Molecular mechanisms and targeted therapy for the metastasis of prostate cancer to the bones (Review)
- Authors:
- Yankai Xu
- Gang Zhang
- Yuanyuan Liu
- Yangyang Liu
- Aimin Tian
- Jizhong Che
- Zhengchao Zhang
-
Affiliations: Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong 264100, P.R. China - Published online on: September 12, 2024 https://doi.org/10.3892/ijo.2024.5692
- Article Number: 104
-
Copyright: © Xu et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 4.0].
This article is mentioned in:
Abstract
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xia C, Dong X, Li H, Cao M, Sun D, He S, Yang F, Yan X, Zhang S, Li N and Chen W: Cancer statistics in China and United States, 2022: Profiles, trends, and determinants. Chin Med J (Engl). 135:584–590. 2022. View Article : Google Scholar : PubMed/NCBI | |
Salji M, Hendry J, Patel A, Ahmad I, Nixon C and Leung HY: Peri-prostatic fat volume measurement as a predictive tool for castration resistance in advanced prostate cancer. Eur Urol Focus. 4:858–866. 2018. View Article : Google Scholar | |
Yang L, Jin M, Park SJ, Seo SY and Jeong KW: SETD1A promotes proliferation of castration-resistant prostate cancer cells via FOXM1 transcription. Cancers (Basel). 12:17362020. View Article : Google Scholar : PubMed/NCBI | |
Chi JT, Lin PH, Tolstikov V, Oyekunle T, Chen EY, Bussberg V, Greenwood B, Sarangarajan R, Narain NR, Kiebish MA and Freedland SJ: Metabolomic effects of androgen deprivation therapy treatment for prostate cancer. Cancer Med. 9:3691–3702. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yu Z, Zou H, Wang H, Li Q and Yu D: Identification of key gene signatures associated with bone metastasis in castration-resistant prostate cancer using co-expression analysis. Front Oncol. 10:5715242021. View Article : Google Scholar : PubMed/NCBI | |
Lee S, Mendoza TR, Burner DN, Muldong MT, Wu CCN, Arreola-Villanueva C, Zuniga A, Greenburg O, Zhu WY, Murtadha J, et al: Novel dormancy mechanism of castration resistance in bone metastatic prostate cancer organoids. Int J Mol Sci. 23:32032022. View Article : Google Scholar : PubMed/NCBI | |
Clézardin P, Coleman R, Puppo M, Ottewell P, Bonnelye E, Paycha F, Confavreux CB and Holen I: Bone metastasis: Mechanisms, therapies, and biomarkers. Physiol Rev. 101:797–855. 2021. View Article : Google Scholar | |
Clarke NW, Hart CA and Brown MD: Molecular mechanisms of metastasis in prostate cancer. Asian J Androl. 11:57–67. 2009. View Article : Google Scholar | |
Talreja DB: Importance of antiresorptive therapies for patients with bone metastases from solid tumors. Cancer Manag Res. 4:287–297. 2012. View Article : Google Scholar : PubMed/NCBI | |
Coleman RE: Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res. 12:6243s–6249s. 2006. View Article : Google Scholar : PubMed/NCBI | |
Nørgaard M, Jensen AØ, Jacobsen JB, Cetin K, Fryzek JP and Sørensen HT: Skeletal related events, bone metastasis and survival of prostate cancer: A population based cohort study in Denmark (1999 to 2007). J Urol. 184:162–167. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhang X: Interactions between cancer cells and bone microenvironment promote bone metastasis in prostate cancer. Cancer Commun (Lond). 39:762019. View Article : Google Scholar : PubMed/NCBI | |
Kang J, La Manna F, Bonollo F, Sampson N, Alberts IL, Mingels C, Afshar-Oromieh A, Thalmann GN and Karkampouna S: Tumor microenvironment mechanisms and bone metastatic disease progression of prostate cancer. Cancer Lett. 530:156–169. 2022. View Article : Google Scholar : PubMed/NCBI | |
Singh DK, Patel VG, Oh WK and Aguirre-Ghiso JA: Prostate cancer dormancy and reactivation in bone marrow. J Clin Med. 10:26482021. View Article : Google Scholar : PubMed/NCBI | |
Bedeschi M, Marino N, Cavassi E, Piccinini F and Tesei A: Cancer-associated fibroblast: Role in prostate cancer progression to metastatic disease and therapeutic resistance. Cells. 12:8022023. View Article : Google Scholar : PubMed/NCBI | |
Kim JM, Lin C, Stavre Z, Greenblatt MB and Shim JH: Osteoblast-osteoclast communication and bone homeostasis. Cells. 9:20732020. View Article : Google Scholar : PubMed/NCBI | |
Mughees M, Kaushal JB, Sharma G, Wajid S, Batra SK and Siddiqui JA: Chemokines and cytokines: Axis and allies in prostate cancer pathogenesis. Semin Cancer Biol. 86:497–512. 2022. View Article : Google Scholar : PubMed/NCBI | |
