receptor blockade inhibits tumor growth by altering the polarization of tumor-associated macrophages in hepatocellular carcinoma. Mol Cancer Ther. 16:1544–1554. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Qin J, Lan L, Li N, Wang C, He P, Liu F, Ni H and Wang Y: M-CSF cooperating with NFκB induces macrophage transformation from M1 to M2 by upregulating c-Jun. Cancer Biol Ther. 15:99–107. 2014. View Article : Google Scholar | |
Fang C, Zhong R, Lu S, Yu G, Liu Z, Yan C, Gao J, Tang Y, Wang Y, Zhao Q and Feng X: TREM2 promotes macrophage polarization from M1 to M2 and suppresses osteoarthritis through the NF-κB/CXCL3 axis. Int J Biol Sci. 20:1992–2007. 2024. View Article : Google Scholar : | |
Zhu D, Huang M, Shen P, Zhang B, Chen G, Chen J, Duan L and Duan Y: TREM2 expression promotes liver and peritoneal M2 macrophage polarization in mice infected with Schistosoma japonicum. J Cell Mol Med. 27:2261–2269. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ye Y, Song Y, Zhuang J, Wang G, Ni J and Xia W: Anticancer effects of echinacoside in hepatocellular carcinoma mouse model and HepG2 cells. J Cell Physiol. 234:1880–1888. 2019. View Article : Google Scholar | |
Yang T, Zhang S, Yuan H, Wang Y, Cai L, Chen H and Wang X, Song D and Wang X, Guo Z and Wang X: Platinum-Based TREM2 inhibitor suppresses tumors by remodeling the immunosuppressive microenvironment. Angew Chem Int Ed Engl. 62:e2022133372023. View Article : Google Scholar | |
Zhou L, Wang M, Guo H, Hou J, Zhang Y, Li M, Wu X, Chen X and Wang L: Integrated analysis highlights the immunosuppressive role of TREM2(+) macrophages in hepatocellular carcinoma. Front Immunol. 13:8483672022. View Article : Google Scholar : PubMed/NCBI | |
Tan J, Fan W, Liu T, Zhu B, Liu Y, Wang S, Wu J, Liu J, Zou F, Wei J, et al: TREM2(+) macrophages suppress CD8(+) T-cell infiltration after transarterial chemoembolisation in hepatocellular carcinoma. J Hepatol. 79:126–140. 2023. View Article : Google Scholar : PubMed/NCBI | |
Esparza-Baquer A, Labiano I, Sharif O, Agirre-Lizaso A, Oakley F, Rodrigues PM, Zhuravleva E, O'Rourke CJ, Hijona E, Jimenez-Agüero R, et al: TREM-2 defends the liver against hepatocellular carcinoma through multifactorial protective mechanisms. Gut. 70:1345–1361. 2021. View Article : Google Scholar | |
Binnewies M, Pollack JL, Rudolph J, Dash S, Abushawish M, Lee T, Jahchan NS, Canaday P, Lu E, Norng M, et al: Targeting TREM2 on tumor-associated macrophages enhances immunotherapy. Cell Rep. 37:1098442021. View Article : Google Scholar : PubMed/NCBI | |
Tan HY, Wang N, Man K, Tsao SW, Che CM and Feng Y: Autophagy-induced RelB/p52 activation mediates tumour-associated macrophage repolarisation and suppression of hepatocellular carcinoma by natural compound baicalin. Cell Death Dis. 6:e19422015. View Article : Google Scholar : PubMed/NCBI | |
Xu G, Feng D, Yao Y, Li P, Sun H, Yang H, Li C, Jiang R, Sun B and Chen Y: Listeria-based hepatocellular carcinoma vaccine facilitates anti-PD-1 therapy by regulating macrophage polarization. Oncogene. 39:1429–1444. 2020. View Article : Google Scholar | |
Zhou B, Yang Y and Li C: SIRT1 inhibits hepatocellular carcinoma metastasis by promoting M1 macrophage polarization via NF-κB pathway. Onco Targets Ther. 12:2519–2529. 2019. View Article : Google Scholar : | |
Ye Y, Xu Y, Lai Y, He W, Li Y, Wang R, Luo X, Chen R and Chen T: Long non-coding RNA cox-2 prevents immune evasion and metastasis of hepatocellular carcinoma by altering M1/M2 macrophage polarization. J Cell Biochem. 119:2951–2963. 2018. View Article : Google Scholar | |