Gartrell BA, Coleman R, Efstathiou E, Fizazi K, Logothetis CJ, Smith MR, Sonpavde G, Sartor O and Saad F: Metastatic prostate cancer and the bone: Significance and therapeutic options. Eur Urol. 68:850–858. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ban J, Fock V, Aryee DNT and Kovar H: Mechanisms, diagnosis and treatment of bone metastases. Cells. 10:29442021. View Article : Google Scholar : PubMed/NCBI | |
Deng X, He G, Liu J, Luo F, Peng X, Tang S, Gao Z, Lin Q, Keller JM, Yang T and Keller ET: Recent advances in bone-targeted therapies of metastatic prostate cancer. Cancer Treat Rev. 40:730–738. 2014. View Article : Google Scholar : PubMed/NCBI | |
Baci D, Bruno A, Cascini C, Gallazzi M, Mortara L, Sessa F, Pelosi G, Albini A and Noonan DM: Acetyl-L-carnitine downregulates invasion (CXCR4/CXCL12, MMP-9) and angiogenesis (VEGF, CXCL8) pathways in prostate cancer cells: Rationale for prevention and interception strategies. J Exp Clin Cancer Res. 38:4642019. View Article : Google Scholar : PubMed/NCBI | |
Midavaine É, Côté J and Sarret P: The multifaceted roles of the chemokines CCL2 and CXCL12 in osteophilic metastatic cancers. Cancer Metastasis Rev. 40:427–445. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cioni B, Nevedomskaya E, Melis MHM, van Burgsteden J, Stelloo S, Hodel E, Spinozzi D, de Jong J, van der Poel H, de Boer JP, et al: Loss of androgen receptor signaling in prostate cancer-associated fibroblasts (CAFs) promotes CCL2- and CXCL8-mediated cancer cell migration. Mol Oncol. 12:1308–1323. 2018. View Article : Google Scholar : PubMed/NCBI | |
Siddiqui JA, Seshacharyulu P, Muniyan S, Pothuraju R, Khan P, Vengoji R, Chaudhary S, Maurya SK, Lele SM, Jain M, et al: GDF15 promotes prostate cancer bone metastasis and colonization through osteoblastic CCL2 and RANKL activation. Bone Res. 10:62022. View Article : Google Scholar : PubMed/NCBI | |
Li Y, He Y, Butler W, Xu L, Chang Y, Lei K, Zhang H, Zhou Y, Gao AC, Zhang Q, et al: Targeting cellular heterogeneity with CXCR2 blockade for the treatment of therapy-resistant prostate cancer. Sci Transl Med. 11:eaax04282019. View Article : Google Scholar : PubMed/NCBI | |
Singh R, Kapur N, Mir H, Singh N, Lillard JW Jr and Singh S: CXCR6-CXCL16 axis promotes prostate cancer by mediating cytoskeleton rearrangement via Ezrin activation and αvβ3 integrin clustering. Oncotarget. 7:7343–7353. 2016. View Article : Google Scholar : PubMed/NCBI | |
Connell B, Kopach P, Ren W, Joshi R, Naber S, Zhou M and Mathew P: Aberrant integrin αv and α5 expression in prostate adenocarcinomas and bone-metastases is consistent with a bone-colonizing phenotype. Transl Androl Urol. 9:1630–1638. 2020. View Article : Google Scholar : PubMed/NCBI | |
Massagué J and Obenauf AC: Metastatic colonization by circulating tumour cells. Nature. 529:298–306. 2016. View Article : Google Scholar : PubMed/NCBI | |
Quayle L, Ottewell PD and Holen I: Bone metastasis: Molecular mechanisms implicated in tumour cell dormancy in breast and prostate cancer. Curr Cancer Drug Targets. 15:469–480. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yumoto K, Eber MR, Wang J, Cackowski FC, Decker AM, Lee E, Nobre AR, Aguirre-Ghiso JA, Jung Y and Taichman RS: Axl is required for TGF-β2-induced dormancy of prostate cancer cells in the bone marrow. Sci Rep. 6:365202016. View Article : Google Scholar | |
Kobayashi A, Okuda H, Xing F, Pandey PR, Watabe M, Hirota S, Pai SK, Liu W, Fukuda K, Chambers C, et al: Bone morphogenetic protein 7 in dormancy and metastasis of prostate cancer stem-like cells in bone. J Exp Med. 208:2641–2655. 2011. View Article : Google Scholar : PubMed/NCBI | |
Park M, Cho YJ, Kim B, Ko YJ, Jang Y, Moon YH, Hyun H and Lim W: RANKL immunisation inhibits prostate cancer metastasis by modulating EMT through a RANKL-dependent pathway. Sci Rep. 11:121862021. View Article : Google Scholar : PubMed/NCBI | |
Ren D, Dai Y, Yang Q, Zhang X, Guo W, Ye L, Huang S, Chen X, Lai Y, Du H, et al: Wnt5a induces and maintains prostate cancer cells dormancy in bone. J Exp Med. 216:428–449. 2019. View Article : Google Scholar : | |
Ruppender N, Larson S, Lakely B, Kollath L, Brown L, Coleman I, Coleman R, Nguyen H, Nelson PS, Corey E, et al: Cellular adhesion promotes prostate cancer cells escape from dormancy. PLoS One. 10:e01305652015. View Article : Google Scholar : PubMed/NCBI | |