Vyas AK, Jindal A, Hissar S, Ramakrishna G and Trehanpati N: Immune balance in Hepatitis B Infection: Present and future therapies. Scand J Immunol. 86:4–14. 2017. View Article : Google Scholar : PubMed/NCBI | |
Anderson NR, Minutolo NG, Gill S and Klichinsky M: Macrophage-Based approaches for cancer immunotherapy. Cancer Res. 81:1201–1208. 2021. View Article : Google Scholar | |
Bao D, Zhao J, Zhou X, Yang Q, Chen Y, Zhu J, Yuan P, Yang J, Qin T, Wan S and Xing J: Mitochondrial fission-induced mtDNA stress promotes tumor-associated macrophage infiltration and HCC progression. Oncogene. 38:5007–5020. 2019. View Article : Google Scholar : PubMed/NCBI | |
Rodell CB, Arlauckas SP, Cuccarese MF, Garris CS, Li R, Ahmed MS, Kohler RH, Pittet MJ and Weissleder R: TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat Biomed Eng. 2:578–588. 2018. View Article : Google Scholar : | |
Powers N, Massena C, Crouse B, Smith M, Hicks L, Evans JT, Miller S, Pravetoni M and Burkhart D: Self-Adjuvanting TLR7/8 agonist and fentanyl hapten co-conjugate achieves enhanced protection against fentanyl challenge. Bioconjug Chem. 34:1811–1821. 2023. View Article : Google Scholar : PubMed/NCBI | |
Kim H, Khanna V, Kucaba TA, Zhang W, Sehgal D, Ferguson DM, Griffith TS and Panyam J: TLR7/8 Agonist-Loaded Nanoparticles Augment NK Cell-Mediated Antibody-Based Cancer Immunotherapy. Mol Pharm. 17:2109–2124. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kim H, Griffith TS and Panyam J: Poly(d,l-lactide-co-glycolide) Nanoparticles as delivery platforms for TLR7/8 agonist-based cancer vaccine. J Pharmacol Exp Ther. 370:715–724. 2019. View Article : Google Scholar : PubMed/NCBI | |
Davenne T, Bridgeman A, Rigby RE and Rehwinkel J: Deoxyguanosine is a TLR7 agonist. Eur J Immunol. 50:56–62. 2020. View Article : Google Scholar : | |
Hirsch E, Katanaev VL, Garlanda C, Azzolino O, Pirola L, Silengo L, Sozzani S, Mantovani A, Altruda F and Wymann MP: Central role for G protein-coupled phosphoinositide 3-kinase gamma in inflammation. Science. 287:1049–1053. 2000. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Long X, Ruan X, Wei Q, Zhang L, Wo L, Huang D, Lin L, Wang D, Xia L, et al: SIRT2-mediated deacetylation and deubiquitination of C/EBPbeta prevents ethanol-induced liver injury. Cell Discov. 7:932021. View Article : Google Scholar | |
Kaneda MM, Messer KS, Ralainirina N, Li H, Leem CJ, Gorjestani S, Woo G, Nguyen AV, Figueiredo CC, Foubert P, et al: PI3Kgamma is a molecular switch that controls immune suppression. Nature. 539:437–442. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rao J, Wang H, Ni M, Wang Z, Wang Z, Wei S, Liu M, Wang P, Qiu J, Zhang L, et al: FSTL1 promotes liver fibrosis by reprogramming macrophage function through modulating the intracellular function of PKM2. Gut. 71:2539–2550. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yang XM, Wang XQ, Hu LP, Feng MX, Zhou YQ, Li DX, Li J, Miao XC, Zhang YL, Yao LL, et al: Nucleolar HEAT Repeat Containing 1 up-regulated by the mechanistic target of rapamycin complex 1 signaling promotes hepatocellular carcinoma growth by dominating ribosome biogenesis and proteome homeostasis. Gastroenterology. 165:629–646. 2023. View Article : Google Scholar : PubMed/NCBI | |