Rojas A, Liu G, Coleman I, Nelson PS, Zhang M, Dash R, Fisher PB, Plymate SR and Wu JD: IL-6 promotes prostate tumorigenesis and progression through autocrine cross-activation of IGF-IR. Oncogene. 30:2345–2355. 2011. View Article : Google Scholar : PubMed/NCBI | |
Danilucci TM, Santos PK, Pachane BC, Pisani GFD, Lino RLB, Casali BC, Altei WF and Selistre-de-Araujo HS: Recombinant RGD-disintegrin DisBa-01 blocks integrin αvβ3 and impairs VEGF signaling in endothelial cells. Cell Commun Signal. 17:272019. View Article : Google Scholar | |
Hashemi M, Taheriazam A, Daneii P, Hassanpour A, Kakavand A, Rezaei S, Hejazi ES, Aboutalebi M, Gholamrezaie H, Saebfar H, et al: Targeting PI3K/Akt signaling in prostate cancer therapy. J Cell Commun Signal. 17:423–443. 2023. View Article : Google Scholar : | |
Cooper CR and Pienta KJ: Cell adhesion and chemotaxis in prostate cancer metastasis to bone: A minireview. Prostate Cancer Prostatic Dis. 3:6–12. 2000. View Article : Google Scholar | |
Yin JJ, Pollock CB and Kelly K: Mechanisms of cancer metastasis to the bone. Cell Res. 15:57–62. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Liang J, Liu P, Wang Q, Liu L and Zhao H: The RANK/RANKL/OPG system and tumor bone metastasis: Potential mechanisms and therapeutic strategies. Front Endocrinol (Lausanne). 13:10638152022. View Article : Google Scholar | |
Wong SK, Mohamad NV, Giaze TR, Chin KY, Mohamed N and Ima-Nirwana S: Prostate cancer and bone metastases: The underlying mechanisms. Int J Mol Sci. 20:25872019. View Article : Google Scholar : PubMed/NCBI | |
Kim SW, Kim JS, Papadopoulos J, Choi HJ, He J, Maya M, Langley RR, Fan D, Fidler IJ and Kim SJ: Consistent interactions between tumor cell IL-6 and macrophage TNF-α enhance the growth of human prostate cancer cells in the bone of nude mouse. Int Immunopharmacol. 11:862–872. 2011. View Article : Google Scholar : PubMed/NCBI | |
Baldessari C, Pipitone S, Molinaro E, Cerma K, Fanelli M, Nasso C, Oltrecolli M, Pirola M, D'Agostino E, Pugliese G, et al: Bone metastases and health in prostate cancer: From pathophysiology to clinical implications. Cancers (Basel). 15:15182023. View Article : Google Scholar : PubMed/NCBI | |
Vičić I and Belev B: The pathogenesis of bone metastasis in solid tumors: A review. Croat Med J. 62:270–282. 2021. View Article : Google Scholar | |
Yu H, Lin L, Zhang Z, Zhang H and Hu H: Targeting NF-κB pathway for the therapy of diseases: Mechanism and clinical study. Signal Transduct Target Ther. 5:2092020. View Article : Google Scholar | |
Verzella D, Fischietti M, Capece D, Vecchiotti D, Del Vecchio F, Cicciarelli G, Mastroiaco V, Tessitore A, Alesse E and Zazzeroni F: Targeting the NF-κB pathway in prostate cancer: A promising therapeutic approach? Curr Drug Targets. 17:311–320. 2016. View Article : Google Scholar | |
Al-Rashidi RR, Noraldeen SAM, Kareem AK, Mahmoud AK, Kadhum WR, Ramírez-Coronel AA, Iswanto AH, Obaid RF, Jalil AT, Mustafa YF, et al: Malignant function of nuclear factor-kappaB axis in prostate cancer: Molecular interactions and regulation by non-coding RNAs. Pharmacol Res. 194:1067752023. View Article : Google Scholar : PubMed/NCBI | |
Zhu W, Hu X, Xu J, Cheng Y, Shao Y and Peng Y: Effect of PI3K/Akt signaling pathway on the process of prostate cancer metastasis to bone. Cell Biochem Biophys. 72:171–177. 2015. View Article : Google Scholar | |
Ziaee S and Chung LW: Induction of integrin α2 in a highly bone metastatic human prostate cancer cell line: Roles of RANKL and AR under three-dimensional suspension culture. Mol Cancer. 13:2082014. View Article : Google Scholar | |
Yin J, Liu YN, Tillman H, Barrett B, Hewitt S, Ylaya K, Fang L, Lake R, Corey E, Morrissey C, et al: AR-regulated TWEAK-FN14 pathway promotes prostate cancer bone metastasis. Cancer Res. 74:4306–4317. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lee C, Whang YM, Campbell P, Mulcrone PL, Elefteriou F, Cho SW and Park SI: Dual targeting c-met and VEGFR2 in osteoblasts suppresses growth and osteolysis of prostate cancer bone metastasis. Cancer Lett. 414:205–213. 2018. View Article : Google Scholar | |
Choi SY, Jeon JM, Na AY, Kwon OK, Bang IH, Ha YS, Bae EJ, Park BH, Lee EH, Kwon TG, et al: SIRT5 directly inhibits the PI3K/AKT pathway in prostate cancer cell lines. Cancer Genomics Proteomics. 19:50–59. 2022. View Article : Google Scholar : | |
Chen JR, Zhao JT and Xie ZZ: Integrin-mediated cancer progression as a specific target in clinical therapy. Biomed Pharmacother. 155:1137452022. View Article : Google Scholar : PubMed/NCBI | |
Hamidi H and Ivaska J: Every step of the way: Integrins in cancer progression and metastasis. Nat Rev Cancer. 18:533–548. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li M, Wang Y, Li M, Wu X, Setrerrahmane S and Xu H: Integrins as attractive targets for cancer therapeutics. Acta Pharm Sin B. 11:2726–2737. 2021. View Article : Google Scholar : PubMed/NCBI | |
Giancotti FG and Ruoslahti E: Integrin signaling. Science. 285:1028–1032. 1999. View Article : Google Scholar : PubMed/NCBI | |
Hynes RO: Integrins: Versatility, modulation, and signaling in cell adhesion. Cell. 69:11–25. 1992. View Article : Google Scholar : PubMed/NCBI | |
Cooper J and Giancotti FG: Integrin signaling in cancer: Mechanotransduction, stemness, epithelial plasticity, and therapeutic resistance. Cancer Cell. 35:347–367. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jin JK, Tien PC, Cheng CJ, Song JH, Huang C, Lin SH and Gallick GE: Talin1 phosphorylation activates β1 integrins: A novel mechanism to promote prostate cancer bone metastasis. Oncogene. 34:1811–1821. 2015. View Article : Google Scholar | |
Chen PC, Tang CH, Lin LW, Tsai CH, Chu CY, Lin TH and Huang YL: Thrombospondin-2 promotes prostate cancer bone metastasis by the up-regulation of matrix metalloproteinase-2 through down-regulating miR-376c expression. J Hematol Oncol. 10:332017. View Article : Google Scholar : PubMed/NCBI | |
Krishnamurthy N and Kurzrock R: Targeting the Wnt/beta-catenin pathway in cancer: Update on effectors and inhibitors. Cancer Treat Rev. 62:50–60. 2018. View Article : Google Scholar | |
Yu F, Yu C, Li F, Zuo Y, Wang Y, Yao L, Wu C, Wang C and Ye L: Wnt/β-catenin signaling in cancers and targeted therapies. Signal Transduct Target Ther. 6:3072021. View Article : Google Scholar | |
Li Q, Ye L, Zhang X, Wang M, Lin C, Huang S, Guo W, Lai Y, Du H, Li J, et al: FZD8, a target of p53, promotes bone metastasis in prostate cancer by activating canonical Wnt/β-catenin signaling. Cancer Lett. 402:166–176. 2017. View Article : Google Scholar : PubMed/NCBI | |
Nandana S, Tripathi M, Duan P, Chu CY, Mishra R, Liu C, Jin R, Yamashita H, Zayzafoon M, Bhowmick NA, et al: Bone metastasis of prostate cancer can be therapeutically targeted at the TBX2-WNT signaling axis. Cancer Res. 77:1331–1344. 2017. View Article : Google Scholar : PubMed/NCBI | |
Peng S, Chen X, Huang C, Yang C, Situ M, Zhou Q, Ling Y, Huang H, Huang M, Zhang Y, et al: UBE2S as a novel ubiquitinated regulator of p16 and β-catenin to promote bone metastasis of prostate cancer. Int J Biol Sci. 18:3528–3543. 2022. View Article : Google Scholar : | |
Tang DG: Understanding and targeting prostate cancer cell heterogeneity and plasticity. Semin Cancer Biol. 82:68–93. 2022. View Article : Google Scholar : | |
Wolf I, Gratzke C and Wolf P: Prostate cancer stem cells: Clinical aspects and targeted therapies. Front Oncol. 12:9357152022. View Article : Google Scholar : PubMed/NCBI | |
Pittet MJ, Michielin O and Migliorini D: Clinical relevance of tumour-associated macrophages. Nat Rev Clin Oncol. 19:402–421. 2022. View Article : Google Scholar : PubMed/NCBI | |
Huang R, Wang S, Wang N, Zheng Y, Zhou J, Yang B, Wang X, Zhang J, Guo L, Wang S, et al: CCL5 derived from tumor-associated macrophages promotes prostate cancer stem cells and metastasis via activating β-catenin/STAT3 signaling. Cell Death Dis. 11:2342020. View Article : Google Scholar | |
Zhang S, Lv C, Niu Y, Li C, Li X, Shang Y, Zhang Y, Zhang Y, Zhang Y and Zeng Y: RBM3 suppresses stemness remodeling of prostate cancer in bone microenvironment by modulating N6-methyladenosine on CTNNB1 mRNA. Cell Death Dis. 14:912023. View Article : Google Scholar : PubMed/NCBI | |
Meng X, Vander Ark A, Daft P, Woodford E, Wang J, Madaj Z and Li X: Loss of TGF-β signaling in osteoblasts increases basic-FGF and promotes prostate cancer bone metastasis. Cancer Lett. 418:109–118. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Chen L, Fan Y, Hong Y, Yang X, Li Y, Lu J, Lv J, Pan X, Qu F, et al: IFITM3 promotes bone metastasis of prostate cancer cells by mediating activation of the TGF-β signaling pathway. Cell Death Dis. 10:5172019. View Article : Google Scholar | |