O'Grady S, Crown J and Duffy MJ: Statins inhibit proliferation and induce apoptosis in triple-negative breast cancer cells. Med Oncol. 39:1422022. View Article : Google Scholar : PubMed/NCBI | |
Sprinzl MF, Puschnik A, Schlitter AM, Schad A, Ackermann K, Esposito I, Lang H, Galle PR, Weinmann A, Heikenwälder M and Protzer U: Sorafenib inhibits macrophage-induced growth of hepatoma cells by interference with insulin-like growth factor-1 secretion. J Hepatol. 62:863–870. 2015. View Article : Google Scholar | |
Wu L, Zhang X, Zheng L, Zhao H, Yan G, Zhang Q, Zhou Y, Lei J, Zhang J, Wang J, et al: RIPK3 Orchestrates Fatty Acid Metabolism in Tumor-Associated Macrophages and Hepatocarcinogenesis. Cancer Immunol Res. 8:710–721. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hu Q, Li Y, Chen H, Liao H, He Y and Zheng Q: CCDC88A Post-Transcriptionally Regulates VEGF via miR-101 and subsequently regulates hepatocellular carcinoma. Front Immunol. 13:8593312022. View Article : Google Scholar : PubMed/NCBI | |
Xin Y, Tang L, Chen J, Chen D, Wen W and Han F: Inhibition of miR-101-3p protects against sepsis-induced myocardial injury by inhibiting MAPK and NF-κB pathway activation via the upregulation of DUSP1. Int J Mol Med. 47:202021. View Article : Google Scholar | |
Delire B and Starkel P: The Ras/MAPK pathway and hepatocarcinoma: pathogenesis and therapeutic implications. Eur J Clin Invest. 45:609–623. 2015. View Article : Google Scholar : PubMed/NCBI | |
Takizawa H and Manz MG: Macrophage tolerance: CD47-SIRP-alpha-mediated signals matter. Nat Immunol. 8:1287–1289. 2007. View Article : Google Scholar : PubMed/NCBI | |
McCracken MN, Cha AC and Weissman IL: Molecular Pathways: Activating T Cells after Cancer Cell Phagocytosis from Blockade of CD47 'Don't Eat Me' Signals. Clin Cancer Res. 21:3597–3601. 2015. View Article : Google Scholar : PubMed/NCBI | |
Koh E, Lee EJ, Nam GH, Hong Y, Cho E, Yang Y and Kim IS: Exosome-SIRPα, a CD47 blockade increases cancer cell phagocytosis. Biomaterials. 121:121–129. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xiao Z, Chung H, Banan B, Manning PT, Ott KC, Lin S, Capoccia BJ, Subramanian V, Hiebsch RR, Upadhya GA, et al: Antibody mediated therapy targeting CD47 inhibits tumor progression of hepatocellular carcinoma. Cancer Lett. 360:302–309. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lakhani NJ, Chow LQM, Gainor JF, LoRusso P, Lee KW, Chung HC, Lee J, Bang YJ, Hodi FS, Kim WS, et al: Evorpacept alone and in combination with pembrolizumab or trastuzumab in patients with advanced solid tumours (ASPEN-01): A first-in-human, open-label, multicentre, phase 1 dose-escalation and dose-expansion study. Lancet Oncol. 22:1740–1751. 2021. View Article : Google Scholar : PubMed/NCBI | |
Vaeteewoottacharn K, Kariya R, Pothipan P, Fujikawa S, Pairojkul C, Waraasawapati S, Kuwahara K, Wongkham C, Wongkham S and Okada S: Attenuation of CD47-SIRPα signal in cholangiocarcinoma potentiates tumor-associated macrophage-mediated phagocytosis and suppresses intrahepatic metastasis. Transl Oncol. 12:217–225. 2019. View Article : Google Scholar | |
Yang HD, Kim HS, Kim SY, Na MJ, Yang G, Eun JW, Wang HJ, Cheong JY, Park WS and Nam SW: HDAC6 Suppresses Let-7i-5p to Elicit TSP1/CD47-Mediated anti-tumorigenesis and phagocytosis of hepatocellular carcinoma. Hepatology. 70:1262–1279. 2019. View Article : Google Scholar : PubMed/NCBI | |