Yan Z, Jin S, Wei Z, Huilian H, Zhanhai Y, Yue T, Juan L, Jing L, Libo Y and Xu L: Discoidin domain receptor 2 facilitates prostate cancer bone metastasis via regulating parathyroid hormone-related protein. Biochim Biophys Acta. 1842:1350–1363. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lin SR, Mokgautsi N and Liu YN: Ras and Wnt interaction contribute in prostate cancer bone metastasis. Molecules. 25:23802020. View Article : Google Scholar : PubMed/NCBI | |
Yang Q, Lang C, Wu Z, Dai Y, He S, Guo W, Huang S, Du H, Ren D and Peng X: MAZ promotes prostate cancer bone metastasis through transcriptionally activating the KRas-dependent RalGEFs pathway. J Exp Clin Cancer Res. 38:3912019. View Article : Google Scholar : PubMed/NCBI | |
Eswarakumar VP, Lax I and Schlessinger J: Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 16:139–149. 2005. View Article : Google Scholar : PubMed/NCBI | |
Labanca E, Yang J, Shepherd PDA, Wan X, Starbuck MW, Guerra LD, Anselmino N, Bizzotto JA, Dong J, Chinnaiyan AM, et al: Fibroblast growth factor receptor 1 drives the metastatic progression of prostate cancer. Eur Urol Oncol. 5:164–175. 2022. View Article : Google Scholar | |
Tai HC, Chang AC, Yu HJ, Huang CY, Tsai YC, Lai YW, Sun HL, Tang CH and Wang SW: Osteoblast-derived WNT-induced secreted protein 1 increases VCAM-1 expression and enhances prostate cancer metastasis by down-regulating miR-126. Oncotarget. 5:7589–7598. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chang AC, Chen PC, Lin YF, Su CM, Liu JF, Lin TH, Chuang SM and Tang CH: Osteoblast-secreted WISP-1 promotes adherence of prostate cancer cells to bone via the VCAM-1/integrin α4β1 system. Cancer Lett. 426:47–56. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu Q, Li A, Tian Y, Wu JD, Liu Y, Li T, Chen Y, Han X and Wu K: The CXCL8-CXCR1/2 pathways in cancer. Cytokine Growth Factor Rev. 31:61–71. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hao Q, Vadgama JV and Wang P: CCL2/CCR2 signaling in cancer pathogenesis. Cell Commun Signal. 18:822020. View Article : Google Scholar : PubMed/NCBI | |
Johnson CS and Cook LM: Osteoid cell-derived chemokines drive bone-metastatic prostate cancer. Front Oncol. 13:11005852023. View Article : Google Scholar : PubMed/NCBI | |
Govindarajan B, Sbrissa D, Pressprich M, Kim S, Vaishampayan U, Cher ML and Chinni S: Adaptor proteins mediate CXCR4 and PI4KA crosstalk in prostate cancer cells and the significance of PI4KA in bone tumor growth. Res Sq [Preprint]: rs.3.rs-2590830. 2023. | |
Conley-LaComb MK, Semaan L, Singareddy R, Li Y, Heath EI, Kim S, Cher ML and Chinni SR: Pharmacological targeting of CXCL12/CXCR4 signaling in prostate cancer bone metastasis. Mol Cancer. 15:682016. View Article : Google Scholar : PubMed/NCBI | |
Zhang B, Li Y, Wu Q, Xie L, Barwick B, Fu C, Li X, Wu D, Xia S, Chen J, et al: Acetylation of KLF5 maintains EMT and tumorigenicity to cause chemoresistant bone metastasis in prostate cancer. Nat Commun. 12:17142021. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Karthaus WR, Lee YS, Gao VR, Wu C, Russo JW, Liu M, Mota JM, Abida W, Linton E, et al: Tumor microenvironment-derived NRG1 promotes antiandrogen resistance in prostate cancer. Cancer Cell. 38:279–296.e9. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yin C, Wang M, Wang Y, Lin Q, Lin K, Du H, Lang C, Dai Y and Peng X: BHLHE22 drives the immunosuppressive bone tumor microenvironment and associated bone metastasis in prostate cancer. J Immunother Cancer. 11:e0055322023. View Article : Google Scholar : PubMed/NCBI | |
Kolonin MG, Sergeeva A, Staquicini DI, Smith TL, Tarleton CA, Molldrem JJ, Sidman RL, Marchiò S, Pasqualini R and Arap W: Interaction between tumor cell surface receptor RAGE and proteinase 3 mediates prostate cancer metastasis to bone. Cancer Res. 77:3144–3150. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhao Z, Li E, Luo L, Zhao S, Liu L, Wang J, Kang R and Luo J: A PSCA/PGRN-NF-κB-integrin-α4 axis promotes prostate cancer cell adhesion to bone marrow endothelium and enhances metastatic potential. Mol Cancer Res. 18:501–513. 2020. View Article : Google Scholar | |
Geng X, Chang B and Shan J: Role and correlation of exosomes and integrins in bone metastasis of prostate cancer. Andrologia. 54:e145502022. View Article : Google Scholar : PubMed/NCBI | |
Borel M, Lollo G, Magne D, Buchet R, Brizuela L and Mebarek S: Prostate cancer-derived exosomes promote osteoblast differentiation and activity through phospholipase D2. Biochim Biophys Acta Mol Basis Dis. 1866:1659192020. View Article : Google Scholar : PubMed/NCBI | |
Urabe F, Kosaka N, Yamamoto Y, Ito K, Otsuka K, Soekmadji C, Egawa S, Kimura T and Ochiya T: Metastatic prostate cancer-derived extracellular vesicles facilitate osteoclastogenesis by transferring the CDCP1 protein. J Extracell Vesicles. 12:e123122023. View Article : Google Scholar : PubMed/NCBI | |
Yu G, Shen P, Lee YC, Pan J, Song JH, Pan T, Lin SC, Liang X, Wang G, Panaretakis T, et al: Multiple pathways coordinating reprogramming of endothelial cells into osteoblasts by BMP4. iScience. 24:1023882021. View Article : Google Scholar : PubMed/NCBI | |
Lee YC, Lin SC, Yu G, Zhu M, Song JH, Rivera K, Pappin DJ, Logothetis CJ, Panaretakis T, Wang G, et al: Prostate tumor-induced stromal reprogramming generates tenascin C that promotes prostate cancer metastasis through YAP/TAZ inhibition. Oncogene. 41:757–769. 2022. View Article : Google Scholar : | |
Wang H, Zhang M, Lu W and Yuan C: Prostate cancer cell-derived spondin 2 boosts osteogenic factor levels in osteoblasts via the PI3K/AKT/mTOR pathway. Oncol Rep. 49:232023. View Article : Google Scholar | |
Fizazi K, Carducci M, Smith M, Damião R, Brown J, Karsh L, Milecki P, Shore N, Rader M, Wang H, et al: Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: A randomised, double-blind study. Lancet. 377:813–822. 2011. View Article : Google Scholar : PubMed/NCBI | |
Henry D, Vadhan-Raj S, Hirsh V, von Moos R, Hungria V, Costa L, Woll PJ, Scagliotti G, Smith G, Feng A, et al: Delaying skeletal-related events in a randomized phase 3 study of denosumab versus zoledronic acid in patients with advanced cancer: An analysis of data from patients with solid tumors. Support Care Cancer. 22:679–687. 2014. View Article : Google Scholar | |
Shenderov E, Boudadi K, Fu W, Wang H, Sullivan R, Jordan A, Dowling D, Harb R, Schonhoft J, Jendrisak A, et al: Nivolumab plus ipilimumab, with or without enzalutamide, in AR-V7-expressing metastatic castration-resistant prostate cancer: A phase-2 nonrandomized clinical trial. Prostate. 81:326–338. 2021. View Article : Google Scholar : PubMed/NCBI | |
Subudhi SK, Siddiqui BA, Aparicio AM, Yadav SS, Basu S, Chen H, Jindal S, Tidwell RSS, Varma A, Logothetis CJ, et al: Combined CTLA-4 and PD-L1 blockade in patients with chemotherapy-naïve metastatic castration-resistant prostate cancer is associated with increased myeloid and neutrophil immune subsets in the bone microenvironment. J Immunother Cancer. 9:e0029192021. View Article : Google Scholar | |
McNeel DG, Eickhoff JC, Wargowski E, Johnson LE, Kyriakopoulos CE, Emamekhoo H, Lang JM, Brennan MJ and Liu G: Phase 2 trial of T-cell activation using MVI-816 and pembrolizumab in patients with metastatic, castration-resistant prostate cancer (mCRPC). J Immunother Cancer. 10:e0041982022. View Article : Google Scholar : PubMed/NCBI | |
Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, et al: Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 363:411–422. 2010. View Article : Google Scholar : PubMed/NCBI | |
Su P, Zhang M and Kang X: Targeting c-Met in the treatment of urologic neoplasms: Current status and challenges. Front Oncol. 13:10710302023. View Article : Google Scholar : PubMed/NCBI | |
Azad AA, Beardsley EK, Hotte SJ, Ellard SL, Klotz L, Chin J, Kollmannsberger C, Mukherjee SD and Chi KN: A randomized phase II efficacy and safety study of vandetanib (ZD6474) in combination with bicalutamide versus bicalutamide alone in patients with chemotherapy naïve castration-resistant prostate cancer. Invest New Drugs. 32:746–752. 2014. View Article : Google Scholar : PubMed/NCBI | |
Maroto P, Porta C, Capdevila J, Apolo AB, Viteri S, Rodriguez-Antona C, Martin L and Castellano D: Cabozantinib for the treatment of solid tumors: A systematic review. Ther Adv Med Oncol. 14:175883592211071122022. View Article : Google Scholar : PubMed/NCBI | |