Du K, Li Y, Liu J, Chen W, Wei Z, Luo Y, Liu H, Qi Y, Wang F and Sui J: A bispecific antibody targeting GPC3 and CD47 induced enhanced antitumor efficacy against dual antigen-expressing HCC. Mol Ther. 29:1572–1584. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kamber RA, Nishiga Y, Morton B, Banuelos AM, Barkal AA, Vences-Catalán F, Gu M, Fernandez D, Seoane JA, Yao D, et al: Inter-cellular CRISPR screens reveal regulators of cancer cell phagocytosis. Nature. 597:549–554. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen M, Mao A, Xu M, Weng Q, Mao J and Ji J: CRISPR-Cas9 for cancer therapy: Opportunities and challenges. Cancer Lett. 447:48–55. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mout R and Rotello VM: Cytosolic and nuclear delivery of CRISPR/Cas9-ribonucleoprotein for gene editing using arginine functionalized gold nanoparticles. Bio Protoc. 7:e25862017. View Article : Google Scholar : PubMed/NCBI | |
Ray M, Lee YW, Hardie J, Mout R, Yeşilbag Tonga G, Farkas ME and Rotello VM: CRISPRed macrophages for cell-based cancer immunotherapy. Bioconjug Chem. 29:445–450. 2018. View Article : Google Scholar : PubMed/NCBI | |
Quail DF, Bowman RL, Akkari L, Quick ML, Schuhmacher AJ, Huse JT, Holland EC, Sutton JC and Joyce JA: The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas. Science. 352:aad30182016. View Article : Google Scholar : PubMed/NCBI | |
Patwardhan PP, Surriga O, Beckman MJ, de Stanchina E, Dematteo RP, Tap WD and Schwartz GK: Sustained inhibition of receptor tyrosine kinases and macrophage depletion by PLX3397 and rapamycin as a potential new approach for the treatment of MPNSTs. Clin Cancer Res. 20:3146–3158. 2014. View Article : Google Scholar : PubMed/NCBI | |
Welford AF, Biziato D, Coffelt SB, Nucera S, Fisher M, Pucci F, Di Serio C, Naldini L, De Palma M, Tozer GM and Lewis CE: TIE2-expressing macrophages limit the therapeutic efficacy of the vascular-disrupting agent combretastatin A4 phosphate in mice. J Clin Invest. 121:1969–1973. 2011. View Article : Google Scholar : PubMed/NCBI | |
De Palma M and Naldini L: Angiopoietin-2 TIEs up macrophages in tumor angiogenesis. Clin Cancer Res. 17:5226–5232. 2011. View Article : Google Scholar : PubMed/NCBI | |
De Palma M, Venneri MA, Galli R, Sergi Sergi L, Politi LS, Sampaolesi M and Naldini L: Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell. 8:211–226. 2005. View Article : Google Scholar : PubMed/NCBI | |
De Palma M, Murdoch C, Venneri MA, Naldini L and Lewis CE: Tie2-expressing monocytes: Regulation of tumor angiogenesis and therapeutic implications. Trends Immunol. 28:519–524. 2007. View Article : Google Scholar : PubMed/NCBI | |
Quail DF and Joyce JA: Molecular pathways: Deciphering mechanisms of resistance to macrophage-targeted therapies. Clin Cancer Res. 23:876–884. 2017. View Article : Google Scholar : | |
Bergers G and Hanahan D: Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer. 8:592–603. 2008. View Article : Google Scholar : PubMed/NCBI | |
Koivisto AP, Belvisi MG, Gaudet R and Szallasi A: Advances in TRP channel drug discovery: From target validation to clinical studies. Nat Rev Drug Discov. 21:41–59. 2022. View Article : Google Scholar | |
Wang W, Liu P, Zhang Y, Yan L, Zhu MX, Wang J and Yu Y: Expression and functions of transient receptor potential channels in liver diseases. Acta Pharm Sin B. 13:445–459. 2023. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Lyu Y, Zhu L and Wang H: Role of TRP channels in liver-related diseases. Int J Mol Sci. 24:125092023. View Article : Google Scholar : PubMed/NCBI |