Smith M, De Bono J, Sternberg C, Le Moulec S, Oudard S, De Giorgi U, Krainer M, Bergman A, Hoelzer W, De Wit R, et al: Phase III Study of cabozantinib in previously treated metastatic castration-resistant prostate cancer: COMET-1. J Clin Oncol. 34:3005–3013. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sadaghiani MS, Sheikhbahaei S, Werner RA, Pienta KJ, Pomper MG, Gorin MA, Solnes LB and Rowe SP: 177 Lu-PSMA radioligand therapy effectiveness in metastatic castration-resistant prostate cancer: An updated systematic review and meta-analysis. Prostate. 82:826–835. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kim YJ and Kim YI: Therapeutic responses and survival effects of 177Lu-PSMA-617 radioligand therapy in metastatic castrate-resistant prostate cancer: A meta-analysis. Clin Nucl Med. 43:728–734. 2018. View Article : Google Scholar : PubMed/NCBI | |
Thang SP, Violet J, Sandhu S, Iravani A, Akhurst T, Kong G, Ravi Kumar A, Murphy DG, Williams SG, Hicks RJ and Hofman MS: Poor outcomes for patients with metastatic castration-resistant prostate cancer with low prostate-specific membrane antigen (PSMA) expression deemed ineligible for 177Lu-labelled PSMA radioligand therapy. Eur Urol Oncol. 2:670–676. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ma J, Li L, Liao T, Gong W and Zhang C: Efficacy and safety of 225Ac-PSMA-617-targeted alpha therapy in metastatic castration-resistant prostate cancer: A systematic review and meta-analysis. Front Oncol. 12:7966572022. View Article : Google Scholar | |
Ballal S, Yadav MP, Sahoo RK, Tripathi M, Dwivedi SN and Bal C: 225 Ac-PSMA-617-targeted alpha therapy for the treatment of metastatic castration-resistant prostate cancer: A systematic review and meta-analysis. Prostate. 81:580–591. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gao X, Li L, Cai X, Huang Q, Xiao J and Cheng Y: Targeting nanoparticles for diagnosis and therapy of bone tumors: Opportunities and challenges. Biomaterials. 265:1204042021. View Article : Google Scholar | |
Chen G, Arns S and Young RN: Determination of the rat in vivo pharmacokinetic profile of a bone-targeting dual-action pro-drug for treatment of osteoporosis. Bioconjug Chem. 26:1095–1103. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bighetti-Trevisan RL, Sousa LO, Castilho RM and Almeida LO: Cancer stem cells: Powerful targets to improve current anticancer therapeutics. Stem Cells Int. 2019:96180652019. View Article : Google Scholar : PubMed/NCBI | |
Garcia-Mayea Y, Mir C, Masson F, Paciucci R and LLeonart ME: Insights into new mechanisms and models of cancer stem cell multidrug resistance. Semin Cancer Biol. 60:166–180. 2020. View Article : Google Scholar | |
Riganti C, Contino M, Guglielmo S, Perrone MG, Salaroglio IC, Milosevic V, Giampietro R, Leonetti F, Rolando B, Lazzarato L, et al: Design, biological evaluation, and molecular modeling of tetrahydroisoquinoline derivatives: Discovery of a potent p-glycoprotein ligand overcoming multidrug resistance in cancer stem cells. J Med Chem. 62:974–986. 2019. View Article : Google Scholar | |
Cho Y and Kim YK: Cancer stem cells as a potential target to overcome multidrug resistance. Front Oncol. 10:7642020. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Ma Z, Xiao Z, Liu H, Dou Z, Feng X and Shi H: Chk1 knockdown confers radiosensitization in prostate cancer stem cells. Oncol Rep. 28:2247–2254. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mei W, Lin X, Kapoor A, Gu Y, Zhao K and Tang D: The contributions of prostate cancer stem cells in prostate cancer initiation and metastasis. Cancers (Basel). 11:4342019. View Article : Google Scholar : PubMed/NCBI | |
Domanska UM, Timmer-Bosscha H, Nagengast WB, Oude Munnink TH, Kruizinga RC, Ananias HJ, Kliphuis NM, Huls G, De Vries EG, de Jong IJ and Walenkamp AM: CXCR4 inhibition with AMD3100 sensitizes prostate cancer to docetaxel chemotherapy. Neoplasia. 14:709–718. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ni J, Cozzi P, Beretov J, Duan W, Bucci J, Graham P and Li Y: Epithelial cell adhesion molecule (EpCAM) is involved in prostate cancer chemotherapy/radiotherapy response in vivo. BMC Cancer. 18:10922018. View Article : Google Scholar : PubMed/NCBI | |
Yao L and Zhang X: Interaction between prostate cancer stem cells and bone microenvironment regulates prostate cancer bone metastasis and treatment resistance. J Cancer. 13:2757–2767. 2022. View Article : Google Scholar : PubMed/NCBI | |
Klaff R, Varenhorst E, Berglund A, Hedlund PO, Sjöberg F and Sandblom G; SPCG-5 Study Group: Clinical presentation and predictors of survival related to extent of bone metastasis in 900 prostate cancer patients. Scand J Urol. 50:352–359. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fizazi K, Massard C, Smith M, Rader M, Brown J, Milecki P, Shore N, Oudard S, Karsh L, Carducci M, et al: Bone-related parameters are the main prognostic factors for overall survival in men with bone metastases from castration-resistant prostate cancer. Eur Urol. 68:42–50. 2015. View Article : Google Scholar | |
Zhang J, Sun J, Bakht S and Hassan W: Recent development and future prospects of molecular targeted therapy in prostate cancer. Curr Mol Pharmacol. 15:159–169. 2022. | |
Liang XW, Liu B, Chen JC, Cao Z, Chu FR, Lin X, Wang SZ and Wu JC: Characteristics and molecular mechanism of drug-tolerant cells in cancer: A review. Front Oncol. 13:11774662023. View Article : Google Scholar : PubMed/NCBI | |
Cai C, He HH, Gao S, Chen S, Yu Z, Gao Y, Chen S, Chen MW, Zhang J, Ahmed M, et al: Lysine-specific demethylase 1 has dual functions as a major regulator of androgen receptor transcriptional activity. Cell Rep. 9:1618–1627. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yatim A, Benne C, Sobhian B, Laurent-Chabalier S, Deas O, Judde JG, Lelievre JD, Levy Y and Benkirane M: NOTCH1 nuclear interactome reveals key regulators of its transcriptional activity and oncogenic function. Mol Cell. 48:445–458. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wissmann M, Yin N, Müller JM, Greschik H, Fodor BD, Jenuwein T, Vogler C, Schneider R, Günther T, Buettner R, et al: Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression. Nat Cell Biol. 9:347–353. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lynch JT, Harris WJ and Somervaille TC: LSD1 inhibition: A therapeutic strategy in cancer? Expert Opin Ther Targets. 16:1239–1249. 2012. View Article : Google Scholar : PubMed/NCBI | |
Maes T, Mascaró C, Ortega A, Lunardi S, Ciceri F, Somervaille TC and Buesa C: KDM1 histone lysine demethylases as targets for treatments of oncological and neurodegenerative disease. Epigenomics. 7:609–626. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liang Y, Ahmed M, Guo H, Soares F, Hua JT, Gao S, Lu C, Poon C, Han W, Langstein J, et al: LSD1-mediated epigenetic reprogramming drives CENPE expression and prostate cancer progression. Cancer Res. 77:5479–5490. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lu X, Fong KW, Gritsina G, Wang F, Baca SC, Brea LT, Berchuck JE, Spisak S, Ross J, Morrissey C, et al: HOXB13 suppresses de novo lipogenesis through HDAC3-mediated epigenetic reprogramming in prostate cancer. Nat Genet. 54:670–683. 2022. View Article : Google Scholar : PubMed/NCBI | |
Meacham CE and Morrison SJ: Tumour heterogeneity and cancer cell plasticity. Nature. 501:328–337. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tanay A and Regev A: Scaling single-cell genomics from phenomenology to mechanism. Nature. 541:331–338. 2017. View Article : Google Scholar : PubMed/NCBI | |
Apostolopoulos V, Thalhammer T, Tzakos AG and Stojanovska L: Targeting antigens to dendritic cell receptors for vaccine development. J Drug Deliv. 2013:8697182013. View Article : Google Scholar : PubMed/NCBI | |
Kwon ED, Drake CG, Scher HI, Fizazi K, Bossi A, van den Eertwegh AJ, Krainer M, Houede N, Santos R, Mahammedi H, et al: Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): A multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 15:700–712. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fizazi K, Drake CG, Beer TM, Kwon ED, Scher HI, Gerritsen WR, Bossi A, den Eertwegh AJMV, Krainer M, Houede N, et al: Final analysis of the ipilimumab versus placebo following radiotherapy phase III trial in postdocetaxel metastatic castration-resistant prostate cancer identifies an excess of long-term survivors. Eur Urol. 78:822–830. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hillerdal V, Ramachandran M, Leja J and Essand M: Systemic treatment with CAR-engineered T cells against PSCA delays subcutaneous tumor growth and prolongs survival of mice. BMC Cancer. 14:302014. View Article : Google Scholar : PubMed/NCBI | |
Zhou JE, Yu J, Wang Y, Wang H, Wang J, Wang Y, Yu L and Yan Z: ShRNA-mediated silencing of PD-1 augments the efficacy of chimeric antigen receptor T cells on subcutaneous prostate and leukemia xenograft. Biomed Pharmacother. 137:1113392021. View Article : Google Scholar : PubMed/NCBI | |
Wang D, Shao Y, Zhang X, Lu G and Liu B: IL-23 and PSMA-targeted duo-CAR T cells in prostate cancer eradication in a preclinical model. J Transl Med. 18:232020. View Article : Google Scholar : PubMed/NCBI |